Profit Embedded PHD : Process Trend User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Profit Embedded PHD : Process Trend User's Guide Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Copyright, Notices, and Trademarks Copyright, Notices, and Trademarks © Honeywell Inc. 1998 – 2001. All Rights Reserved. Release 160 – March 30, 2001 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customers. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Honeywell, TotalPlant, Uniformance, and Business.FLEX are U.S. registered trademarks of Honeywell Inc. Other brand or product names are trademarks of their respective owners. Release Information Uniformance 160 Revision: 1 Revision Date: April 2001 Document Number: AP20-530PS Honeywell Inc. Industrial Automation and Control Automation College 2500 West Union Hills Drive Phoenix, AZ, 85027 ii • Uniformance Process Trend User Guide Contents Contents Copyright, Notices, and Trademarks ii Release Information ii Contents iii About Process Trend 9 Overview 9 About this Guide 10 Who Should Use this Guide 10 What's in this Guide 10 Conventions Used in this Guide 11 Contact Us 11 Getting Started 13 System Requirements 13 Starting Process Trend 13 Logging into Process Trend 13 Bypassing the PHD Login 14 Saving Your Password 14 Navigating Process Trend 15 Using the Standard Toolbar 15 Using the Time Span Toolbar 16 Using the Menu Bar 17 Understanding File Names 17 Exiting Process Trend 19 Uniformance Process Trend User Guide • iii Contents Customizing Your Workspace 21 Overview 21 Setting Plot Default Options 21 Modifying Toolbars 28 Modifying the Standard Toolbar 28 Saving Custom Toolbars 29 Managing Tags 31 Overview 31 Working with Profit Tag Explorer 31 Working with the Favorite Tags List 37 Building the Favorite Tags List 37 Saving the Favorite Tags List 37 Updating the Favorite Tags List 38 Clearing the Favorite Tags List 39 Getting Data 41 Setting the Data Server 41 Starting a New Plot 42 Adding Tags to Plots 42 Adding Tags Using the Plot Definition Window 43 Creating on Demand Calculation Tags 45 Adding Tags Using Profit Tag Explorer 46 Adding Tags Using the Favorite Tags List 46 Defining Basic Tag Settings 47 Defining Advanced Tag Settings 50 Setting Data Retrieval Options 52 Setting Time Axis Options 53 Setting the Value Axis Options 54 Setting Trend Plot Line Setup Options 56 iv • Uniformance Process Trend User Guide Contents Viewing Tag Definitions 58 Creating Conditional Queries 58 Viewing Conditional Query Results 60 Viewing Plots 61 Overview 61 Setting Plot Characteristics 61 Setting Trace Areas 61 Setting Grids 63 Setting Axis 65 Setting the Hairline Cursor 67 Setting the General Plot Display 68 Setting Fonts 71 Zooming in Plot Areas 72 Using the Zoom Feature 72 Using the Crosshair 73 Using the Hairline Cursor 74 Using the Trace Settings 76 Locking Trace Areas 76 Viewing Data Tables 77 Using the Data Table Menu 77 Setting and Viewing Tags 78 Displaying Tag Descriptors 78 Modifying Plotted Tags 79 Adding Annotations to Plots 80 Creating Annotations 80 Showing Annotations 81 Modifying Annotations 81 Setting and Viewing Time Characteristics 82 Working with Time Lags 82 Uniformance Process Trend User Guide • v Contents Changing Time Spans 82 Using the Time Span Scroll Bar 82 Changing Trend Plot Scales 84 Viewing Multiple Plots 85 Exporting Data 85 Analyzing Plots 87 Overview 87 Setting Analysis Chart Options 87 Setting General Options 88 Setting Retrieval Properties 90 Using Analysis Charts 91 Creating Statistical Charts 91 Creating SPC Charts 96 Creating Regression Analysis Charts 100 Creating Power Spectrum Charts 104 Analysis Chart Algorithms 106 Statistical Charts 106 SPC Charts 108 Regression Analysis Charts 110 Power Spectrum Charts 111 Managing Files 113 Overview 113 Saving Files 113 Saving Files with Passwords 113 Saving the Active Window 114 Opening Saved Files 114 Working with File Suites 116 vi • Uniformance Process Trend User Guide Contents Interfacing to Process Trend 119 Overview 119 VB Setup for Using DDE to Pass Information to Process Trend 119 Calling Options 120 Passing Filenames to Process Trend 120 Passing Tagnames to Process Trend 120 Passing Actions to Process Trend 121 Interfacing to Process Trend via GUS Schematics 121 Frequently Asked Questions 123 Retrieval Requests 123 Retrieval Times 124 Plot Operations 124 Plot Printing 125 Hairline Cursor 125 Glossary 127 Index 135 Uniformance Process Trend User Guide • vii About Process Trend About Process Trend Overview Uniformance Process Trend is a desktop trending and analysis tool you can use to retrieve and view data from an operating plant or plants. Process Trend is tag-based—all information you retrieve and view is based on the tags you select and how you customize them. Process Trend is a multiple document interface (MDI) application, which allows you to view up to eight trends and up to 10 analyses at one time. This enables you to compare trends and analyses across a plant and, by attaching to a remote PHD server, to compare analyses with different plant locations. You can also view traces from more than one plant on the same plot so you can compare performance between different operating locations. Process Trend trends tags on different time windows. For example, you can have a time span of two hours for all tags, however one tag can have a start time of 4:00 p.m. and an end time of 6:00 p.m. while another tag can have a start time of 8:00 p.m. and an end time of 10:00 p.m. This time flexibility enables you to gather data that represents the plant operations over the same time duration, at different periods of the day. Following is an example of a plot trending eight different tags: Uniformance Process Trend User Guide • 9 About Process Trend About this Guide This guide provides instruction on how to use Process Trend basic and advanced features. It also supplements the Process Trend training courses that are available at the Honeywell Automation College. Who Should Use this Guide This guide is intended for engineers who are familiar with plant operations, and have some experience working with and analyzing trends. It is also intended for plant operators working with Process Trend. The users of this guide should be familiar with the following Profit Suite components: Profit Embedded PHD, Profit Controller, Profit Optimizer and Profit Tag Explorer (Tag Explorer for ProfitSuite Embedded PHD). What's in this Guide The following table shows the information in each section of this guide: This section… Contains this information… About Process Trend An overview of Process Trend identifying who should use this guide, and introducing the conventions used throughout the guide. Getting Started The system requirements you must have to work with Process Trend, how to log in to Process Trend, and introduces the software interface and file names. Customizing Your Workspace How to create custom toolbars and set the default option when you start Process Trend. Managing Tags How to work with Tag Explorer and the Favorite Tags list. Getting Data How to start a new Trend and define the tag settings. Viewing Plots How to customize the plot settings and modify a plot to maximize the information displayed. Analyzing Plots How to use the Process Trend analysis charts to obtain information that is relevant to plant operations. Managing Files How to save files and work with file suites. Interfacing to Process Trend How to programmatically interface to Process Trend. Glossary A detailed alphabetical list of Process Trend terminology. Index A detailed alphabetical index of this guide. 10 • Uniformance Process Trend User Guide About Process Trend Conventions Used in this Guide The following typographic and stylistic conventions are used throughout this guide: This… Indicates this… Click To position the mouse over a topic, button, box, or window area and then click the left mouse button. Double-click To position the mouse over a topic, button, box, or window area and then click the left mouse button twice in succession. Shift-click To press the Shift key while clicking items in contiguous order with the left mouse button. Used to select and drag multiple items. Ctrl-click To press the Ctrl key while clicking non-contiguous items with the left mouse button. Right-click To position the mouse over a topic, button, box, or window area and then click the right mouse button. Shift-right-click To press the Shift key while right-clicking. Used to access the shortcut menu when multiple items are selected. Courier Command, or code syntax. Italics A chapter in this guide or another Uniformance document. Times Bold Text you type into a Process Trend box. Arial Bold A button you click or a menu command you select in a Process Trend Window. Contact Us If you have any comments or concerns about this document, please e-mail us at: [email protected]. Ensure that you type Uniformance Documentation in the subject line of your e-mail message. Uniformance Process Trend User Guide • 11 Getting Started Getting Started System Requirements Refer to Uniformance Database System Specification and Technical Data for a detailed description of the Uniformance system requirements. Starting Process Trend You can start Process Trend using several methods, for clarity, we have included only two methods is this guide. To start Process Trend using a desktop shortcut The Login window does not appear if you • If you have created a shortcut icon on your desktop, double-click the Process have set the Process Trend options to Trend shortcut icon.
Recommended publications
  • IBM Explorer for Z/OS: Host Configuration Reference Guide RSE Daemon and Thread Pool Logging
    IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 Note Before using this information, be sure to read the general information under “Notices” on page 175. Third edition (September, 2017) This edition applies to IBM Explorer for z/OS Version 3.1.1 (program number 5655-EX1) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright IBM Corporation 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures .............. vii Certificate Authority (CA) validation ..... 24 (Optional) Query a Certificate Revocation List Tables ............... ix (CRL) ............... 25 Authentication by your security software ... 25 Authentication by RSE daemon....... 26 About this document ......... xi Port Of Entry (POE) checking ........ 27 Who should use this document ........ xi Altering client functions .......... 27 Description of the document content ...... xi OFF.REMOTECOPY.MVS ......... 28 Understanding z/OS Explorer ....... xii Push-to-client developer groups ....... 28 Security considerations ......... xii Send message security........... 30 TCP/IP considerations ......... xii Log file security ............. 31 WLM considerations .......... xii UNIXPRIV class permits.......... 32 Tuning considerations .......... xii BPX.SUPERUSER profile permit ....... 33 Performance considerations ........ xii UID 0 ............... 33 Push-to-client considerations ....... xii Miscellaneous information ......... 33 User exit considerations ......... xii GATE trashing ............ 33 Customizing the TSO environment ..... xiii Managed ACEE ............ 33 Troubleshooting configuration problems ... xiii ACEE caching ............ 34 Setting up encrypted communication and X.509 TCP/IP port reservation ......... 34 authentication ............ xiii z/OS Explorer configuration files ....... 34 Setting up TCP/IP........... xiii JES Job Monitor - FEJJCNFG.......
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Asa R-/ 130090
    rl),,; ASA R-/130090 The University of Texas at Dallas Final Technical Report NASA Contract NAS 5-9075 on Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle by R. A. R. Palmeira and F. R. Allum The University of Texas at Dallas Dallas, Texas This report was prepared for submission to NASA/Goddard Space Flight Center in partial fulfillment of the terms of the Contract NAS 5-9075. October 1972 (NASA-CR-130090 ) MEASUREMENT OF THE DEGREE N72-3376 OF ANISOTROPY OF THE COSMIC RADIATION USING 8 THE IMP SPACE VEHICLE Final Technical Report R.A.R. Palmeira, et al (Texas Unclas Univ.) Oct. 1972 31 p CSCL 03B G3/29 45262 The University of Texas at Dallas Final Technical Report on "Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle" NASA Contract NAS 5-9075 by R.A.R. Palmeira and F. R. Allum The University of Texas at Dallas, Dallas, Texas INTRODUCTION This report describes the detector and data reduction techniques used in connection with the UTD cosmic-ray experiments designed for and flown on board the Explorer 34 and 41 satellites. It is intended to supplement and summarize the more detailed information supplied during the course of the program, including but not restricted to the information contained in the contractually required Monthly Technical Reports submitted throughout the duration of the program. This final technical report is divided into three categories: i) a brief history of the UTD program development; ii) a description of the particle detectors and the methods of data analysis; and iii) present status of data processing.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Solar Parameters for Modeling Interplanetary Background
    — 2 — Solar parameters for modeling interplanetary background M. Bzowski, J.M. Sokoł´ Space Research Center Polish Academy of Sciences, Warsaw, Poland M. Tokumaru,K.Fujiki Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan E. Quemerais,R.Lallement LATMOS-IPSL, Universite Versailles Saint-Quentin, Guyancourt, France S. Ferron ACRI-ST, Sophia Antipolis, France P. Bochsler Space Science Center & Department of Physics, University of New Hampshire, Durham NH Physikalisches Institut, University of Bern, Bern, Switzerland D.J. McComas Southwest Research Institute, San Antonio TX University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Work- ing Team of the International Space Science Institute (ISSI) in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required a credible and up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shap- arXiv:1112.2967v1 [astro-ph.SR] 13 Dec 2011 ing the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the question of solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the process of pho- toionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is 1 2 2.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Charged
    UNIVERSITY OF CALIFORNIA Los Angeles Charged Particle Energization and Transport in the Magnetotail during Substorms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Qingjiang Pan 2015 ABSTRACT OF THE DISSERTATION Charged Particle Energization and Transport in the Magnetotail during Substorms by Qingjiang Pan Doctor of Philosophy in Physics University of California, Los Angeles, 2015 Professor Maha Ashour-Abdalla, Chair This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or ii shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical.
    [Show full text]
  • ESRO SP-72 European Space Research Organisation
    ESRO SP-72 I. Proc. ESRO-GRI ESRO SP-72 I. Proc ESRO-GRI European Space Research Organisation Colloquium March 1971 European Space Research Organisation Colloquium March 1971 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 ACTIONS IN THE MAGNETOSPHERE HI. Texts in English ACTIONS IN THE MAGNETOSPHERE III. Texts in English September 1971 September 1971 iv + 284 pages iv + 284 pages The Colloquium on wave-particle interactions in the magnetosphere held in The Colloquium on wave-particle interactions in the magnetosphere held in Orleans (March 17-19,1971) intended to review the outstanding problems still unsolved Orleans (March 17-19, 1971) intended to review the outstanding problems still unsolved in this field : in this field : — large-scale dynamics of the magnetosphere; — large-scale dynamics of the magnetosphere; — distribution of 'Oasma parameters; — distribution of plasma parameters; — decoupling of n..gnetospheric from ionospheric plasma; — decoupling of magnetospheric from ionospheric plasma; — acceleration and convection mechanisms; — acceleration and convection mechanisms; — substorms; — substorms; — polar wind..., — polar wind..., as well as the theoretical and experimental work needed to solve these problems in the as well as the theoretical and experimental work needed to solve these problems in the light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) and of technical achievements (onboard computers, new sensors...). and of technical achievements (onboard computers, new sensors...). Ensuing discussions attempted to define types of missions which could be carried Ensuing discussions attempted to define types of missions which could be carried out in the future by the Small Scientific Satellites now being considered by ESRO.
    [Show full text]
  • A Y' 1969-Deeber 1972
    - -7 5, 41, AN MA 969-DECEMBER43 D 47 197 AY' 1969-DEEBER 1972 S(NASA-TM-X-70481) TRAJECTORIES OF N73-33809 EXPLORERS 33, 35, 41, 43 AND 47, MAY 1969 - DEC. 1972 (NASA) 72 p HC $5.75 CSCL 22C Unclas "f -" G3/30 19441 D.' -'.FAIRFIELD K. W. BEAANNON( R. P LEPPING N. F. NESS "NFORMATN SERVI-E i -- SSpringfield, _ e te. VA.o Com 22151 e 1 AR -SPAC FLIGHT CETER S-ENBET MA RYLAND -N 14 N- TRAJECTORIES OF EXPLORERS 33, 35, 41, 43 and 47 May 1969-Dec 1972 D.H. Fairfield K.W. Behannon R.P. Lepping N.F. Ness Laboratory for Extraterrestrial Physics Goddard Space Flight Center Greenbelt, Maryland October 1973 /0 This document represents a continuation of a previous document (Behannon et al. 1970) and is presented with the intention that it will stimulate and facilitate correlative studies of data from various spacecraft. Figures 1-54 consist primarily of solar ecliptic plane projections of orbits of five different satellites although a limited number of XZ projections are shown to illustrate the large excursions of Explorer 33 away from the ecliptic plane. Nominal positions of the magnetopause and bow shock are included for reference. The plots are intended only to represent the trajectory of the spacecraft and imply nothing about the operational status of the various experiments nor the availability of the data. Information on these latter points can be ob- tained from the National Space Science Data Center, (e.g. King, 1971). It should be pointed out, however, that Explorers33 and 35 were very long lived spacecraft (> 2 yrs) and numerous experiments either ceased operation or exhibited a gradual deterioration during the extended lifetime.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Ulf Magnetic Fluctuations in the Plasma Sheet As Recorded by the Explorer 34 Satellite
    RICE UNIVERSITY ULF MAGNETIC FLUCTUATIONS IN THE PLASMA SHEET AS RECORDED BY THE EXPLORER 34 SATELLITE by Henry Berry Garrett A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS Thesis Director's Signature: September, 1972 ULF MAGNETIC FLUCTUATIONS IN THE PLASMA SHEET AS RECORDED BY THE EXPLORER 34 SATELLITE by Henry Berry Garrett ABSTRACT From 1967 to 1969, the Explorer 34 satellite made approximately 20 passes (6 were used in this study) through the earth's plasma sheet at a distance of 20 to 34 R . On board was a tri-axial, fluxgate magnetometer which made possible the observation of the magnetic field vector every 2.556 seconds. This provided a platform for studying ULF (ultra-low-frequency) magnetic waves in the 0.01 to 0.2 Hz band. The signal was anlayzed by calculating the power spectral density function. This function was proportional to the inverse square of the frequency in the plasma sheet and exhibited few, if any, significant spectral peaks. Further, the plasma sheet was characterized by higher power spectral density values than the high-latitude tail. The Xsm ^Sm: s°lar“ma9netosP*ier:*-c coordinate) component ex¬ hibited the greatest power spectral density levels in com¬ parison to the other two components. The most significant result, however, was that the power spectral density, cal¬ culated from the frequency range 0.012 to 0.1 Hz in the plasma sheet, increased from minimal levels during quiet- times to maximum levels during the later stages of the sub¬ storm. It is shown that this result is of importance in I testing substorm theories.
    [Show full text]
  • Bepicolombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S
    BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, Yeon Joo Lee, Susan Mckenna-Lawlor, Davide Grassi, Daniel Heyner, Alexander S. Kozyrev, et al. To cite this version: Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, et al.. BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, Springer Verlag, 2021, 217, pp.23. 10.1007/s11214-021-00797-9. insu-03139759 HAL Id: insu-03139759 https://hal-insu.archives-ouvertes.fr/insu-03139759 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Space Sci Rev (2021) 217:23 https://doi.org/10.1007/s11214-021-00797-9 BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano1 · Melinda Dósa2 · Markus Fränz3 · Anna Milillo1 · Joana S. Oliveira4,5 · Yeon Joo Lee 6 · Susan McKenna-Lawlor7 · Davide Grassi1 · Daniel Heyner8 · Alexander S. Kozyrev9 · Roberto Peron1 · Jörn Helbert10 · Sebastien Besse11 · Sara de la Fuente12 · Elsa Montagnon13 · Joe Zender4 · Martin Volwerk14 · Jean-Yves Chaufray15 · James A.
    [Show full text]
  • X-616-68-166
    ~~ https://ntrs.nasa.gov/search.jsp?R=19680016260 2020-03-23T22:56:48+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server X-616-68-166 LUNAR EXPLORER 35* Norman F. Ness Laboratory for Space Sciences NASA-Goddard Space Flight Center Greenbelt, Maryland USA May 1968 *Presented atXIth COSPAR Tokyo, Japan; 16 May 1968 Extraterrestrial Physics Branch Preprint Series -1- LUNAR EXPLORER 35 Norman F. Ness NASA-Goddard Space Flight Center Greenbelt, Maryland USA --Abstract Lunar Explorer 35, a 104 Kg spin stabilized spacecraft, was placed in lunar orbit on 22 July 1967 with period = 11.5 hours, inclination = 169O, aposelene = 9388 2 100 km, periselene = 2568 +lo0 km, and initial aposelene- 0 moon-sun angle = 304 E. The experiment repertoire includes magnetometers, plasma probes, energetic particle and cosmic dust detectors. Bi-static radar measurements of the electromagnetic properties Qf the lunar surface have been studied by moniCoring the transmitted and reflected RF signal. The spacecraft has operated continuously since launch and has provided new and illuminating data. During its orbit about the earth, the moon is immersed in either interplap-tqry spac~or the geomagnetosheath-geo- magnetotail formed by the solar wind interaction with the earth. In thc geomagnetotail no evidence is found for P 1una.r magnetic field limiting the magnetic moment to lo2') cgs units (less than of the earth). In the interplanetary me Lium no evidenre js foi nd for a bow shock wave due to supersonic solar w.nd flow. The moon docs not accrete interplanetary magnetic field lines 'is theorl'zed by Gold iLnd Tozer, 2nd aS reported from Luna 10 measuremmts.
    [Show full text]