UNIVERSITY of CALIFORNIA Los Angeles Charged

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA Los Angeles Charged UNIVERSITY OF CALIFORNIA Los Angeles Charged Particle Energization and Transport in the Magnetotail during Substorms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Qingjiang Pan 2015 ABSTRACT OF THE DISSERTATION Charged Particle Energization and Transport in the Magnetotail during Substorms by Qingjiang Pan Doctor of Philosophy in Physics University of California, Los Angeles, 2015 Professor Maha Ashour-Abdalla, Chair This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or ii shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak field region close to the reconnection site, and then adiabatically accelerated in the high- speed flow channels as they catch up with and ride on the earthward propagating dipolarization structures. The nonlocal adiabatic acceleration mechanism for ions is very similar to that for electrons. However, the motion of energetic electrons is adiabatic except in very limited regions near the reconnection site while the motion of energetic ions is marginally adiabatic in the dipolarization regions. The simulations also show that the earthward transport of both species is controlled by the high-speed flows via the dominant ExB drift in the magnetotail. To understand how the power law electrons are initially produced in the magnetotail, we use an implicit particle- in-cell (PIC) code to model the processes in the near-Earth reconnection region. We find that the power law electrons are produced not in the reconnection diffusion region, but in the immediate iii downstream of the reconnection outflow in the course of dipolarization formation and intensification. Our study illustrates that during substorms, particles are accelerated via a multi- step process, including local acceleration in the reconnection region and nonlocal acceleration during the earthward transport, and the multi-step acceleration occurs on multiple spatial scales ranging from a few kilometers (the scale of electron diffusion region) to more than ten Earth radii (the transport scale). iv The dissertation of Qingjiang Pan is approved. George Morales Christopher T. Russell Raymond J. Walker Maha Ashour-Abdalla, Committee Chair University of California, Los Angeles 2015 v To my mother vi TABLE OF CONTENTS ABSTRACT ii DEDICATION vi LIST OF FIGURES xi LIST OF SYMBOLS xiii ACKNOWLEDGEMENTS xiv VITA xvii 1. Background and Purpose of this Study 1 1.1. Introduction .....................................................................................................................1 1.2. Acceleration by Magnetic Reconnection ........................................................................7 1.3. Acceleration during Plasma Earthward Transport ........................................................13 1.4. Purpose of this Study ....................................................................................................24 1.5. Structure of the Dissertation .........................................................................................26 2. Theory of Adiabatic Acceleration of Charged Particles 28 2.1. Introduction ...................................................................................................................28 2.2. Characteristics of Adiabatic Particle Orbits ..................................................................29 vii 2.3. An Analytical Model of Adiabatic Acceleration ..........................................................33 2.3.1. Motivation .........................................................................................................33 2.3.2. The Adiabatic Acceleration Model ...................................................................34 2.3.3. Comparisons with Observations .......................................................................38 2.3.4. Discussions ........................................................................................................49 3. Modeling Electron Energization and Transport in the Magnetotail during a Substorm 52 3.1. Introduction ...................................................................................................................52 3.2. Observations of the March 11, 2008 Substorm Event ..................................................52 3.2.1. Geotail Observations of the Solar Wind ...........................................................52 3.2.2. THEMIS Observations in the Magnetotail .......................................................54 3.3. Simulation Methodology ...............................................................................................60 3.4. MHD and Electron LSK Simulations of the March 11, 2008 Substorm Event ............62 3.4.1. MHD Simulation Results ..................................................................................62 3.4.2. LSK Simulation Results and Comparisons with Observations .........................67 3.5. Discussions ....................................................................................................................75 3.6. Conclusions ...................................................................................................................79 4. Modeling Ion Energization and Transport Associated with Magnetic Dipolarizations during a Substorm 81 viii 4.1. Introduction ...................................................................................................................81 4.2. Observations of the February 07, 2009 Substorm Event ..............................................81 4.3. MHD Simulation of the February 07, 2009 Substorm Event .......................................88 4.4. Ion LSK Simulation of the February 07, 2009 Substorm Event ...................................92 4.4.1. LSK Simulation Set-up .....................................................................................92 4.4.2. LSK Simulation Results and Comparisons with Observations .........................93 4.5. Conclusions and Discussions ......................................................................................100 5. A Comparison Study of Ion and Electron Energization and Transport Mechanisms during a Substorm 103 5.1. Introduction .................................................................................................................103 5.2. Comparisons of the Electron and Ion LSK Simulation Set-up for the February 07, 2009 Substorm Event ............................................................................................104 5.3. Simulation Results ......................................................................................................107 5.3.1. Comparisons of Simulation Results with Observations ..................................107 5.3.2. Comparisons of Ion and Electron Acceleration Mechanisms .........................111 5.4. Conclusions and Discussions ......................................................................................121 6. Particle-in-cell (PIC) Simulation of Electron Acceleration by Magnetic Reconnection 125 6.1. Introduction .................................................................................................................125 ix 6.2. Simulation Methodology .............................................................................................126 6.3. Simulation Results and Comparisons with Observations ...........................................130 6.3.1. Reconnection Structure ...................................................................................130 6.3.2. Electron Acceleration ......................................................................................134 6.4. Conclusions .................................................................................................................147
Recommended publications
  • IBM Explorer for Z/OS: Host Configuration Reference Guide RSE Daemon and Thread Pool Logging
    IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 Note Before using this information, be sure to read the general information under “Notices” on page 175. Third edition (September, 2017) This edition applies to IBM Explorer for z/OS Version 3.1.1 (program number 5655-EX1) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright IBM Corporation 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures .............. vii Certificate Authority (CA) validation ..... 24 (Optional) Query a Certificate Revocation List Tables ............... ix (CRL) ............... 25 Authentication by your security software ... 25 Authentication by RSE daemon....... 26 About this document ......... xi Port Of Entry (POE) checking ........ 27 Who should use this document ........ xi Altering client functions .......... 27 Description of the document content ...... xi OFF.REMOTECOPY.MVS ......... 28 Understanding z/OS Explorer ....... xii Push-to-client developer groups ....... 28 Security considerations ......... xii Send message security........... 30 TCP/IP considerations ......... xii Log file security ............. 31 WLM considerations .......... xii UNIXPRIV class permits.......... 32 Tuning considerations .......... xii BPX.SUPERUSER profile permit ....... 33 Performance considerations ........ xii UID 0 ............... 33 Push-to-client considerations ....... xii Miscellaneous information ......... 33 User exit considerations ......... xii GATE trashing ............ 33 Customizing the TSO environment ..... xiii Managed ACEE ............ 33 Troubleshooting configuration problems ... xiii ACEE caching ............ 34 Setting up encrypted communication and X.509 TCP/IP port reservation ......... 34 authentication ............ xiii z/OS Explorer configuration files ....... 34 Setting up TCP/IP........... xiii JES Job Monitor - FEJJCNFG.......
    [Show full text]
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Asa R-/ 130090
    rl),,; ASA R-/130090 The University of Texas at Dallas Final Technical Report NASA Contract NAS 5-9075 on Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle by R. A. R. Palmeira and F. R. Allum The University of Texas at Dallas Dallas, Texas This report was prepared for submission to NASA/Goddard Space Flight Center in partial fulfillment of the terms of the Contract NAS 5-9075. October 1972 (NASA-CR-130090 ) MEASUREMENT OF THE DEGREE N72-3376 OF ANISOTROPY OF THE COSMIC RADIATION USING 8 THE IMP SPACE VEHICLE Final Technical Report R.A.R. Palmeira, et al (Texas Unclas Univ.) Oct. 1972 31 p CSCL 03B G3/29 45262 The University of Texas at Dallas Final Technical Report on "Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle" NASA Contract NAS 5-9075 by R.A.R. Palmeira and F. R. Allum The University of Texas at Dallas, Dallas, Texas INTRODUCTION This report describes the detector and data reduction techniques used in connection with the UTD cosmic-ray experiments designed for and flown on board the Explorer 34 and 41 satellites. It is intended to supplement and summarize the more detailed information supplied during the course of the program, including but not restricted to the information contained in the contractually required Monthly Technical Reports submitted throughout the duration of the program. This final technical report is divided into three categories: i) a brief history of the UTD program development; ii) a description of the particle detectors and the methods of data analysis; and iii) present status of data processing.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Profit Embedded PHD : Process Trend User's Guide
    Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Copyright, Notices, and Trademarks Copyright, Notices, and Trademarks © Honeywell Inc. 1998 – 2001. All Rights Reserved. Release 160 – March 30, 2001 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customers. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Honeywell, TotalPlant, Uniformance, and Business.FLEX are U.S. registered trademarks of Honeywell Inc. Other brand or product names are trademarks of their respective owners. Release Information Uniformance 160 Revision: 1 Revision Date: April 2001 Document Number: AP20-530PS Honeywell Inc. Industrial Automation and Control Automation College 2500 West Union Hills Drive Phoenix, AZ, 85027 ii • Uniformance Process Trend User Guide Contents Contents Copyright, Notices, and Trademarks ii Release Information ii Contents iii About Process Trend 9 Overview 9 About this Guide 10 Who Should Use this Guide 10 What's in this Guide 10 Conventions Used in this Guide 11 Contact Us 11 Getting Started 13 System Requirements 13 Starting Process Trend 13 Logging into Process Trend 13 Bypassing the PHD Login 14 Saving
    [Show full text]
  • Solar Parameters for Modeling Interplanetary Background
    — 2 — Solar parameters for modeling interplanetary background M. Bzowski, J.M. Sokoł´ Space Research Center Polish Academy of Sciences, Warsaw, Poland M. Tokumaru,K.Fujiki Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan E. Quemerais,R.Lallement LATMOS-IPSL, Universite Versailles Saint-Quentin, Guyancourt, France S. Ferron ACRI-ST, Sophia Antipolis, France P. Bochsler Space Science Center & Department of Physics, University of New Hampshire, Durham NH Physikalisches Institut, University of Bern, Bern, Switzerland D.J. McComas Southwest Research Institute, San Antonio TX University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Work- ing Team of the International Space Science Institute (ISSI) in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required a credible and up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shap- arXiv:1112.2967v1 [astro-ph.SR] 13 Dec 2011 ing the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the question of solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the process of pho- toionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is 1 2 2.
    [Show full text]
  • An Analysis of Solar Energetic Particle Spectra Throughout the Inner Heliosphere
    An Analysis of Solar Energetic Particle Spectra Throughout the Inner Heliosphere J. Douglas Patterson 19th December 2002 Contents 1 Previous Studies and Results 1 1.1 Solar Structure and the Heliosphere . 1 1.2 Source of the Solar Wind and the Interplanetary Magnetic Field . 6 1.2.1 Solar Wind Outflow . 6 1.2.2 Interplanetary Magnetic Field (IMF) . 9 1.3 Global Chracteristics of the Inner Heliosphere . 10 1.3.1 The Solar Wind and Solar Magnetic Field . 10 1.3.2 Solar Energetic Particles . 10 1.3.3 Co-Rotating Interaction Regions . 12 1.3.4 Anomalous and Galactic Cosmic Rays . 12 1.4 Acceleration Processes . 13 1.4.1 DC Electric Field Acceleration . 13 1.4.2 Wave-Particle Interactions . 13 1.4.3 Shock Drift and Diffusive Acceleration . 17 2 Spacecraft Mission Descriptions 25 2.1 The Ulysses Mission . 25 2.1.1 Mission Goals and Objectives . 26 2.1.2 The Spacecraft . 26 2.1.3 Trajectory . 28 2.2 The Advanced Composition Explorer (ACE) Mission . 29 2.2.1 Mission Goals and Objectives . 29 2.2.2 The Spacecraft . 29 2.2.3 Trajectory . 31 2.3 The EPAM and the HISCALE Instruments . 31 2.3.1 The Hardware and Detector Types . 31 2.3.2 On-Board Data Processing and Data Format . 36 ii 2.3.3 Instrument-Specific Problems . 38 2.4 The IMP-8 Spacecraft and CPME Instrument . 40 2.4.1 Spacecraft and Trajectory . 42 2.4.2 Charged Particle Measurement Experiment . 42 3 Data Reduction and Analysis Procedures 46 3.1 Determination of the Background Rates for EPAM and HISCALE .
    [Show full text]
  • ESRO SP-72 European Space Research Organisation
    ESRO SP-72 I. Proc. ESRO-GRI ESRO SP-72 I. Proc ESRO-GRI European Space Research Organisation Colloquium March 1971 European Space Research Organisation Colloquium March 1971 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 ACTIONS IN THE MAGNETOSPHERE HI. Texts in English ACTIONS IN THE MAGNETOSPHERE III. Texts in English September 1971 September 1971 iv + 284 pages iv + 284 pages The Colloquium on wave-particle interactions in the magnetosphere held in The Colloquium on wave-particle interactions in the magnetosphere held in Orleans (March 17-19,1971) intended to review the outstanding problems still unsolved Orleans (March 17-19, 1971) intended to review the outstanding problems still unsolved in this field : in this field : — large-scale dynamics of the magnetosphere; — large-scale dynamics of the magnetosphere; — distribution of 'Oasma parameters; — distribution of plasma parameters; — decoupling of n..gnetospheric from ionospheric plasma; — decoupling of magnetospheric from ionospheric plasma; — acceleration and convection mechanisms; — acceleration and convection mechanisms; — substorms; — substorms; — polar wind..., — polar wind..., as well as the theoretical and experimental work needed to solve these problems in the as well as the theoretical and experimental work needed to solve these problems in the light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) and of technical achievements (onboard computers, new sensors...). and of technical achievements (onboard computers, new sensors...). Ensuing discussions attempted to define types of missions which could be carried Ensuing discussions attempted to define types of missions which could be carried out in the future by the Small Scientific Satellites now being considered by ESRO.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • A Y' 1969-Deeber 1972
    - -7 5, 41, AN MA 969-DECEMBER43 D 47 197 AY' 1969-DEEBER 1972 S(NASA-TM-X-70481) TRAJECTORIES OF N73-33809 EXPLORERS 33, 35, 41, 43 AND 47, MAY 1969 - DEC. 1972 (NASA) 72 p HC $5.75 CSCL 22C Unclas "f -" G3/30 19441 D.' -'.FAIRFIELD K. W. BEAANNON( R. P LEPPING N. F. NESS "NFORMATN SERVI-E i -- SSpringfield, _ e te. VA.o Com 22151 e 1 AR -SPAC FLIGHT CETER S-ENBET MA RYLAND -N 14 N- TRAJECTORIES OF EXPLORERS 33, 35, 41, 43 and 47 May 1969-Dec 1972 D.H. Fairfield K.W. Behannon R.P. Lepping N.F. Ness Laboratory for Extraterrestrial Physics Goddard Space Flight Center Greenbelt, Maryland October 1973 /0 This document represents a continuation of a previous document (Behannon et al. 1970) and is presented with the intention that it will stimulate and facilitate correlative studies of data from various spacecraft. Figures 1-54 consist primarily of solar ecliptic plane projections of orbits of five different satellites although a limited number of XZ projections are shown to illustrate the large excursions of Explorer 33 away from the ecliptic plane. Nominal positions of the magnetopause and bow shock are included for reference. The plots are intended only to represent the trajectory of the spacecraft and imply nothing about the operational status of the various experiments nor the availability of the data. Information on these latter points can be ob- tained from the National Space Science Data Center, (e.g. King, 1971). It should be pointed out, however, that Explorers33 and 35 were very long lived spacecraft (> 2 yrs) and numerous experiments either ceased operation or exhibited a gradual deterioration during the extended lifetime.
    [Show full text]