Essays-Mechanics / Electrodynamics/Download/8831

Total Page:16

File Type:pdf, Size:1020Kb

Essays-Mechanics / Electrodynamics/Download/8831 WHAT IF THE GALILEO AFFAIR NEVER HAPPENED? ABSTRACT From the 5th Century A.D. to the advent of Scholastic Aristotelianism, the curriculum in Roman Catholic universities in Europe taught a Rotating Geocentric Earth. St. Thomas Aquinas (1225 A.D.-1274 A.D.) introduced the writings of Aristotle (384 B.C.-322 B.C.) and of Claudius Ptolemy (100 A.D.-170 A.D.) in the 13th Century A.D., and the curriculum changed to teach a Non-Rotating Geocentric Earth. In this GSJ presentation, an Alternate History is presented. The famous Trial of Galileo never happened and the book by Nicolaus Copernicus was never banned by the Vatican of the Roman Catholic Church. The Roman Catholic Church simply ignored Galileo & his insulting book of 1632 A.D. The Roman Catholic Church Astronomers produced the Gregorian Calendar in 1583 A.D. The Roman Catholic Astronomers had abandoned the Aristotle/Ptolemy Model of Astronomy and had replaced it with the Non-Rotating Tychonian Model. This is NOT Alternate History. Johann Kepler published. That is NOT Alternate History. Isaac Newton published Principia, too. Christian Huygens contributed to the technology of the Mechanical Clock. Mechanical Time and Sundial Time demonstrate two similar but not identical paths. This is NOT Alternate History, either. The writer that is known as Voltaire (1694-1778) campaigned for Newton’s Principia as did Willem Gravesande (1688-1742). Pierre-Simon LaPlace (1748-1827) rescued Newton’s Celestial Mechanics of Universal Gravitation and Kepler’s Elliptical Orbits from disequilibrium issues in 1804A.D. Friedrich Bessel (1784-1846) discovered the first star to exhibit Stellar Parallax in 1838. The Famous “failed” Michelson-Morley Experiment occurred in 1887. An academic contest to celebrate King Olaf II of Sweden’s 60th birthday in 1888 stumped Henri Poincare who nonetheless was declared the winner. Albert Michelson received the Nobel Prize in Physics in 1907 by the Royal Academy of Sciences of Sweden, while Albert Einstein was employed in the Swiss Patent Office. That is NOT Alternate History. Alternate History has Roger Joseph Boscovich (1711-1787) rejecting the Copernican Model of Astronomy as presented by Newton’s Principia. Page 1 Alternate History has the Jesuit Astronomers of the Roman Catholic Church continuing the legacy of the Gregorian Calendar Reform which replaced the Julian Calendar even as Protestant Europe protested (no pun intended) vigorously. Alternate History has the Roman Catholic Church Astronomers reviewing the curriculum before St. Thomas Aquinas endorsed Aristotle. Alternate History has the Roman Catholic Astronomers RETURNING (before 1600 A.D.) to the Geocentric Rotating Earth Model, a.k.a. the Egyptian System. Alternate History has the Roman Catholic Church Astronomers learning of the existence of the Pythagorean Astronomer in Plato’s Academy in Athens, Greece who influenced Aristarchus of Samos (310 B.C.-230 B.C.). Dedicated to:Gerald. E. Aardsma, Juan Carlos Gonstizaga Aguirre & Milenko BernadicCvitkovic (Sin Embargo,No Se Mueve), Dr. Russell Arndts (1935-2010), Gordon Bane (1932-2015), Jeremiah Bannister, Dr. Robert Bennett & Dr. Robert Sungenis (Galileo Was Wrong), Dr. Gerardus Bouw, Malcolm Bowden, Father Fernand Crombette (1880-1970), Pastor/Author Dean Davis (In Search Of The Beginning), Rick Delano, Danny R. Faulkner (Answers In Genesis),Jeffrey Foy, Kennedy Hall, Patrick Holmquist, Nigel Howitt, Karl Keating,Ernst Mayr, Steve Mirsky (Scientific America), Bill Nye, B.S. Mechanical Engineering & (The Science Guy), David Palm, K.C. Paul of Kolkatha, India who witnessed the Astronomical Conjunction of the planet Venus & Polaris (The North Star) while on field maneuvers with the Indian Army in the Year of 1962. A.D., Steve Mirsky (Scientific America), Bill Nye, B.S.M. in Engineering & (The Science Guy),Phil Plait, Michael Rechtshaffen, Nathaniel Richards, Dr. Yasser Shaban (Verses of Deus), Simon Shack (Tychonos), Michael Shermer (Scientific America), Katheryne Thomas, & the polled & surveyed 25%-33% of the World’s population who reject the Copernican Model of Heliocentricity KEYWORDS Brainless Minions of the Einsteinians, Scholastic Aristotelianism Page 2 WHAT IF THE GALILEO AFFAIR NEVER HAPPENED? Shortly after the sack of Rome by Alaric in 410 A.D. & before the Vandals conquered & colonized North Africa in 479 A.D., an official of the Roman Empire in the Roman city of Carthage wrote a treatise on the proper education of High-born male Roman children. His name was Martianus Capella & his writing is entitled De Nuptiis Philologiae et Mercuriior The Marriage of Philosophy and Mercury. There were seven wedding gifts, so another title is De Septem Disciplininis or On The Seven Disciplines.There were two honored guests who were present but not allowed to speak because they represented slave labor: Architecture & Medicine. The seven disciplines which did speak at the wedding feast were: Grammar, Dialects, Rhetoric, Geometry, Arithmetic, Astronomy, & Harmony (Music). De Nuptiis Philologiae et Mercuriireached Europe & became a textbook in the curriculum of Medieval European education of the high-born male children even as the Roman Empire itself collapsed as the Soviet Union collapsed in 1992 A.D. The discipline that is known as Astronomy taught a Rotating Geocentric Earth that was orbited by the celestial objects: the Moon, the Sun, and the planets (Mars, Jupiter, & Saturn). The planets Mercury & Venus were assigned ‘Heliocentric’ orbits around the Sun. In 1573 A.D. Valentin Naboth published a Cosmography model of the Geocentric Earth with the planets Mercury and Venus in ‘Heliocentric’ orbits around the orbiting Sun, ‘Capellian’ by reviewers of Naboth’s model. Another official of the Roman Empire in North Africa wrote about Astronomy also. His name was Macrobius Theodosius (370 A.D.-430 A.D.) who wrote Commentarii in Somnium Scipionis(Commentary on the Dream of Scipio) about Somnium Scipionis. The Dream of Scipio was written by Cicero (106 B.C.-43 B.C.) as the sixth book of De re Publica which was written in the style and manner of Plato’s Republic. In the Somnium Scipionis, Scipio Africanus the Elder appears to his grandson & tells him of the Universe and his destiny (Wikipedia). “Beneath this (the constellations) there lie seven, which turn backwards with a counter revolution to the heavens,…which men on Earth call Saturn’s Star. Next is that bright radiance…which is called Jove’s Star (Jupiter). Then one fiery Red…which you call Mars.” “Next lower down the Sun…chief and ruler of the other lights (the constellations)…he illumines the whole and fills it with his light. With him, Venus & Mercury keep pace as satellites in their successive spheres. And the lowest zone of all, the Moon revolves lighted up by the rays of the Sun.” Earlier in the dream, “and least of them all was that planet which farthest from the heavenly sphere & nearest to our Earth was shining with borrowed light…” (Wikipedia). Page 3 There are two “Theodosius” in Late Antiquity. One of them was Proconsul of Africa in 410 A.D. The other was Praetorian Prefect (Commander of the Praetorian Guard) of Italy in 430 A.D. Academic authorities do not agree upon which Theodosius wrote in “Commentary of the Dream of Scipio”. Neoplatonism Philosophy included the Pythagorean, the Epicurus, and the Peripatetic (Aristotle) of the Classical Greek Era. Cicero mentioned Heraclides & Democritus which means that Aristotle’s campaign to obliterate their writings & legacies proved unsuccessful. The Cosmography Model of Heraclides assigned two movements to the Earth: Rotation & Revolution. Heraclides assigned ‘Heliocentric’ orbits to Mercury & Venus as the natural satellites of the Sun, also. The assigned movement of the revolution of the Earth did not survive the transmission of ideas from Athens, Greece in 340 B.C. to North Africa in 400 A.D. Within Medieval Europe before St. Thomas Aquinas initiated Scholastic Aristotelianism, the Astronomy Model of Martianus Capella & Macrobius Theodosius was known as ‘The Egyptian System’. Ironically, the Alexandrian-based Claudius Ptolemy seems to be absent before Scholastica Aristotelianism. The Egyptian System was clearly of Heraclidean origin, not of Aristotle or Ptolemy origin. Twenty-four year-old author Aryabhata of India seems to have borrowed the ideas of the Neoplatonic Philosophers of North Africa in his writings of 500 A.D. The Ancient Cosmology of India is strikingly different from the Zoroastrian Cosmology from which the Pythagorean Model originated. Also, the Ancient Cosmologies of India & Greece would be strikingly different. Ancient India used Father Sun & Mother Earth as the Divine Marriage of the Cosmos. Both Father Sun & Mother Earth had a servant each. Mother Earth’s servant was the Moon. Father Sun’s servant was Mercury. Orbiting the Divine Parents & their servants were the planets Venus, Mars, Jupiter, & Saturn. Aryabhata adapted Neoplatonic Natural Philosophy to Indian Cosmology. The planet Venus joined Mercury as a servant of Father Sun. Borrowing from Hipparchus of Nicea (190 B.C.-120 B.C.), Aryabhata adapted the eccentric center. Hipparchus proposed that the orbit of Mars revealed that the earth was NOT the radial center of Mars’ orbit. Earth was located upon the eccentric center. The radial center of Mars’ orbit was simply a point in geometric space. And, if so, Mars, then Venus, Jupiter, & Saturn can be assumed to behave identically or nearly so. Aryabhata assigned this radial center of the orbits of the planets to be the Sun. All of the planets join Mercury & Venus in ‘Heliocentric’ orbits, but this is NOT the Heliocentricity of Aristarchus of Samos (310 B.C.-230 B.C). (Many Internet sources disseminate confusion &ignorance). Aristarchus achieves Heliocentricity by two different methods. Indeed, Aristarchus MAINTAINED & CONTINUED the ‘Heliocentric’ feature of Mercury & Venus that Heraclides proposed. Page 4 However, a different causal agency assigned ‘Heliocentric’ orbits to Mars, Jupiter, & Saturn in the Aristarchus Model. So far, Aryabhata proposed that the Sun has two natural satellites (Mercury & Venus) & that the eccentric orbit of Mars is actually an illusion when viewed from Earth.
Recommended publications
  • Resolved Astrometric Binary Stars Brian D. Mason
    Resolved Astrometric Binary Stars Brian D. Mason 9/12/2012 U.S. Naval Observatory 1 Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Image: http://vega.lpl.arizona.edu/sirius/A5.html U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but Image: http://vega.lpl.arizona.edu/sirius/A5.html companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. • Procyon B first resolved in 1896 by John Martin Schaeberle with Lick 36 ” Clark refractor. U.S. Naval Observatory CurrentCurrent Orbit: Orbit: Procyon Sirius AB AB • Broken line is line of nodes. • Green plus signs and asterisks: micrometry. • Pink asterisks: photography • Blue circles: HST/WFPC2 • Scales on axis are in arcseconds. • Direction of orbital motion at lower right. • Sirius Period = 50.090y. • Procyon Period = 40.82y. U.S. Naval Observatory Orbits • The 6 th Catalog of Orbits of Visual Binary Stars has 2298 orbits of 2187 systems.
    [Show full text]
  • Rosseau, Brendan 2019 Astronomy Thesis Title
    Rosseau, Brendan 2019 Astronomy Thesis Title: The Intellectual Marketplace: The Evolution of Space Exploration from Copernicus to von Braun & Beyond Advisor: Jay Pasachoff Advisor is Co-author: None of the above Second Advisor: Released: release now Authenticated User Access: Yes Contains Copyrighted Material: No The Intellectual Marketplace: The Evolution of Space Exploration from Copernicus to von Braun & Beyond by Brendan L. Rosseau Dr. Jay Pasachoff, Advisor A thesis submitted in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Honors in Astronomy WILLIAMS COLLEGE Williamstown, Massachusetts May 8, 2019 TABLE OF CONTENTS Acknowledgments ……………………………………………………………………………………………….. 2 Abstract ………………………………………………………………………………………………………………. 3 Thesis Prologue ………………………………………………………………………………………... 4 Introduction …………………………………………………………………………………... 6 Part I: Early Astronomy ………………………………………………………………….. 11 Part II: Space Exploration in the New World ……………………………….….... 25 Part III: Spaceflight ………………………………………………………………………... 43 Looking Back & Looking Ahead ….………………………………………………….… 60 Appendix Endnotes ………………………………………………………………………………………. 64 About the Author …………………………………………………………………………… 68 Citations ……………………………………………………………………………………….. 69 1 ACKNOWLEDGMENTS I would like to express my great appreciation to Professor Jay Pasachoff, Field Memorial ​ ​ Professor of Astronomy at Williams College, for his invaluable contributions to this thesis and to my education in astronomy. I am particularly grateful for the assistance given by
    [Show full text]
  • Department of Statistics, UCLA
    UCLA Department of Statistics, UCLA Title Determination of the Accuracy of the Observations, by C. F. Gauss, Translation with preface Permalink https://escholarship.org/uc/item/4n21q6bx Author Ekström, Joakim Publication Date 2013-11-12 eScholarship.org Powered by the California Digital Library University of California Determination of the Accuracy of the Observations by Carl Friedrich Gauss. Translation by Joakim Ekström, with preface. Af«±§Zh±. Bestimmung der Genauigkeit der Beobachtungen is the second of the three major pieces that Gauss wrote on statistical hypothesis generation. It continues the methodological tradition of eoria Motus, producing estimates by maximizing probability density, however absence of the change-of- variables theorem causes technical diculties that compromise its elegance. In eoria Combinationis, Gauss abandoned the aforementioned method, hence placing Bestimmung der Genauigkeit at a cross- roads in the evolution of Gauss’s statistical hypothesis generation methodology. e present translation is paired with a preface discussing the piece and its historical context. Õ ó Translator’s Preface and Discussion by Joakim Ekström, UCLA Statistics Carl Friedrich Gauss (Õßßß-Õ¢¢) published three major pieces on statistical hypothesis generation: eoria Motus (ÕþÉ), Bestimmung der Genauigkeit (ÕÕä) and eoria Combinationis (ÕóÕ) (see Sheynin, ÕÉßÉ). eoria Motus was translated into English by C. H. Davis in Õ¢, eoria Combina- tionis was translated into English by G. W. Stewart in ÕÉÉ¢, but an English translation of Bestimmung der Genauigkeit has, in spite of great eorts, not been found in the literature. Hence the present translation. Bestimmung der Genauigkeit der Beobachtungen, as its complete title reads, is an interesting histor- ical text for many reasons.
    [Show full text]
  • The Flint River Observer
    who attended the first club meeting in 1997, only five are still in FRAC: co-founders Larry Higgins, THE Ken Walburn and Bill Warren, and charter members Steven “Saratoga Smitty” Smith and John Wallace. FLINT RIVER Two thing occurred to me recently. First, many of you have never met the men who started FRAC and kept it going when no one OBSERVER outside the club thought it would survive. To borrow from Sir Isaac Newton’s famous statement, NEWSLETTER OF THE FLINT Larry, Ken, Bill, Smitty and John are the giants RIVER ASTRONOMY CLUB upon whose shoulders FRAC stands today. The second thing that occurred to me was, I An Affiliate of the Astronomical League can’t recall ever seeing them together at one time. Well, all of them will be at the July club Vol. 20, No. 2 June, 2016 meeting. Our program will be “1997: FRAC’s Officers: President, Dwight Harness (1770 First Year,” with refreshments afterward. So mark th Hollonville Rd., Brooks, Ga. 30205, 770-227-9321, down Thursday, July 14 as a special day on your [email protected]); Vice President, Bill calendar and please try to attend. It will be a night Warren (1212 Everee Inn Rd., Griffin, Ga. 30224, to remember. [email protected]); Secretary, Carlos Flores; Treasurer, Truman Boyle. -Dwight Harness Board of Directors: Larry Higgins; Aaron Calhoun; and Jeremy Milligan. * * * Facebook Coordinator: Laura Harness; Alcor, Last Month’s Meeting/Activities. As anyone who Carlos Flores; Webmaster, Tom Moore; has been in FRAC for longer than 15 minutes Program Coordinator/Newsletter Editor, Bill knows, our observing mantra has always been, Do Warren; Observing Coordinators, Dwight the best you can with what you have.
    [Show full text]
  • Februar 2019
    Februar 2019 Vor 551 Jahren geboren JOHANNES WERNER (14.02.1468 – Mai 1522) Im Jahre 1472 wurde in Ingolstadt die erste Universität Bayerns durch Herzog LUDWIG IX von Bayern-Landshut ge- gründet. Nach der Kirchenspaltung ab 1530 entwickelte sich die Hochschule unter dem Einfluss des Jesuitenordens zu einem der Zentren der Gegenreformation. Kurfürst MAXI - MILIAN , der spätere bayerische König MAXIMILIAN I, ver- legte 1800 die Universität zunächst nach Landshut, dann nach München – seit 1802 trägt sie den heutigen Namen: LUDWIG -MAXIMILIAN s-Universität (LMU). 1484 schreibt sich der in Nürnberg geborene 16-jährige JOHANNES WERNER an der theologischen Fakultät der Ingolstädter Hochschule ein. Auch wenn es von Kind an sein Wunsch gewesen ist, Mathematiker zu werden, verfolgt er nun doch konsequent den Weg zum Priesterberuf: 1490 wird er als Kaplan in Herzogenaurach tätig, verbringt einige Jahre in Rom, wechselt 1498 an eine Pfarrei in Wöhrd bei Nürnberg, bis er schließlich Pfarrer der Johanniskirche in Nürnberg wird. Die Pflichten dieses Amtes nimmt er gewissenhaft bis zu seinem Tod wahr. Seine Zeit in Rom hatte WERNER bereits zu intensiven Studien der Mathematik und der Astronomie genutzt. Nach Nürnberg zurückgekehrt, vertieft er sich in eigene Forschungen. So beo- bachtet er im Jahr 1500 die Bewegung eines Kometen, führt Messungen mit selbstgebauten Instrumenten aus und dokumen- tiert alle Daten mit Sorgfalt. Mit großem Geschick baut er Astrolabien (Sternhöhen- messer) und Sonnenuhren, konstruiert einen besonderen Jakobsstab mit Winkeleinteilung. 1514 erscheint WERNER s Übersetzung der Geographia des CLAUDIUS PTOLEMÄUS (In Hoc Opere Haec Continentur Nova Translatio Primi Libri Geographicae Cl. Ptolomaei ). Zusätzlich zu umfangreichen Kommentaren entwickelt er eigene Ideen, die in Astronomie und Geografie angewandt werden können.
    [Show full text]
  • Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
    Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes
    [Show full text]
  • Astrometry and Optics During the Past 2000 Years
    1 Astrometry and optics during the past 2000 years Erik Høg Niels Bohr Institute, Copenhagen, Denmark 2011.05.03: Collection of reports from November 2008 ABSTRACT: The satellite missions Hipparcos and Gaia by the European Space Agency will together bring a decrease of astrometric errors by a factor 10000, four orders of magnitude, more than was achieved during the preceding 500 years. This modern development of astrometry was at first obtained by photoelectric astrometry. An experiment with this technique in 1925 led to the Hipparcos satellite mission in the years 1989-93 as described in the following reports Nos. 1 and 10. The report No. 11 is about the subsequent period of space astrometry with CCDs in a scanning satellite. This period began in 1992 with my proposal of a mission called Roemer, which led to the Gaia mission due for launch in 2013. My contributions to the history of astrometry and optics are based on 50 years of work in the field of astrometry but the reports cover spans of time within the past 2000 years, e.g., 400 years of astrometry, 650 years of optics, and the “miraculous” approval of the Hipparcos satellite mission during a few months of 1980. 2011.05.03: Collection of reports from November 2008. The following contains overview with summary and link to the reports Nos. 1-9 from 2008 and Nos. 10-13 from 2011. The reports are collected in two big file, see details on p.8. CONTENTS of Nos. 1-9 from 2008 No. Title Overview with links to all reports 2 1 Bengt Strömgren and modern astrometry: 5 Development of photoelectric astrometry including the Hipparcos mission 1A Bengt Strömgren and modern astrometry ..
    [Show full text]
  • Rabbi Reuven Landau and the Jewish Reaction to Copernican Thought in Nineteenth Century Europe
    JEREMY BROWN Rabbi Reuven Landau and the Jewish Reaction to Copernican Thought in Nineteenth Century Europe n the opening years of this century, Rabbi Shlomo Benizri, once Israel’s Minister of Labor and Social Affairs, published a comprehen- sive textbook on the Jewish calendar titled Ha-shamayim Mesapperim I 1 (The Heavens Proclaim). Most of R. Benizri’s work covers the complex mathematical and astronomical foundations which determine the struc- ture of the lunar based Jewish calendar, and the last part of the book describes the nature of the solar system. In this last section, R. Benizri concludes that despite nearly five hundred years of scientific and astro- nomical evidence to the contrary, it is the sun that revolves around the earth, not vice-versa. Although R. Benizri was educated in traditional Orthodox yeshivot and never attended university, his book made use of many modern scientific instruments and discoveries. It reproduced high resolution telescopic images of the surface of the planets (including those sent from the famous Viking 1 Project) and described the composition of the atmosphere and surface of the planets using data from NASA’s solar explorations. And yet, after a lengthy analysis, R. Benizri stated that the earth does not orbit the sun, because, in his account, the Bible, the rabbis of the Talmud and their medieval commentators had all concluded that the earth lay at the center of the universe. JEREMY BROWN, M.D., is Associate Professor and Director of Research in the Department of Emergency Medicine at the George Washington University in Washington, D.C.
    [Show full text]
  • Lecture 5: Stellar Distances 10/2/19, 802 AM
    Lecture 5: Stellar Distances 10/2/19, 802 AM Astronomy 162: Introduction to Stars, Galaxies, & the Universe Prof. Richard Pogge, MTWThF 9:30 Lecture 5: Distances of the Stars Readings: Ch 19, section 19-1 Key Ideas Distance is the most important & most difficult quantity to measure in Astronomy Method of Trigonometric Parallaxes Direct geometric method of finding distances Units of Cosmic Distance: Light Year Parsec (Parallax second) Why are Distances Important? Distances are necessary for estimating: Total energy emitted by an object (Luminosity) Masses of objects from their orbital motions True motions through space of stars Physical sizes of objects The problem is that distances are very hard to measure... The problem of measuring distances Question: How do you measure the distance of something that is beyond the reach of your measuring instruments? http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit1/distances.html Page 1 of 7 Lecture 5: Stellar Distances 10/2/19, 802 AM Examples of such problems: Large-scale surveying & mapping problems. Military range finding to targets Measuring distances to any astronomical object Answer: You resort to using GEOMETRY to find the distance. The Method of Trigonometric Parallaxes Nearby stars appear to move with respect to more distant background stars due to the motion of the Earth around the Sun. This apparent motion (it is not "true" motion) is called Stellar Parallax. (Click on the image to view at full scale [Size: 177Kb]) In the picture above, the line of sight to the star in December is different than that in June, when the Earth is on the other side of its orbit.
    [Show full text]
  • ATTENTION: Epreuve Non Définitive!!!
    Verrier, Urbain-Jean-Joseph Le V 1 Verrier, Urbain-Jean-Joseph Le Born Saint-Lô, Manche, France, 11 March 1811 Died Paris, France, 23 September 1877 Urbain-Jean-Joseph le Verrier explained the unruly behavior of Uranus by positing the existence of an unknown planet, which was subsequently discovered and named Neptune. His father, Louis-Baptiste le Verrier, a civil servant, and mother, Pauline de Baudre, came from the lower Norman aristocracy. Th eir only son received his lycée education in Cherbourg, and failed the entrance examination to the École Polytechnique on his fi rst try but was admitted in 1831. In 1837, he married Lucille Marie Clothilde Choquet, the daughter of his former teacher. Th ey had three children: Léon, Lucille, and Urbain. In 1837, le Verrier was off ered a position in geodesy and machines as an assistant to Félix Savary at the École Polytechnique. Aft er Savary’s death a few years later, le Verrier succeeded him to the chair in astronomy. He devoted his attention to celestial mechanics to reclaim the heritage of Pierre de Laplace . His fi rst memoir presented to the Paris Academy of Sciences addressed Laplace’s solution to the stability of the Solar System. Later, le Verrier laid the groundwork for a new theory of Mercury’s orbit and successfully tackled the theory of several recently discovered periodic comets, on the basis of which he was successful in his bid for a seat at the academy on 19 January 1846. Two months earlier, le Verrier had published his fi rst memoir on Uranus’s orbital irregularities, a work he had undertaken with encouragement by François Arago .
    [Show full text]
  • A Complete Bibliography of Publications in Journal for the History of Astronomy
    A Complete Bibliography of Publications in Journal for the History of Astronomy Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 10 May 2021 Version 1.28 Title word cross-reference $8.95 [Had84]. $87 [CWW17]. $89.95 [Gan15]. 8 = 1;2;3 [Cov15]. $90 [Ano15f]. $95 [Swe17c]. c [Kin87, NRKN16, Rag05]. mul [Kur19]. muld [Kur19]. [Kur19]. · $100 [Apt14]. $120 [Hen15b]. $127 [Llo15]. 3 [Ano15f, Ash82, Mal10, Ste12a]. ∆ [MS04]. $135.00 [Smi96]. $14 [Sch15]. $140 [GG14]. $15 [Jar90]. $17.95 [Had84]. $19.95 -1000 [Hub83]. -4000 [Gin91b]. -601 [Mul83, Nau98]. 20 [Ost07]. 2000 [Eva09b]. [Hub83]. -86 [Mar75]. -Ft [Edd71b, Mau13]. $24.95 [Lep14, Bro90]. $27 [W lo15]. $29 -inch [Ost07]. -year [GB95]. -Year-Old [Sha14]. $29.25 [Hea15]. $29.95 [Eva09b]. [Ger17, Mes15]. 30 [Mau13]. $31.00 [Bra15]. $34 [Sul14]. $35 Zaga´_ n [CM10]. [Ano15f, Dev14b, Lau14, Mir17, Rap15a]. $38 [Dan19b, Vet19]. $39.95 [Mol14b]. /Catalogue [Kun91]. /Charles [Tur07]. $39.99 [Bec15]. $40 [Dun20, LF15, Rob86]. /Collected [Gin93]. /Heretic [Tes10]. 40 [Edd71b]. $42 [Nau98]. $45 [Kes15]. /the [War08]. $49.95 [Ree20]. $49.99 [Bec15]. $50 [Kru17, Rem15]. $55 [Bon19b]. $60 [Mal15]. 0 [Ave18, Hei14a, Oes15, Swe17c, Wlo15, 600 [GB95]. $72 [Ave18]. $79 [Wil15]. 1 2 Ash82]. [Dic97a]. 1970 [Kru08]. 1971 [Wil75]. 1973 [Doe19]. 1975 [Ost80]. 1976 [Gin02d]. 1979 1 [Ano15f, BH73a, Ber14, Bru78b, Eva87b, [Ano78d].
    [Show full text]
  • Another Unit of Distance (I Like This One Better): Light Year
    How far away are the nearest stars? Last time: • Distances to stars can be measured via measurement of parallax (trigonometric parallax, stellar parallax) • Defined two units to be used in describing stellar distances (parsec and light year) Which stars are they? Another unit of distance (I like this A new unit of distance: the parsec one better): light year A parsec is the distance of a star whose parallax is 1 arcsecond. A light year is the distance a light ray travels in one year A star with a parallax of 1/2 arcsecond is at a distance of 2 parsecs. A light year is: • 9.460E+15 meters What is the parsec? • 3.26 light years = 1 parsec • 3.086 E+16 meters • 206,265 astronomical units The distances to the stars are truly So what are the distances to the stars? enormous • If the distance between the Earth and Sun were • First measurements made in 1838 (Friedrich Bessel) shrunk to 1 cm (0.4 inches), Alpha Centauri • Closest star is Alpha would be 2.75 km (1.7 miles) away Centauri, p=0.75 arcseconds, d=1.33 parsecs= 4.35 light years • Nearest stars are a few to many parsecs, 5 - 20 light years 1 When we look at the night sky, which So, who are our neighbors in space? are the nearest stars? Altair… 5.14 parsecs = 16.8 light years Look at Appendix 12 of the book (stars nearer than 4 parsecs or 13 light years) The nearest stars • 34 stars within 13 light years of the Sun • The 34 stars are contained in 25 star systems • Those visible to the naked eye are Alpha Centauri (A & B), Sirius, Epsilon Eridani, Epsilon Indi, Tau Ceti, and Procyon • We won’t see any of them tonight! Stars we can see with our eyes that are relatively close to the Sun A history of progress in measuring stellar distances • Arcturus … 36 light years • Parallaxes for even close stars • Vega … 26 light years are tiny and hard to measure • From Abell “Exploration of the • Altair … 17 light years Universe”, 1966: “For only about • Beta Canum Venaticorum .
    [Show full text]