Lecture 5: Stellar Distances 10/2/19, 8 02 AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy, Astrophysics, and Cosmology
Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I February 2, 2016 arXiv:0706.1988 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 1 / 22 Table of Contents 1 Stars and Galaxies 2 Distance Measurements Stellar parallax Stellar luminosity L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 2 / 22 Stars and Galaxies Night sky provides a strong impression of a changeless universe G Clouds drift across the Moon + on longer times Moon itself grows and shrinks G Moon and planets move against the background of stars G These are merely local phenomena caused by motions within our solar system G Far beyond planets + stars appear motionless L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 3 / 22 Stars and Galaxies According to ancient cosmological belief + stars except for a few that appeared to move (the planets) where fixed on sphere beyond last planet The universe was self contained and we (here on Earth) were at its center L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 4 / 22 Stars and Galaxies Our view of universe dramatically changed after Galileo’s telescopic observations: we no longer place ourselves at the center and we view the universe as vastly larger L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 5 / 22 Stars and Galaxies Is the Earth flat? L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 6 / 22 Stars and Galaxies Distances involved are so large that we specify them in terms of the time it takes the light to travel a given distance light second + 1 ls = 1 s 3 108 m/s = 3 108m = 300, 000 km × × light minute + 1 lm = 18 106 km × light year + 1 ly = 2.998 108 m/s 3.156 107 s/yr × · × = 9.46 1015 m 1013 km × ≈ How long would it take the space shuttle to go 1 ly? Shuttle orbits Earth @ 18,000 mph + it would need 37, 200 yr L. -
Quantity Symbol Value One Astronomical Unit 1 AU 1.50 × 10
Quantity Symbol Value One Astronomical Unit 1 AU 1:50 × 1011 m Speed of Light c 3:0 × 108 m=s One parsec 1 pc 3.26 Light Years One year 1 y ' π × 107 s One Light Year 1 ly 9:5 × 1015 m 6 Radius of Earth RE 6:4 × 10 m Radius of Sun R 6:95 × 108 m Gravitational Constant G 6:67 × 10−11m3=(kg s3) Part I. 1. Describe qualitatively the funny way that the planets move in the sky relative to the stars. Give a qualitative explanation as to why they move this way. 2. Draw a set of pictures approximately to scale showing the sun, the earth, the moon, α-centauri, and the milky way and the spacing between these objects. Give an ap- proximate size for all the objects you draw (for example example next to the moon put Rmoon ∼ 1700 km) and the distances between the objects that you draw. Indicate many times is one picture magnified relative to another. Important: More important than the size of these objects is the relative distance between these objects. Thus for instance you may wish to show the sun and the earth on the same graph, with the circles for the sun and the earth having the correct ratios relative to to the spacing between the sun and the earth. 3. A common unit of distance in Astronomy is a parsec. 1 pc ' 3:1 × 1016m ' 3:3 ly (a) Explain how such a curious unit of measure came to be defined. Why is it called parsec? (b) What is the distance to the nearest stars and how was this distance measured? 4. -
Resolved Astrometric Binary Stars Brian D. Mason
Resolved Astrometric Binary Stars Brian D. Mason 9/12/2012 U.S. Naval Observatory 1 Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Image: http://vega.lpl.arizona.edu/sirius/A5.html U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but Image: http://vega.lpl.arizona.edu/sirius/A5.html companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. U.S. Naval Observatory Background Astrometric contributions of Friedrich Bessel (1784-1846) •Parallax of 61 Cygni (1838) •Non-linear proper motion of Sirius and Procyon (1844) Due to stellar types (main- sequence and white dwarf) motion affect significant, but companion hard to detect. • Sirius B first resolved in 1862 by Alvan Graham Clark (right) testing 18.5 ” Clark refractor. • Procyon B first resolved in 1896 by John Martin Schaeberle with Lick 36 ” Clark refractor. U.S. Naval Observatory CurrentCurrent Orbit: Orbit: Procyon Sirius AB AB • Broken line is line of nodes. • Green plus signs and asterisks: micrometry. • Pink asterisks: photography • Blue circles: HST/WFPC2 • Scales on axis are in arcseconds. • Direction of orbital motion at lower right. • Sirius Period = 50.090y. • Procyon Period = 40.82y. U.S. Naval Observatory Orbits • The 6 th Catalog of Orbits of Visual Binary Stars has 2298 orbits of 2187 systems. -
Essays-Mechanics / Electrodynamics/Download/8831
WHAT IF THE GALILEO AFFAIR NEVER HAPPENED? ABSTRACT From the 5th Century A.D. to the advent of Scholastic Aristotelianism, the curriculum in Roman Catholic universities in Europe taught a Rotating Geocentric Earth. St. Thomas Aquinas (1225 A.D.-1274 A.D.) introduced the writings of Aristotle (384 B.C.-322 B.C.) and of Claudius Ptolemy (100 A.D.-170 A.D.) in the 13th Century A.D., and the curriculum changed to teach a Non-Rotating Geocentric Earth. In this GSJ presentation, an Alternate History is presented. The famous Trial of Galileo never happened and the book by Nicolaus Copernicus was never banned by the Vatican of the Roman Catholic Church. The Roman Catholic Church simply ignored Galileo & his insulting book of 1632 A.D. The Roman Catholic Church Astronomers produced the Gregorian Calendar in 1583 A.D. The Roman Catholic Astronomers had abandoned the Aristotle/Ptolemy Model of Astronomy and had replaced it with the Non-Rotating Tychonian Model. This is NOT Alternate History. Johann Kepler published. That is NOT Alternate History. Isaac Newton published Principia, too. Christian Huygens contributed to the technology of the Mechanical Clock. Mechanical Time and Sundial Time demonstrate two similar but not identical paths. This is NOT Alternate History, either. The writer that is known as Voltaire (1694-1778) campaigned for Newton’s Principia as did Willem Gravesande (1688-1742). Pierre-Simon LaPlace (1748-1827) rescued Newton’s Celestial Mechanics of Universal Gravitation and Kepler’s Elliptical Orbits from disequilibrium issues in 1804A.D. Friedrich Bessel (1784-1846) discovered the first star to exhibit Stellar Parallax in 1838. -
Could a Nearby Supernova Explosion Have Caused a Mass Extinction? JOHN ELLIS* and DAVID N
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 235-238, January 1995 Astronomy Could a nearby supernova explosion have caused a mass extinction? JOHN ELLIS* AND DAVID N. SCHRAMMtt *Theoretical Physics Division, European Organization for Nuclear Research, CH-1211, Geneva 23, Switzerland; tDepartment of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; and *National Aeronautics and Space Administration/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 Contributed by David N. Schramm, September 6, 1994 ABSTRACT We examine the possibility that a nearby the solar constant, supernova explosions, and meteorite or supernova explosion could have caused one or more of the comet impacts that could be due to perturbations of the Oort mass extinctions identified by paleontologists. We discuss the cloud. The first of these has little experimental support. possible rate of such events in the light of the recent suggested Nemesis (4), a conjectured binary companion of the Sun, identification of Geminga as a supernova remnant less than seems to have been excluded as a mechanism for the third,§ 100 parsec (pc) away and the discovery ofa millisecond pulsar although other possibilities such as passage of the solar system about 150 pc away and observations of SN 1987A. The fluxes through the galactic plane may still be tenable. The supernova of y-radiation and charged cosmic rays on the Earth are mechanism (6, 7) has attracted less research interest than some estimated, and their effects on the Earth's ozone layer are of the others, perhaps because there has not been a recent discussed. -
190 6Ap J 23. . 2 4 8C the LUMINOSITY of the BRIGHTEST
8C 4 2 . 23. J 6Ap 190 THE LUMINOSITY OF THE BRIGHTEST STARS By GEORGE C. COMSTOCK The prevailing opinion among astronomers admits the presence in the heavens of at least a few stars of extraordinary intrinsic bril- liancy. ‘ Gill, Kapteyn, and Newcomb have under differing forms announced the probable existence of stars having a luminosity exceeding that of the Sun by ten-thousand fold or more, possibly a hundred-thousand fold, and Canopus is cited as an example of such a star. It is the purpose of the present article to examine the evidence upon which this doctrine is based, and the extent to which that evidence is confirmed or refuted by other considerations. As respects Canopus, the case is presented by Gill, Researches on Stellar Parallax, substantially as follows. The measured par- allaxes of this star and of a Centauri are respectively ofoio and 0^762, and their stellar magnitudes are — 0.96 and+ 0.40; i. e., Canopus is 3.50 times brighter than a Centauri. The light of the one star, is therefore 3.50 times as great as that of the other. But since a Centauri has the same mass and the same spectrum as the Sun, and therefore presumably emits the same quantity of light, we may substitute the Sun in place of a Centauri in this com- parison, and find from the expression given above that Canopus is more than 20,000 times as bright as the Sun. I have sought for other cases of a similar character, using a method slightly different from that of Gill. -
Distances and Magnitudes Distance Measurements the Cosmic Distance
Distances and Magnitudes Prof Andy Lawrence Astronomy 1G 2011-12 Distance Measurements Astronomy 1G 2011-12 The cosmic distance ladder • Distance measurements in astronomy are a chain, with each type of measurement relative to the one before • The bottom rung is the Astronomical Unit (AU), the (mean) distance between the Earth and the Sun • Many distance estimates rely on the idea of a "standard candle" or "standard yardstick" Astronomy 1G 2011-12 Distances in the solar system • relative distances to planets given by periods + Keplers law (see Lecture-2) • distance to Venus measured by radar • Sun-Earth = 1 A.U. (average) • Sun-Jupiter = 5 A.U. (average) • Sun-Neptune = 30 A.U. (average) • Sun- Oort cloud (comets) ~ 50,000 A.U. • 1 A.U. = 1.496 x 1011 m Astronomy 1G 2011-12 Distances to nearest stars • parallax against more distant non- moving stars • 1 parsec (pc) is defined as distance where parallax = 1 second of arc in standard units D = a/✓ (radians, metres) in AU and arcsec D(AU) = 1/✓rad = 206, 265/✓00 in parsec and arcsec D(pc) = 1/✓00 nearest star Proxima Centauri 1.30pc Very hard to measure less than 0.1" 1pc = 206,265 AU = 3.086 x 1016m so only good for stars a few parsecs away... until launch of GAIA mission in 2014..... Astronomy 1G 2011-12 More distant stars : standard candle technique If a star has luminosity L (total energy emitted per sec) then at L distance D we will observe flux density F (i.e. energy per second F = 2 per sq.m. -
Department of Statistics, UCLA
UCLA Department of Statistics, UCLA Title Determination of the Accuracy of the Observations, by C. F. Gauss, Translation with preface Permalink https://escholarship.org/uc/item/4n21q6bx Author Ekström, Joakim Publication Date 2013-11-12 eScholarship.org Powered by the California Digital Library University of California Determination of the Accuracy of the Observations by Carl Friedrich Gauss. Translation by Joakim Ekström, with preface. Af«±§Zh±. Bestimmung der Genauigkeit der Beobachtungen is the second of the three major pieces that Gauss wrote on statistical hypothesis generation. It continues the methodological tradition of eoria Motus, producing estimates by maximizing probability density, however absence of the change-of- variables theorem causes technical diculties that compromise its elegance. In eoria Combinationis, Gauss abandoned the aforementioned method, hence placing Bestimmung der Genauigkeit at a cross- roads in the evolution of Gauss’s statistical hypothesis generation methodology. e present translation is paired with a preface discussing the piece and its historical context. Õ ó Translator’s Preface and Discussion by Joakim Ekström, UCLA Statistics Carl Friedrich Gauss (Õßßß-Õ¢¢) published three major pieces on statistical hypothesis generation: eoria Motus (ÕþÉ), Bestimmung der Genauigkeit (ÕÕä) and eoria Combinationis (ÕóÕ) (see Sheynin, ÕÉßÉ). eoria Motus was translated into English by C. H. Davis in Õ¢, eoria Combina- tionis was translated into English by G. W. Stewart in ÕÉÉ¢, but an English translation of Bestimmung der Genauigkeit has, in spite of great eorts, not been found in the literature. Hence the present translation. Bestimmung der Genauigkeit der Beobachtungen, as its complete title reads, is an interesting histor- ical text for many reasons. -
A New Vla–Hipparcos Distance to Betelgeuse and Its Implications
The Astronomical Journal, 135:1430–1440, 2008 April doi:10.1088/0004-6256/135/4/1430 c 2008. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A NEW VLA–HIPPARCOS DISTANCE TO BETELGEUSE AND ITS IMPLICATIONS Graham M. Harper1, Alexander Brown1, and Edward F. Guinan2 1 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA; [email protected], [email protected] 2 Department of Astronomy and Astrophysics, Villanova University, PA 19085, USA; [email protected] Received 2007 November 2; accepted 2008 February 8; published 2008 March 10 ABSTRACT The distance to the M supergiant Betelgeuse is poorly known, with the Hipparcos parallax having a significant uncertainty. For detailed numerical studies of M supergiant atmospheres and winds, accurate distances are a pre- requisite to obtaining reliable estimates for many stellar parameters. New high spatial resolution, multiwavelength, NRAO3 Very Large Array (VLA) radio positions of Betelgeuse have been obtained and then combined with Hipparcos Catalogue Intermediate Astrometric Data to derive new astrometric solutions. These new solutions indicate a smaller parallax, and hence greater distance (197 ± 45 pc), than that given in the original Hipparcos Catalogue (131 ± 30 pc) and in the revised Hipparcos reduction. They also confirm smaller proper motions in both right ascension and declination, as found by previous radio observations. We examine the consequences of the revised astrometric solution on Betelgeuse’s interaction with its local environment, on its stellar properties, and its kinematics. We find that the most likely star-formation scenario for Betelgeuse is that it is a runaway star from the Ori OB1 association and was originally a member of a high-mass multiple system within Ori OB1a. -
The Flint River Observer
who attended the first club meeting in 1997, only five are still in FRAC: co-founders Larry Higgins, THE Ken Walburn and Bill Warren, and charter members Steven “Saratoga Smitty” Smith and John Wallace. FLINT RIVER Two thing occurred to me recently. First, many of you have never met the men who started FRAC and kept it going when no one OBSERVER outside the club thought it would survive. To borrow from Sir Isaac Newton’s famous statement, NEWSLETTER OF THE FLINT Larry, Ken, Bill, Smitty and John are the giants RIVER ASTRONOMY CLUB upon whose shoulders FRAC stands today. The second thing that occurred to me was, I An Affiliate of the Astronomical League can’t recall ever seeing them together at one time. Well, all of them will be at the July club Vol. 20, No. 2 June, 2016 meeting. Our program will be “1997: FRAC’s Officers: President, Dwight Harness (1770 First Year,” with refreshments afterward. So mark th Hollonville Rd., Brooks, Ga. 30205, 770-227-9321, down Thursday, July 14 as a special day on your [email protected]); Vice President, Bill calendar and please try to attend. It will be a night Warren (1212 Everee Inn Rd., Griffin, Ga. 30224, to remember. [email protected]); Secretary, Carlos Flores; Treasurer, Truman Boyle. -Dwight Harness Board of Directors: Larry Higgins; Aaron Calhoun; and Jeremy Milligan. * * * Facebook Coordinator: Laura Harness; Alcor, Last Month’s Meeting/Activities. As anyone who Carlos Flores; Webmaster, Tom Moore; has been in FRAC for longer than 15 minutes Program Coordinator/Newsletter Editor, Bill knows, our observing mantra has always been, Do Warren; Observing Coordinators, Dwight the best you can with what you have. -
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes -
Measuring the Astronomical Unit from Your Backyard Two Astronomers, Using Amateur Equipment, Determined the Scale of the Solar System to Better Than 1%
Measuring the Astronomical Unit from Your Backyard Two astronomers, using amateur equipment, determined the scale of the solar system to better than 1%. So can you. By Robert J. Vanderbei and Ruslan Belikov HERE ON EARTH we measure distances in millimeters and throughout the cosmos are based in some way on distances inches, kilometers and miles. In the wider solar system, to nearby stars. Determining the astronomical unit was as a more natural standard unit is the tUlronomical unit: the central an issue for astronomy in the 18th and 19th centu· mean distance from Earth to the Sun. The astronomical ries as determining the Hubble constant - a measure of unit (a.u.) equals 149,597,870.691 kilometers plus or minus the universe's expansion rate - was in the 20th. just 30 meters, or 92,955.807.267 international miles plus or Astronomers of a century and more ago devised various minus 100 feet, measuring from the Sun's center to Earth's ingenious methods for determining the a. u. In this article center. We have learned the a. u. so extraordinarily well by we'll describe a way to do it from your backyard - or more tracking spacecraft via radio as they traverse the solar sys precisely, from any place with a fairly unobstructed view tem, and by bouncing radar Signals off solar.system bodies toward the east and west horizons - using only amateur from Earth. But we used to know it much more poorly. equipment. The method repeats a historic experiment per This was a serious problem for many brancht:s of as formed by Scottish astronomer David Gill in the late 19th tronomy; the uncertain length of the astronomical unit led century.