Recent Results in Solid State Chemistry of Ionic Ozonides, Hyperoxides, and Peroxides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Sulfur Dioxide Oxidation by Stabilized Criegee Intermediate on Sulfate 2 3 Golam Sarwar 1*, Heather Simon 2, Kathleen Fahey 1, Rohit Mathur 1,Wendy S
1 Impact of sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate 2 3 Golam Sarwar 1*, Heather Simon 2, Kathleen Fahey 1, Rohit Mathur 1,Wendy S. Goliff 3,William R. 4 Stockwell 4 5 6 7 1Atmospheric Modeling and Analysis Division, National Exposure Research Laboratory, U.S. Environmental 8 Protection Agency, RTP, NC 27711, USA. 9 10 2Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, 11 North Carolina, USA. 12 13 3College of Engineering Center for Environmental Research and Technology, University of California at Riverside, 14 Riverside, CA 92507, USA. 15 16 4Department of Chemistry, Howard University, Washington, DC 20059, USA. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ______________________________ 45 46 *Corresponding author : Golam Sarwar, U.S. EPA, 109 T.W. Alexander Drive, Research 47 Triangle Park, NC 27711, USA; Tel.: 919-541-2669; fax: 919-541-1379; e-mail : 48 [email protected] 49 - 1 - 50 Abstract 51 We revise the Carbon Bond chemical mechanism to explicitly represent three Stabilized Criegee 52 Intermediates (SCIs) and their subsequent reactions with sulfur dioxide, water monomer, and 53 water dimer, and incorporate the reactions into the Community Multiscale Air Quality model. 54 The reaction of sulfur dioxide with SCI produces sulfuric acid which partitions into sulfate. We 55 examine the impact of sulfur dioxide oxidation by SCI on sulfate using two different measured 56 rate constants for the reaction of sulfur dioxide and SCI. -
United States Patent 0 Patented Feb
2,874,164 United States Patent 0 Patented Feb. 17, 1959 1 2 Another object of the present invention is to provide such processes in which the amount of a speci?c diluent 2,874,164 to e?iciently suppress combustion can be readily deter PREVENTION OF COMBUSTION 1N mine for a given system containing ?lms of known ozo OXYGEN-OZONE MIXTURES nides or ozonide decomposition products having ascer tainable ignition temperatures. Victor A. Hann, St. Davids, Pa., assignor to The Welsbach Other and further objects of the present invention will Corporation, Philadelphia, Pa., a corporation of Dela appear from the following description of illustrative em ware bodiments of the same. No Drawing. Application August 21, 1956 10 The processes of the present invention are capable of Serial No. 605,423 various procedural embodiments without departing from the present inventive concept and reference should there 8 Claims. (Cl. 260—339) fore be had to the appended claims to determine the scope of this invention. _ This invention relates to processes for the prevention 15 As noted above, the ?lms containing ozonides or ozo of combustion in oxygen-ozone mixtures and more par nide decomposition products in the presence of an oxy ticularly to the prevention of combustion in systems con gen'ozone atmosphere act like a combustible mixture taminated by ozonides or their decomposition products although there is apparently insu?icient organic matter formed during the oxidation of unsaturated organic ma in the gas phase to constitute a combustible mixture. terials by oxygen-ozone mixtures and is a continuation 20 These ?lms contain ascertainable proportions of ozonides in-part of my co-pending application Serial No. -
Carbon Dioxide and Chemical Looping: Current Research Trends Lukas C
Review Cite This: Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX pubs.acs.org/IECR 110th Anniversary: Carbon Dioxide and Chemical Looping: Current Research Trends Lukas C. Buelens, Hilde Poelman, Guy B. Marin, and Vladimir V. Galvita* Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium *S Supporting Information ABSTRACT: Driven by the need to develop technologies for converting CO2, an extraordinary array of chemical looping based process concepts has been proposed and researched over the past 15 years. This review aims at providing first a historical context of the molecule CO2, which sits at the center of these developments. Then, different types of chemical looping related to CO2 are addressed, with attention to process concepts, looping materials, and reactor configu- rations. Herein, focus lies on the direct conversion of carbon dioxide into carbon monoxide, a process deemed to have economic potential. 1. THE DISCOVERY OF CARBON DIOXIDE designate CO2 and CO probably occurred only after the Carbon dioxide was probably discovered around 1640 by Jan foundation of the International Union on Pure and Applied Baptist van Helmont, who named it spiritus sylvestre.1,2 When Chemistry (IUPAC) in 1919. burning a piece of wood, van Helmont noticed that the mass of 1,2 2. CARBON DIOXIDE AND THE EARTH’S CLIMATE the ash was considerably less than that of the original wood. He argued that a gas had volatilized from the wood.1,2 Over a In the 1820s, Joseph Fourier made heat transfer calculations hundred years later, around 1750, Joseph Black looked into based on knowledge of that time−between the Sun and the 9,10 carbon dioxide released by magnesium carbonate upon heating Earth. -
Advanced Oxidation Process for Small Compactor/Dumpster/Waste Storage Area Lift Station Bacteria, Virus & Odor Abatement System
BOSII Advanced Oxidation Process for Small Compactor/Dumpster/Waste Storage Area Lift Station Bacteria, Virus & Odor Abatement System RGF has been an International leader in inno- vative environmental systems since 1985 Best warranty in the industry - two (2) full years parts and labor Fully automatic, easy to use and install, versa- tile and portable No costly and complicated chemicals Leaves no residue / operates unattended BOSII uses Photohydroionization®, nature’s natural deodorizer, environmentally friendly Low power consumption, 110 or 220 volt Low maintenance - only one filter to clean yearly cell replacement 3 year continuous operation average Photohy- BACTERIA / ODOR ABATEMENT SYSTEM droionization® Cell life - FOR - Advanced Oxidation gases actually destroys LIFT STATIONS, DUMPSTERS, FOOD PROCESSING, RESTAURANTS, HOTELS, NURSING HOMES, RECYCLE odor molecules, it is not a cover-up CENTERS, FAST FOOD, SUPERMARKETS, LAUNDRIES… PhotohydroionizationTM destroys bacteria, just to name a few. viruses, mold, organic pollutants and odors THE BOS PHOTOHYDROIONIZATION® MODULE WILL DESTROY, NOT JUST COVER-UP, THE FOLLOWING AIRBORNE SUBSTANCES: •DECOMPOSING ORGANICS •FUNGUS •SMOKE •YEAST •MOLD & MILDEW •POLLEN •BACTERIA •HYDROCARBONS •ALGAE •KETONES •URINE / FECES •SPORES •CHEMICAL FUMES •VOC's THE BOSII SYSTEM OF LOW COST ADVANCED OXIDATION PRODUCTION IS DE- SIGNED TO PROVIDE COMMERCIAL AIRBORNE BACTERIA AND ODOR DESTRUCTION BOSII Lab Results Odor reduction (Hydrogen Sulfide) Before and after bacteria samples application of BOSII unit to commercial dumpster compactor * Independent Lab data available Outstanding Features HOURS • No Costly Chemicals • Low Maintenance - Monthly filter cleaning, • All stainless steel PHI Cell replacement 3 years • Automatic Unattended Operation • Reduces Fly Infestation • Safety Service Cut Off Switch • Reduces airborne bacteria • 2 Year Limited Warranty • Reduces liability • Destroys Odors- Is Not a Cover Up • Eliminates odors • Economical to Use Specifications MODEL BOSII VOLTAGE 110V 60 HZ 3 AMPS WEIGHT 10 LBS. -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
29, 1946. LH Dawsl -:Y Erm. 2393391
Jann.` 29, 1946. L. H. DAwsl_-:Y_ Erm. 2,393,391 ‘ PRODUCTION oF METAL PERoxIDEs Filed June 8, 1943 INVENTORS NEYS Patented Jan. 29,1946 2,393,891 UNITED .STATES PATENT olf-FICE 2,393,891 PRODUCTION OF METAL PEROXIDES Lynn H. Dawsey, Kenmore, and Hans A. Rudolph, Buiîalo, N. Y., assignors to Bull'alo Electro Chexnical Company, Inc., Tonawanda, N. Y. Application June 8, 1943, Serial No. 490,040 3 Claims. (Cl. 23187) Thisl invention relates to the stabilization of ing a very real combustion hazard. Another dis alkaline earth metal peroxides stabilized against advantage resides in using stabilizers containing deterioration due to absorptionof atmospheric magnesium, aluminum, or zinc, as large propor water andfcarbon- dioxide. It is especially appli tions of foreign metals are lintroduced into the cable in the manufacture of calcium and stron-Y product, which are, of course, undesirable when tium peroxides‘. _ ' i ' the product is to be utilized in special chemical It' is alwell-known fact that the anhydrous syntheses involving polymerization reactions and alkaline earth metal peroxides are hygroscopic, the like. A further disadvantage of the products and when exposed to I.the atmosphere rapidly take of the prior art is their tendency to cake or ball up moisture and/ carbon dioxide with the forma .up when manipulated rather .than remain free tion of crystalline peroxide‘hydrates, hydroxides iiowing. Y y ' and carbonates. The absorption of water and It is an object of the present invention to over l carbon dioxide by the alkaline earth metal per come the previous disadvantages of the prior art. -
United States Patent Office
Patented Feb. 10, 1948 2,435,566 UNITED STATES PATENT OFFICE 2.435.566 ' PEROXIDE BLEACHING 0F GROUND woon Daniel 0. Adams and George B. Hughey, ton, Va... assignors to West Virginia PulpCoving and Paper Company, New York, N. Y., a corporation of Delaware No Drawing. Application" October 16, 1944, Serial No. 558.951 ' 3 Claims. (01. 8-—104) Our invention relates to the bleaching of 2 ground wood, more especially groundloak and Example I other ground woods such as chestnut, chestnut A 14.8 gram sample of red oak ground wood in oak, maple, etc., which contain substantial the form of a slurry or 5% oven dried (0. D.) amounts of tannin compounds and other natural color bodies. consistency was extracted for one hour at 77° F. In recent with an NaOH solution at a. concentration oi.’ 1 years much study has been given to gram per liter. At the end of one hour the'pulp ' the bleaching of ground wood. Usually and espe was thickened and thoroughly washed. The ex cially for the manufacture of newsprint, ground tracted pulp was then treated with a quantity wood is not bleached. However, the desirable 10 of sodium peroxide equal to 3.5% of the weight printing characteristics of paper containing a of the unbleached pulp on a dry basis, 1. e., .525 large proportion of ground wood have led'to pro gram. The pulp was in the form of a slurry oi’ posals for its use in high grades of paper such 5% consistency at a temperature of 92° F. -
Materials and Chemical Sciences Division Lawrence Berkeley Laboratory • University of California ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755
RECEI VED LBL-27307 c: ~ LAWRE~lCE n" f'' ;:.:v L.l\808!l.TORY 13 E,,.... L~· FEB 8 '1990 Center for Advanced Materials L Bi·\/~fN AND CAM ------DOCUMENTS SECTION To be published as a chapter in Alkali Adsorption on J"' Metals and Semiconductors, H.P. Bonzel, A.M. Bradshaw, and G. Ertl, Eds., Elsevier Science Publishers, BV, Amsterdam, The Netherlands, 1989 Alkali Metals as Structure and Bonding Modifiers of Transition l'VIetal Catalysts G.A. Somorjai and E.L. Garfunkel June 1989 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. ,. / ' . Materials and Chemical Sciences Division Lawrence Berkeley Laboratory • University of California ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. -
Inorganic Chemistry
INORGANIC CHEMISTRY Saito Inorganic Chemistry Saito This text is disseminated via the Open Education Resource (OER) LibreTexts Project (https://LibreTexts.org) and like the hundreds of other texts available within this powerful platform, it freely available for reading, printing and "consuming." Most, but not all, pages in the library have licenses that may allow individuals to make changes, save, and print this book. Carefully consult the applicable license(s) before pursuing such effects. Instructors can adopt existing LibreTexts texts or Remix them to quickly build course-specific resources to meet the needs of their students. Unlike traditional textbooks, LibreTexts’ web based origins allow powerful integration of advanced features and new technologies to support learning. The LibreTexts mission is to unite students, faculty and scholars in a cooperative effort to develop an easy-to-use online platform for the construction, customization, and dissemination of OER content to reduce the burdens of unreasonable textbook costs to our students and society. The LibreTexts project is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning by developing an Open Access Resource environment. The project currently consists of 13 independently operating and interconnected libraries that are constantly being optimized by students, faculty, and outside experts to supplant conventional paper-based books. These free textbook alternatives are organized within a central environment that is both vertically (from advance to basic level) and horizontally (across different fields) integrated. The LibreTexts libraries are Powered by MindTouch® and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. -
United States Patent (19) 11 4,399,633 Haughey Et Al
United States Patent (19) 11 4,399,633 Haughey et al. 45) Aug. 23, 1983 PRODUCTION OF ALKAL METAL, OR 3,786,573 1/1974 Scheppe et al. ........................ 34/10 (54 ALKALINE EARTH METAL PEROXDES 3,789,513 2/1974 Mark ............... ... 34/10 3,879,856 4/1975 Barr......................................... 34/10 75 Inventors: Douglas P. Haughey, Chester; Malcolm H. Millar, Liverpool, both FOREIGN PATENT DOCUMENTS of England 52-69711 6/1977 Japan .................................... 47/57.6 73 Assignee: Interox Chemicals Limited, London, 799251 8/1958 United Kingdom.................... 34/11 England OTHER PUBLICATIONS 21) Appl. No.: 252,323 Perry, Chemical Engineers' Handbook, Third Edition, 22 Filed: Apr. 9, 1981 McGraw-Hill Book Co., Inc. (1950), pp. 834-838. (51) Int. Cl’................................................ CO1D 1/02 Primary Examiner-O. R. Vertiz (52) U.S.C. .......................................... 47/57.6; 34/9; Assistant Examiner-Wayne A. Langel 34/10, 34/11; 71/63; 71/77; 423/582; 42.3/583; Attorney, Agent, or Firm-Larson and Taylor 423/265 57 ABSTRACT (58) Field of Search ...................... 423/582,583; 34/9, Alkali metal or alkaline earth metal peroxides, for exam 34/10, 11; 71/63, 64.03, 904, 77; 47/57.6; 119/1 ple, particularly, calcium peroxide, are produced by (56) References Cited recovering a moist peroxide product from an aqueous U.S. PATENT DOCUMENTS mixture, formed by reacting hydrogen peroxide and a 1,308,942 7/1919 French .................................... 34/11 hydroxide or oxide of the alkali metal or alkaline earth 2,290,862 7/1942 Canning . 423/583 metal, and drying the moist product by means of a pneu 2,350,162 5/1944 Gordon ......... -
Manuscript-2Nd Revision
Martian superoxide and peroxide O2 release (OR) assay: A new technology for terrestrial and planetary applications Christos D. Georgiou1*, Dimitrios Zisimopoulos1, Konstantinos Panagiotidis1, Konstantinos Grintzalis1, Ioannis Papapostolou1, Richard C. Quinn2, Christopher P. McKay3, Henry J. Sun4 D. Z. and K. P. had equal contribution Running title: Metal superoxide/peroxide O2 release assay Affiliations: 1Department of Biology, University of Patras 26504, Greece, 2SETI Institute, Carl Sagan Center, Mountain View, CA 94043, USA, 3NASA Ames Research Center, Moffett Field, CA 94035, USA, 4Desert Research Institute, Las Vegas, NV 89119, USA *Corresponding author: [email protected], tel. +30 2610 997227, fax +30 2610 997840 Abstract This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on •− the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 •− electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. -
4923: 70-614 DATE 6 February 1970 W
CR- 72 963 10-047-009 (REV. 6/63) DIVISION Power Systems TM 4923: 70-614 DATE 6 February 1970 w. 0. 1139-78-2000 TECHNl CAL MEMO RAN DUM AUTHOR(S): F. H. Cassidy Oxides in NaK ABSTRACT The eutectic alloy of sodium and potassium (NaK) is very oxygen-reactive. A review was made of how the NaK and the SNAP-8 system are affected; the sources of oxygen contamination in a NaK system; the solubility of the oxide; the effects of the oxide in respect to the system and on the NaK; and oxide control methods. KEY WORDS: cold trapping, crystallization, hot trapping, mass transfer, NaK, oxides, potassium superoxide, sodium monoxide, solubility APPROVED: DEPARTMENT HEAD __ H. Derow NOTE: The information in this document is subject to revision as analysis progresses and additional data are acquired. AEROJ ET-GEN ERAL CORPORATION .. TABLE OF CONTENTS hge I. summary 1 11. Introduction 1 111. Alkali &tal Oxides 1 A. Sources of Oxygen 3 B. Solubility and Crystallization 4 C. The Effect of Oxygen on a Liquid Alkali Metal System 5 IV. Control of Alkali Metal Oxides 7 A. Operational Procedures to Prevent Contamination 7 B. Purification Techniques During Loop Opration 8 C. Other Inline Monitoring Devices 9 References 10 Figures Periodic Chart of the Elements 1 Binary Phase Diagram: Sodium/Potassium 2 Free Energy of Formation vs . Temperature for Selected Oxide 3 Equilibrium Curve of Temperature vs . Concentration of Sodium Monoxide, 4 Na20, as Oxygen Schematic of Purification System Pluggings Loop and Plugging Valve 5 > sc I ,* +- . Tab le Oxide of SodZum and Potassium 1 Changes of Physical Properties of Eutectic NaK Caused by Sodium 2 Depletion Appendix Explosives Incident No.