IBM Explorer for Z/OS: Host Configuration Reference Guide RSE Daemon and Thread Pool Logging

Total Page:16

File Type:pdf, Size:1020Kb

IBM Explorer for Z/OS: Host Configuration Reference Guide RSE Daemon and Thread Pool Logging IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 Note Before using this information, be sure to read the general information under “Notices” on page 175. Third edition (September, 2017) This edition applies to IBM Explorer for z/OS Version 3.1.1 (program number 5655-EX1) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright IBM Corporation 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures .............. vii Certificate Authority (CA) validation ..... 24 (Optional) Query a Certificate Revocation List Tables ............... ix (CRL) ............... 25 Authentication by your security software ... 25 Authentication by RSE daemon....... 26 About this document ......... xi Port Of Entry (POE) checking ........ 27 Who should use this document ........ xi Altering client functions .......... 27 Description of the document content ...... xi OFF.REMOTECOPY.MVS ......... 28 Understanding z/OS Explorer ....... xii Push-to-client developer groups ....... 28 Security considerations ......... xii Send message security........... 30 TCP/IP considerations ......... xii Log file security ............. 31 WLM considerations .......... xii UNIXPRIV class permits.......... 32 Tuning considerations .......... xii BPX.SUPERUSER profile permit ....... 33 Performance considerations ........ xii UID 0 ............... 33 Push-to-client considerations ....... xii Miscellaneous information ......... 33 User exit considerations ......... xii GATE trashing ............ 33 Customizing the TSO environment ..... xiii Managed ACEE ............ 33 Troubleshooting configuration problems ... xiii ACEE caching ............ 34 Setting up encrypted communication and X.509 TCP/IP port reservation ......... 34 authentication ............ xiii z/OS Explorer configuration files ....... 34 Setting up TCP/IP........... xiii JES Job Monitor - FEJJCNFG........ 34 RSE - rse.env ............. 35 Chapter 1. Understanding z/OS Explorer 1 RSE - ssl.properties ........... 36 Component overview ........... 1 RSE - pushtoclient.properties ....... 36 RSE as a Java application .......... 2 Security definitions ............ 37 Task owners .............. 3 Requirements and checklist ........ 37 Connection flow ............. 5 Activate the security settings and classes ... 39 Data set lock owner ............ 7 Define an OMVS segment for z/OS Explorer Freeing a lock ............. 8 users ............... 40 z/OS UNIX directory structure ........ 9 Define the z/OS Explorer started tasks .... 40 Update privileges for non-system administrators 10 Define RSE as a secure z/OS UNIX server ... 41 Define the MVS program controlled libraries for Chapter 2. Security considerations .. 13 RSE ................ 41 Authentication methods .......... 13 Define the PassTicket support for RSE .... 42 User ID and password.......... 14 Define z/OS UNIX file access permission for RSE 43 User ID and one-time password ...... 14 Define the application protection for RSE ... 43 User ID and pass phrase ......... 14 Define the JES command security ...... 44 X.509 certificate ............ 14 Define the data set profiles ........ 45 JES Job Monitor authentication ....... 14 Verify the security settings ........ 46 Connection security ........... 14 Limit external communication to specified ports 15 Chapter 3. TCP/IP considerations ... 47 Communication encryption ........ 15 TCP/IP ports .............. 47 Port Of Entry checking ......... 15 External communication ......... 47 Using PassTickets ............ 15 Internal communication ......... 48 Audit logging ............. 17 TCP/IP port reservation ......... 48 Audit control ............. 17 LDAP considerations .......... 48 Audit processing ........... 17 Overriding default TCP/IP behavior ...... 49 Audit data.............. 17 Delayed ACK............. 49 JES security .............. 18 Multi-stack (CINET) ........... 49 Actions against jobs - target limitations .... 18 Distributed Dynamic VIPA ......... 49 Actions against jobs - execution limitations ... 20 Restricting port selection ......... 50 Actions against jobs - console ....... 21 Sample setup ............. 53 Access to spool files .......... 22 Encrypted communication ......... 22 Chapter 4. WLM considerations .... 55 Client authentication using X.509 certificates ... 24 Workload classification .......... 55 © Copyright IBM Corp. 2017 iii Classification rules ........... 56 Primary system ............. 98 Setting goals .............. 57 Push-to-client metadata .......... 98 Considerations for goal selection ...... 57 Metadata location ........... 98 STC ................ 58 Metadata security ........... 99 OMVS ............... 59 Metadata space usage .......... 99 JES ................ 59 Client configuration control ........ 100 ASCH ............... 60 Client version control........... 100 Multiple developer groups ......... 100 Chapter 5. Tuning considerations ... 61 Activation ............. 100 Resource usage ............. 61 Group concatenations ......... 101 Overview .............. 62 Workspace binding .......... 102 Address space count .......... 63 Group metadata location ........ 103 Process count............. 64 Group name limitations ......... 103 Thread count ............. 67 Setup steps ............. 104 Temporary resource usage ........ 70 LDAP-based group selection ........ 105 Storage usage.............. 70 LDAP schema ............ 106 Java heap size limit........... 70 LDAP server selection ......... 107 Address space size limit ......... 71 LDAP server location.......... 107 Size estimate guidelines ......... 71 Sample setup ............ 108 Sample storage usage analysis ....... 72 SAF-based group selection ......... 110 z/OS UNIX file system space usage ...... 76 Sample setup ............ 112 Key resource definitions .......... 79 Grace period for rejecting changes ..... 113 /etc/zexpl/rse.env ........... 79 SYS1.PARMLIB(BPXPRMxx) ........ 80 Chapter 8. User exit considerations 115 Various resource definitions ......... 82 User exit characteristics .......... 115 EXEC card in the server JCL........ 82 User exit activation .......... 115 FEK.#CUST.PARMLIB(FEJJCNFG) ...... 82 Writing a user exit routine ........ 115 SYS1.PARMLIB(IEASYSxx) ........ 83 Console messages ........... 116 SYS1.PARMLIB(IVTPRMxx) ........ 83 Executing with a variable user ID ..... 116 SYS1.PARMLIB(ASCHPMxx) ....... 83 Available exit points ........... 117 Monitoring .............. 84 audit.action ............. 117 Monitoring RSE ............ 84 logon.action ............. 118 Monitoring z/OS UNIX ......... 85 Monitoring the network ......... 87 Chapter 9. Customizing the TSO Monitoring z/OS UNIX file systems ..... 87 environment ............ 119 Sample setup .............. 87 The TSO Commands service ........ 119 Thread pool count ........... 87 Access methods ........... 119 Determine minimum limits ........ 88 Using the Legacy ISPF Gateway access method .. 119 Defining limits ............ 88 ISPF.conf .............. 119 Monitor resource usage ......... 89 Use existing ISPF profiles ........ 120 Using an allocation exec ......... 120 Chapter 6. Performance considerations 91 Use multiple allocation execs ....... 121 Use zFS file systems ........... 91 Multiple ISPF.conf files with multiple z/OS Avoid use of STEPLIB ........... 91 Explorer setups............ 121 Improve access to system libraries ....... 91 Language Environment (LE) runtime libraries .. 91 Chapter 10. Running multiple Application development ......... 92 instances ............. 123 Improving performance of security checking ... 92 Fixed Java heap size ........... 93 Identical setup across a sysplex ....... 123 Class sharing between JVMs......... 93 Identical software level, different configuration files 124 rse.env Enable class sharing .......... 93 Nearly identical ......... 124 rse.env Cache size limits............ 94 Different ........... 125 Cache security ............ 94 Automated synchronizing ........ 126 SYS1.PARMLIB(BPXPRMxx) ........ 94 All other situations ........... 127 Disk space.............. 94 Cache management utilities ........ 94 Chapter 11. Troubleshooting configuration problems ....... 129 Chapter 7. Push-to-client Log and setup analysis using FEKLOGS .... 129 considerations ........... 97 Log files ............... 130 Introduction .............. 97 JES Job Monitor logging ......... 131 iv IBM Explorer for z/OS: Host Configuration Reference Guide RSE daemon and thread pool logging .... 131 Activate encryption by creating a new RSE daemon 150 RSE user logging ........... 132 Test the connection ........... 151 fekfivpi IVP test logging......... 133 (Optional) Enable FIPS 140-2 compliancy .... 152 Dump files .............. 133 (Optional) Add X.509 client authentication support 153 MVS dumps............. 133 Manage encryption protocols and ciphers .... 153 Java dumps ............. 134 Managing encryption ciphers ....... 154 z/OS UNIX dump locations ....... 135 Managing encryption protocols ...... 154 Tracing ............... 135 Support for SSLv3 (deprecated) ...... 154 JES Job Monitor tracing ......... 135 RSE tracing ............. 136 Chapter 13. Setting up TCP/IP .... 157 z/OS UNIX permission bits ........ 136 Hostname dependency .......... 157 SETUID file system attribute ....... 136 Understanding resolvers.......... 158 Program Control authorization ...... 137 Understanding search orders
Recommended publications
  • Pcoip® Host Software for Linux User Guide
    PCoIP® Host Software for Linux User Guide TER1104006 Issue 7 PCoIP® Host Software for Linux User Guide Teradici Corporation #101-4621 Canada Way, Burnaby, BC V5G 4X8 Canada phone +1.604.451.5800 fax +1.604.451.5818 www.teradici.com The information contained in this documentation represents the current view of Teradici Corporation as of the date of publication. Because Teradici must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Teradici, and Teradici cannot guarantee the accuracy of any information presented after the date of publication. This document is for informational purposes only. TERADICI MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Teradici Corporation. Teradici may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Teradici, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. Visit Notice of Intellectual Property Rights for more information. © 2000-2015 Teradici Corporation. All rights reserved. Teradici, PC-over-IP, and PCoIP are trademarks of Teradici Corporation and may be registered in the United States and/or other countries.
    [Show full text]
  • AEDIT Text Editor Iii Notational Conventions This Manual Uses the Following Conventions: • Computer Input and Output Appear in This Font
    Quick Contents Chapter 1. Introduction and Tutorial Chapter 2. The Editor Basics Chapter 3. Editing Commands Chapter 4. AEDIT Invocation Chapter 5. Macro Commands Chapter 6. AEDIT Variables Chapter 7. Calc Command Chapter 8. Advanced AEDIT Usage Chapter 9. Configuration Commands Appendix A. AEDIT Command Summary Appendix B. AEDIT Error Messages Appendix C. Summary of AEDIT Variables Appendix D. Configuring AEDIT for Other Terminals Appendix E. ASCII Codes Index AEDIT Text Editor iii Notational Conventions This manual uses the following conventions: • Computer input and output appear in this font. • Command names appear in this font. ✏ Note Notes indicate important information. iv Contents 1 Introduction and Tutorial AEDIT Tutorial ............................................................................................... 2 Activating the Editor ................................................................................ 2 Entering, Changing, and Deleting Text .................................................... 3 Copying Text............................................................................................ 5 Using the Other Command....................................................................... 5 Exiting the Editor ..................................................................................... 6 2 The Editor Basics Keyboard ......................................................................................................... 8 AEDIT Display Format ..................................................................................
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Asa R-/ 130090
    rl),,; ASA R-/130090 The University of Texas at Dallas Final Technical Report NASA Contract NAS 5-9075 on Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle by R. A. R. Palmeira and F. R. Allum The University of Texas at Dallas Dallas, Texas This report was prepared for submission to NASA/Goddard Space Flight Center in partial fulfillment of the terms of the Contract NAS 5-9075. October 1972 (NASA-CR-130090 ) MEASUREMENT OF THE DEGREE N72-3376 OF ANISOTROPY OF THE COSMIC RADIATION USING 8 THE IMP SPACE VEHICLE Final Technical Report R.A.R. Palmeira, et al (Texas Unclas Univ.) Oct. 1972 31 p CSCL 03B G3/29 45262 The University of Texas at Dallas Final Technical Report on "Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle" NASA Contract NAS 5-9075 by R.A.R. Palmeira and F. R. Allum The University of Texas at Dallas, Dallas, Texas INTRODUCTION This report describes the detector and data reduction techniques used in connection with the UTD cosmic-ray experiments designed for and flown on board the Explorer 34 and 41 satellites. It is intended to supplement and summarize the more detailed information supplied during the course of the program, including but not restricted to the information contained in the contractually required Monthly Technical Reports submitted throughout the duration of the program. This final technical report is divided into three categories: i) a brief history of the UTD program development; ii) a description of the particle detectors and the methods of data analysis; and iii) present status of data processing.
    [Show full text]
  • Text Editing in UNIX: an Introduction to Vi and Editing
    Text Editing in UNIX A short introduction to vi, pico, and gedit Copyright 20062009 Stewart Weiss About UNIX editors There are two types of text editors in UNIX: those that run in terminal windows, called text mode editors, and those that are graphical, with menus and mouse pointers. The latter require a windowing system, usually X Windows, to run. If you are remotely logged into UNIX, say through SSH, then you should use a text mode editor. It is possible to use a graphical editor, but it will be much slower to use. I will explain more about that later. 2 CSci 132 Practical UNIX with Perl Text mode editors The three text mode editors of choice in UNIX are vi, emacs, and pico (really nano, to be explained later.) vi is the original editor; it is very fast, easy to use, and available on virtually every UNIX system. The vi commands are the same as those of the sed filter as well as several other common UNIX tools. emacs is a very powerful editor, but it takes more effort to learn how to use it. pico is the easiest editor to learn, and the least powerful. pico was part of the Pine email client; nano is a clone of pico. 3 CSci 132 Practical UNIX with Perl What these slides contain These slides concentrate on vi because it is very fast and always available. Although the set of commands is very cryptic, by learning a small subset of the commands, you can edit text very quickly. What follows is an outline of the basic concepts that define vi.
    [Show full text]
  • 1. Run Nslookup to Obtain the IP Address of a Web Server in Europe
    1. Run nslookup to obtain the IP address of a Web server in Europe. frigate:Desktop drb$ nslookup home.web.cern.ch Server: 130.215.32.18 Address: 130.215.32.18#53 Non-authoritative answer: home.web.cern.ch canonical name = drupalprod.cern.ch. Name: drupalprod.cern.ch Address: 137.138.76.28 Note that the #53 denotes the DNS service is running on port 53. 2. Run nslookup to determine the authoritative DNS servers for a university in Asia. frigate:Desktop drb$ nslookup -type=NS tsinghua.edu.cn Server: 130.215.32.18 Address: 130.215.32.18#53 Non-authoritative answer: tsinghua.edu.cn nameserver = dns2.tsinghua.edu.cn. tsinghua.edu.cn nameserver = dns.tsinghua.edu.cn. tsinghua.edu.cn nameserver = dns2.edu.cn. tsinghua.edu.cn nameserver = ns2.cuhk.edu.hk. Authoritative answers can be found from: dns2.tsinghua.edu.cn internet address = 166.111.8.31 ns2.cuhk.edu.hk internet address = 137.189.6.21 ns2.cuhk.edu.hk has AAAA address 2405:3000:3:6::15 dns2.edu.cn internet address = 202.112.0.13 dns.tsinghua.edu.cn internet address = 166.111.8.30 Note that there can be multiple authoritative servers. The response we got back was from a cached record. To confirm the authoritative DNS servers, we perform the same DNS query of one of the servers that can provide authoritative answers. frigate:Desktop drb$ nslookup -type=NS tsinghua.edu.cn dns.tsinghua.edu.cn Server: dns.tsinghua.edu.cn Address: 166.111.8.30#53 tsinghua.edu.cn nameserver = dns2.edu.cn.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • PPP Over Ethernet Client
    PPP over Ethernet Client The PPP over Ethernet Client feature provides PPP over Ethernet (PPPoE) client support on routers. PPPoE is a commonly used application in the deployment of digital subscriber lines (DSLs). The PPP over Ethernet Client feature expands PPPoE functionality by providing support for PPPoE on the client and the server. • Finding Feature Information, page 1 • Prerequisites for PPP over Ethernet Client, page 1 • Restrictions for PPP over Ethernet Client, page 2 • Information About PPP over Ethernet Client, page 2 • How to Configure PPP over Ethernet Client, page 5 • Configuration Examples for the PPP over Ethernet Client, page 13 • Additional References, page 19 • Feature Information for PPP over Ethernet Client, page 20 Finding Feature Information Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. Prerequisites for PPP over Ethernet Client PPP connections must be established between two endpoints over a serial link. Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS XE
    [Show full text]
  • Profit Embedded PHD : Process Trend User's Guide
    Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Copyright, Notices, and Trademarks Copyright, Notices, and Trademarks © Honeywell Inc. 1998 – 2001. All Rights Reserved. Release 160 – March 30, 2001 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customers. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Honeywell, TotalPlant, Uniformance, and Business.FLEX are U.S. registered trademarks of Honeywell Inc. Other brand or product names are trademarks of their respective owners. Release Information Uniformance 160 Revision: 1 Revision Date: April 2001 Document Number: AP20-530PS Honeywell Inc. Industrial Automation and Control Automation College 2500 West Union Hills Drive Phoenix, AZ, 85027 ii • Uniformance Process Trend User Guide Contents Contents Copyright, Notices, and Trademarks ii Release Information ii Contents iii About Process Trend 9 Overview 9 About this Guide 10 Who Should Use this Guide 10 What's in this Guide 10 Conventions Used in this Guide 11 Contact Us 11 Getting Started 13 System Requirements 13 Starting Process Trend 13 Logging into Process Trend 13 Bypassing the PHD Login 14 Saving
    [Show full text]
  • Avocent® ACS800/8000 Advanced Console System Command Reference Guide TABLE of CONTENTS
    Avocent® ACS800/8000 Advanced Console System Command Reference Guide The information contained in this document is subject to change without notice and may not be suitable for all applications. While every precaution has been taken to ensure the accuracy and completeness of this document, Vertiv assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Refer to other local practices or building codes as applicable for the correct methods, tools, and materials to be used in performing procedures not specifically described in this document. The products covered by this instruction manual are manufactured and/or sold by Vertiv. This document is the property of Vertiv and contains confidential and proprietary information owned by Vertiv. Any copying, use or disclosure of it without the written permission of Vertiv is strictly prohibited. Names of companies and products are trademarks or registered trademarks of the respective companies. Any questions regarding usage of trademark names should be directed to the original manufacturer. Technical Support Site If you encounter any installation or operational issues with your product, check the pertinent section of this manual to see if the issue can be resolved by following outlined procedures. Visit https://www.VertivCo.com/en-us/support/ for additional assistance. Vertiv™ | Avocent® ACS800/8000 Advanced Console System Command Reference Guide TABLE OF CONTENTS 1 Introduction, Navigation and Commands 1 1.1 AccessOptionsand
    [Show full text]
  • Solar Parameters for Modeling Interplanetary Background
    — 2 — Solar parameters for modeling interplanetary background M. Bzowski, J.M. Sokoł´ Space Research Center Polish Academy of Sciences, Warsaw, Poland M. Tokumaru,K.Fujiki Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan E. Quemerais,R.Lallement LATMOS-IPSL, Universite Versailles Saint-Quentin, Guyancourt, France S. Ferron ACRI-ST, Sophia Antipolis, France P. Bochsler Space Science Center & Department of Physics, University of New Hampshire, Durham NH Physikalisches Institut, University of Bern, Bern, Switzerland D.J. McComas Southwest Research Institute, San Antonio TX University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Work- ing Team of the International Space Science Institute (ISSI) in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required a credible and up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shap- arXiv:1112.2967v1 [astro-ph.SR] 13 Dec 2011 ing the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the question of solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the process of pho- toionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is 1 2 2.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Charged
    UNIVERSITY OF CALIFORNIA Los Angeles Charged Particle Energization and Transport in the Magnetotail during Substorms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Qingjiang Pan 2015 ABSTRACT OF THE DISSERTATION Charged Particle Energization and Transport in the Magnetotail during Substorms by Qingjiang Pan Doctor of Philosophy in Physics University of California, Los Angeles, 2015 Professor Maha Ashour-Abdalla, Chair This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or ii shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical.
    [Show full text]