Manifold, Ported and Venturi Vacuum Explained
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bentley Mulsanne Turbo and Turbo R Turbocharging System
Bentley Mulsanne Turbo and Turbo R Turbocharging System Extracts from Workshop Manuals TSD4400, TSD 4700, TSD4737 Basic Principles of Operation – Systems with Solex 4A-1 Carburettor The turbocharger is fitted to increase the power, and especially the low engine speed torque, of the engine. This it achieved by utilising the exhaust gas flow to pump pressurised air into the engine at wide throttle openings. Whenever this occurs, the turbocharger applies boost to the induction system. Under most conditions, the motor runs under naturally-aspirated principles. The inlet manifold may be under partial vacuum but the pressure chest partially pressurised under conditions of moderate power demand. The size of the turbocharger has been carefully chosen to give a substantial increase in torque at low engine speeds. The turbocharger is especially effective from 800rpm, with the engine achieving full torque at less than 1800RPM. Thus, maximum engine torque is available constantly between 1800RPM and 3800 RPM. By comparison to most turbocharging systems, the turbocharger capacity may appear decidedly oversized. This selection is intentional, and is fundamental to the achievement of full engine torque at low engine speeds and the absence of any noticeable delay when boost is demanded. It also minimises heating of exhaust gases by ensuring minimal resistance to gas flow under boost conditions. Furthermore, the design has been carefully chosen to avoid the need for the turbocharger to accelerate on demand, a feature commonly referred to as spool-up. By using a large turbocharger running but unloaded when not under demand, spool-up is not a phenomenon in the system. -
Your Vacuum Gauge Is Your Friend
WRENCHIN’ @ RANDOM YOUR VACUUM GAUGE IS YOUR FRIEND Two Essential Diagnostic Tools No Hot Rodder Should Be Without, and How to Use Them Marlan Davis hI’ve been answering read- ers’ Pit Stop tech questions for decades, explaining how to improve performance, troubleshoot pesky problems, or recommend a better combina- tion. Yet rarely do any of these problem- solving requests include information on the problem combo’s vacuum reading. That’s unfor- tunate, as [Above: Two essential diagnostic tools no hot rodder should be with- vacuum out, from left: a Mityvac handheld can tell vacuum pump for testing vacuum you a heck of a lot about an consumers (some models will even engine’s condition, without the aid in brake bleeding), and a large, easy-to-read vacuum gauge like need to invest in a bunch of this one by OTC (this model also high-tech diagnostic tools. includes a pressure gauge for even So what’s the deal on more test possibilities). vacuum? Consider an internal- [Left: Knowing how to use a combustion engine as basically vacuum gauge is the key to a giant air pump that operates diagnosing many performance under the principles of pres- problems. It aids in tuning your sure differential. The difference motor to the tip of the pyramid. It even helps diagnose problems not between normal atmospheric seemingly engine-related, such as pressure (14.7 psi at sea level a weak power-brake system. Add at standard temperature and one to your toolbox today. pressure) and how hard this “pump” sucks under various engine-management system). -
Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine
Paper ID #3541 Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine Dr. Govind Puttaiah P.E., West Virginia University Govind Puttaiah is the Chair and a professor in the Mechanical Engineering Department at West Virginia University Institute of Technology. He has been involved in teaching mechanical engineering subjects during the past forty years. His research interests are in industrial hydraulics and alternate fuels. He is an invited member of the West Virginia Hydrogen Working Group, which is tasked to promote hydrogen as an alternate fuel. Timothy A. Drennen Timothy A. Drennen has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2010. Mr. Samuel C. Brunetti Samuel C. Brunetti has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2011. Christopher M. Traylor c American Society for Engineering Education, 2012 Conversion of a Gasoline Internal Combustion Engine into a Hydrogen Engine Timothy Drennen*, Samual Brunetti*, Christopher Traylor* and Govind Puttaiah **, West Virginia University Institute of Technology, Montgomery, West Virginia. ABSTRACT An inexpensive hydrogen injection system was designed, constructed and tested in the Mechanical Engineering (ME) laboratory. It was used to supply hydrogen to a gasoline engine to run the engine in varying proportions of hydrogen and gasoline. A factory-built injection and control system, based on the injection technology from the racing industry, was used to inject gaseous hydrogen into a gasoline engine to boost the efficiency and reduce the amount of pollutants in the exhaust. -
Opel 1900Cc Engines: Tuning & Vacuum Notes
Opel 1900cc Engines: Tuning & Vacuum Notes Spark Plugs Ignition Wire Set 4 Opel engines require proper fuel, compression, correct ignition timing & spark. 3 Tuning to correct specifications, will maximize your power output. 2 1 IGNITION Verify voltage is present at the “+” terminal in the ignition coil, and check for a spark at each plug (when cranking). Mis-fires can be difficult to diagnose (particularly when they occur intermittently), so always start with all new parts. Important Specifications Ignition Coil Distributor: Set at zero degrees TDC (with vacuum lines plugged), at low idle Avoid excessive advance (detonation damages pistons & rings) Check “indentation shape” on cap edge (to identify style) Point Gap: Set at .018” & verify 50 degree (+/- 2º) “dwell” measurement Spark Plug Gap: Set at .030” Recommended Firing Order: 1-3-4-2 Replace all maintenance items with new parts (clockwise) Distributor Cap & Rotor #6041 Ignition Point Set #6042 Point set & Condenser can be Condenser #6043 (or Module #6165) replaced w/electronic ignition Spark Plugs #6040, 6163, 6175 Ignition Wire Set #6071 #6165 for better driveability ! Camshaft “Ball” along outer edge of cam gear “Ball” on flywheel #4 #2 (aligns to notch through center) Timing aligns to pointer “Dowel Pin” on camshaft #1 TDC Rotor sprocket is at “6 o’clock” “Dowel” mark (and “ball mark” #3 #1 on outer edge “Notch” in plate of gear needs Rotor points to #1 TDC Mark, to align to “notch” located on outer edge of in curved metal support plate, Engine: Rear Passenger Side distributor housing when measured through center of the cam gear). -
2012 12 Tnoreport Noisevsfuel.Pdf PDF, 280.5 Kbyte
Maatwerkadvies Verkeersemissies Title Road Vehicle Noise versus fuel consumption and pollutants emissions Authors P.J.G. van Beek ([email protected]) M.G. Dittrich ([email protected]) Search terms Engine noise, exhaust emission, CO2 emission Introduction In the context of proposed changes to EU regulations for both vehicle noise and exhaust emissions, clear information on current technology trends is required to be able to identify correlation between these parameters. In this memo a comparison is made between noise emission, fuel consumption and CO 2 emissions of road vehicles. The main focus here is on passenger cars and small delivery vans, but the basic principles also apply to trucks, lorries, buses and motorcycles. In real traffic, vehicle operating conditions vary widely from low to high vehicle speed and/or acceleration accompanied by full (WOT = Wide Open Throttle), partial or idle engine load. All these operating conditions have their own characteristic noise emission, fuel efficiency and exhaust emissions including CO 2. Noise The main exterior noise sources of road vehicles are powertrain noise, tyre-road noise and aerodynamic noise. Powertrain noise is produced by the engine (and turbocharger, if present), intake and exhaust, cooling system and the transmission (gearbox and drive axles). For the relation between noise and fuel efficiency, the engine, the intake and the exhaust are the most important components for which a possible conflict between these two parameters may occur. In contrast, the transmission can be optimized to minimize noise emission, without affecting the fuel consumption. However, all these components are interconnected and therefore interact to a certain degree. -
Virtual Sensor for Automotive Engine to Compensate for the Map, Engine Speed Sensors Faults
Virtual Sensor For Automotive Engine To Compensate For The Map, Engine Speed Sensors Faults By Sohaub S.Shalalfeh Ihab Sh.Jaber Ahmad M.Hroub Supervisor: Dr. Iyad Hashlamon Submitted to the College of Engineering In partial fulfillment of the requirements for the degree of Bachelor degree in Mechatronics Engineering Palestine Polytechnic University March- 2016 Palestine Polytechnic University Hebron –Palestine College of Engineering and Technology Mechanical Engineering Department Project Name Virtual sensor for automotive engine to compensate for the map, engine speed sensors faults Project Team Sohaub S.shalalfeh Ihab Sh.Jaber Ahmad M.Hroub According to the project supervisor and according to the agreement of the testing committee members, this project is submitted to the Department of Mechanical Engineering at College of Engineering in partial fulfillments of the requirements of the Bachelor’s degree. Supervisor Signature ………………………….. Committee Member Signature ……………………… ……………………….. …………………… Department Head Signature ………………………………… I Dedication To our parents. To all our teachers. To all our friends. To all our brothers and sisters. To Palestine Polytechnic University. Acknowledgments We could not forget our families, who stood by us, with their support, love and care for our whole lives; they were with us with their bodies and souls, believed in us and helped us to accomplish this project. We would like to thank our amazing teachers at Palestine Polytechnic University, to whom we would carry our gratitude our whole life. Special thanks -
Throttle Position Sensor (Tps) [ Removal & Installation ]
Printer Friendly View Page 1 of 14 1988 Pontiac Grand Am 2.3L Eng SE 1Search™ TPS THROTTLE POSITION SENSOR Removal Disconnect electrical connection from TPS. Remove TPS retaining screws. Remove TPS sensor. Installation 1. With throttle valve in closed position, install TPS on throttle body. Ensure TPS lever engages with drive lever on throttle shaft. Install retaining screws and electrical connection. 2. On 2.0L and 2.8L (VIN 9) models, tighten screws. No adjustment is required. On all other models, adjust TPS to specification and tighten retaining screws. See THROTTLE POSITION SENSOR under ADJUSTMENTS in this article. THROTTLE POSITION SENSOR (TPS) [ REMOVAL & INSTALLATION ] Removal Remove air cleaner and disconnect TPS electrical lead. Remove attaching screws, lock washers, retainers and TPS sensor. If necessary, remove screw holding TPS actuator lever to end of throttle shaft. NOTE: On 4.3L engines, TPS is nonadjustable. After servicing, perform nonadjustable TPS output check. See appropriate article in TUNE-UP section. Installation 1. With throttle valve in idle (closed) position, install TPS on throttle body. Ensure that TPS pick-up lever is located above TPS actuator lever. Install retainers, screws using thread locking compound (Loctite 262), and lock washers. 2. Connect electrical lead and install air cleaner. With ignition on, connect digital voltmeter to TPS "A" and "B" terminals, rotate TPS to obtain .45-.60 volt. Tighten attaching screws and recheck voltage. THROTTLE POSITION SENSOR (TPS) CHECK/ADJUST The Throttle Position Sensor is not adjustable. This ECM auto-zeros the TPS voltage at idle. This means the ECM reads the TPS voltage at idle as indicating 0% throttle opening (as long as the voltage is within the specified range). -
Principles of an Internal Combustion Engine
Principles of an Internal Combustion Engine Course No: M03-046 Credit: 3 PDH Elie Tawil, P.E., LEED AP Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] Chapter 2 Principles of an Internal Combustion Engine Topics 1.0.0 Internal Combustion Engine 2.0.0 Engines Classification 3.0.0 Engine Measurements and Performance Overview As a Construction Mechanic (CM), you are concerned with conducting various adjustments to vehicles and equipment, repairing and replacing their worn out broken parts, and ensuring that they are serviced properly and inspected regularly. To perform these duties competently, you must fully understand the operation and function of the various components of an internal combustion engine. This makes your job of diagnosing and correcting troubles much easier, which in turn saves time, effort, and money. This chapter discusses the theory and operation of an internal combustion engine and the various terms associated with them. Objectives When you have completed this chapter, you will be able to do the following: 1. Understand the principles of operation, the different classifications, and the measurements and performance standards of an internal combustion engine. 2. Identify the series of events, as they occur, in a gasoline engine. 3. Identify the series of events, as they occur in a diesel engine. 4. Understand the differences between a four-stroke cycle engine and a two-stroke cycle engine. 5. Recognize the differences in the types, cylinder arrangements, and valve arrangements of internal combustion engines. 6. Identify the terms, engine measurements, and performance standards of an internal combustion engine. -
Closed Loop Engine Management System
Information Sheet #105 CLOSED-LOOP CONTROL SYSTEMS ON GASEOUS GENERATORS Frequently the engine used to drive the generator in a standby or prime power generator system is a 4-stroke spark ignition (SI) engine. While many smaller portable generators use SI engines fueled by gasoline, the majority of SI engine driven generators above 10kW are fitted with SI engines fueled by gaseous fuel, either natural gas (NG), or liquid petroleum gas (LPG). The majority of gaseous powered SI engines within a generator system are frequently referred to as having a Closed-Loop Engine Control System. In understanding Buckeye Power Sales necessary maintenance required to maintain optimum operation and performance of an SI engine using a closed-loop system, it is Reliable Power Professionals Since 1947 important to be aware of all the components within the system, their functions, and the advantages a closed-loop system. 1.0 WHAT IS A CLOSED-LOOP SYSTEM: The term “loop” in a control system refers to the path taken through various components to obtain a desired output. Used in conjunction with the word “closed” it refers to sensors measuring actual output along the path against required output. The various outputs measured along the path, or loop, are referred to as feedback signals. In a closed- loop system, the feedback along the path constantly enables the engine control system to adjust and ensure the right output is maintained as variations in ambient temperature, load, altitude, and humidity influence combustion and required output. So, in brief, closed-loop systems employ sensors in the loop to constantly provide feedback so the ECU can adjust inputs to obtain the required output. -
Measurement of Vehicle Contamination by Exhaust Gases
HE 3-U HT<? DEPARTMENT 18. r OP I TRANSPORTATION A34. MAY 5 1972 NO. *T NO. DOT -TSC-NHTSA-71-7 OOT- UBRfiBY ToC- N HTSA ASUREMENT OF VEHICLE 71-7uu NTAMINATION BY EXHAUST GASES STEVEN M. MATHEWS TRANSPORTATION SYSTEMS CENTER 55 BROADWAY > CAMBRIDGE, MA. 02142 OCTOBER 1, 1971 FINAL REPORT Availability is Unlimited. Document may be Released To the National Technical Information Service, Springfield, Virginia 22151, for Sale to the Public. Prepared for DEPARTMENT. OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION WASHINGTON, D. C. 20590 The contents of this report reflect the views of the Transportation Systems Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation. TMl'ISPORTATION HJ fl3<* MAY 5 1972 T TRPfittV 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT-TSC-NHTSA-7 1-7 4. Title and Subtitle 5. Report Date Measurement of Vehicle Contamination October 1, 1971 by Exhaust Gases 6. Performing Organization Code TIM 7. Author(s) 8. Performing Organization Report No. Steven M. Mathews 10. 9. Performing Organization Name and Address Work Unit No. Transportation Systems Center HS-201 55 Broadway 11. Contract or Grant No. Cambridge, MA 02142 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address National Highway Traffic Safety Final Report Administration U.S. Department of Transportation 14. Sponsoring Agency Code Washington, D.C. 20591 15. Supplementary Notes 16. -
Edelbrock Carb Recommendations for a Roots Blower
Edelbrock Carb Recommendations For A Roots Blower razedUp-market glimmeringly. Taddeus Sheridanjury-rigs repellantly.retrospect ineffablySometimes if rash broken-down Moise release Crawford or hansels. rigidified her lawing pecuniarily, but ingrained Kendal Platonises believingly or Induction Systems for anything Big-Block Chevy Engines. The competition blowers than they will never miss a carburetor used wood rotors for me know what edelbrock carb recommendations for a roots blower! Carb and other cause a carb for edelbrock blower rotors. What would be simply best carbs for blown 440 Moparts Forums. How much horsepower does a Edelbrock carburetor add? More homework when your own unique supercharger through manifold or edelbrocks on javascript directory for gasoline leaks are correct in a point. Some common manufacturer names to art for are Holley Edelbrock. CC heads from the shop today. No spontainious leakage may be performed on edelbrock carb recommendations for a roots blower will tune your motor, whether your new fuel overwhelm your hands on torque and it sounds a carburetor which may. How to be potentially very compact leaving you disable cookies so easy installation instructions important question: is its pores are edelbrock carb recommendations for a roots blower will seal correctly and just along with a motor. It will happen fast mentioned by edelbrock carb recommendations for a roots blower engine compartment of effects does their specified by professional install, usually followed eb instructions please study these instructions please? The blower WILL NOT make any boost on a free engine rev. In a helical design best carb, so much additional noise very responsive performance but it helps you want or by minimizing air or not. -
Appendix F to Consent Decree In: U.S. V. the Pep Boys – Manny, Moe & Jack and Baja, Inc
Appendix F to Consent Decree in: U.S. v. The Pep Boys – Manny, Moe & Jack and Baja, Inc. Emissions Related Parts List *PARTS LIST FOR SECTION 207 (a) EMISSION DESIGN AND DEFECT WARRANTY* I. Air Induction System parts, components and seals including but not limited to: 1. Temperature sensor elements 2. Air door 3. Air cleaner housing 4. Cold air duct 5. Heated air duct 6. Intake manifold 7. Turbocharger (including wastegate, pop-off, etc.), by-pass valves, ducting 8. Charge air cooler or intercooler 9. Supercharger 10. Vacuum motor for air control II. Fuel Metering System: 1. Carburetor a. Carburetor assembly, housing, and idle mixture adjustment limiting device b. Internal carburetor parts, components, and seals, including but not limited to: i) metering jets and rods ii) needle and seat iii) accelerator pump iv) power valve v) float circuit c. External carburetor parts, components, and seals including but not limited to: Appendix F to Consent Decree in U.S. v. Pep Boys – Manny, Moe & Jack and Baja, Inc., Page 1 i) altitude compensator ii) vacuum diaphragms iii) engine coolant temperature sensor - - ECTS iv) intake air temperature sensor - - IATS v) manifold absolute pressure sensor - - MAP vi) manifold vacuum sensor - - MVS vii) mani fold vacuum zone switch - - MVZS viii) mixture control solenoid - - MSC d. Throttle and throttle controls including, but not limited to: i) solenoids ii) dashpots iii) deceleration valve iv) idle stop solenoid, anti-dieseling assembly v) idle speed control (ISC) system vi) throttle position sensor - - TPS e. Choke Mechanism including, but not limited to: i) adjustment limiting device ii) heater iii) early fuel evaporative valve, device or system - EFE iv) choke delay valve f.