Fall Meeting, 1976

Total Page:16

File Type:pdf, Size:1020Kb

Fall Meeting, 1976 Solar-Planetary Relationships: Cosmic Rays rotationally symmetric around the instantaneous sion profile on April 12 which peaked (>1100 km SC 22 -1 magnetic field direction, it is a function of s ) near the flare site (85° heliographic) with 1 a single variable, the pitch angle, and can be a half-width ~ 60° at velocities ~ 600 km s" . A SIMILARITY THEORY FOR ENERGETIC PAR­ written as a Fourier series. It is shown here The emission profile preserved its shape as it TICLE ENHANCEMENTS ASSOCIATED WITH INTER­ that there is a linear relation between its decayed on April 13 and 14. The initial injection PLANETARY SHOCKS coefficients and the set of sector counting of 7.5-45 MeV protons (measured by the UTD detec­ rates. It can therefore be expressed by a tors on Pioneers 6-9 and the APL/JHU detector on G. Skadron (Max-Planck Institut fur Aer­ matrix. The matrix elements depend on the number Explorer 34), may also have peaked over the flare onomie, 3411 Katlenburg-Lindau 3, West of sectors, the opening cone of the detector site on April 11 (00 h) but by April 12 (00 h) the Germany) telescope, the angle between spin axis and the peak of the proton injection profile had shifted W. I. Axford (Max-Planck Institut fiir magnetic field direction, and the angle between to 90° to the west of the flare site and remained Aeronomie, 3411 Katlenburg-Lindau 3, spin axis and detector axis. This algebraic ap­ there through April 16. The injection profiles West Germany) proach allows to determine the maximum obtain­ can be approximated by exponentials in longitude able number of Fourier coefficients and their with e-folding angles of cpg *** 28° and cpw **• 20° It is assumed that a spherically sym­ accuracy for any such experiment. for the east and west wings of the population metric forward-reverse shock pair sweeps In the interplanetary medium the Compton Getting April 12-13. By April 16, cpg =" 10° while cptf re­ radially through a quiet-day solar wind effect due to convection with the solar wind mained nearly constant. This solar event demon­ containing a spherically symmetric dis­ makes pitch angle distributions appear rotation- strates clearly that different coronal structures tribution of low energy cosmic rays. ally asymmetric. A reduction of this effect is control the emission of flare plasma and energetic The cosmic rays are allowed to pass, also possible using matrix notation. particles. without reflection, from the unshocked to the shocked solar wind. Using a solar wind velocity profile for strong shocks^ ' a similarity solution for the differential cosmic ray number density, valid for a general ambient cosmic ray PITCH ANGLE DISTRIBUTIONS OF CHARGED PAR­ spectrum, U (T), and an energy-dependent TICLES IN INTERPLANETARY SPACE MEASURED ON a radial diffusion coefficient, KT , is HELIOS DURING A SOLAR EVENT formulated. For the case in which Ua(T) is a power law and I = o, it is found G. Wibberenz that (1) similarity solutions exist only G. Green THE INTERPLANETARY SHOCK WAVE EVENT OF NOV. 1975 for a small range of U , (2) the cosmic R. Muller-Mellin OBSERVED BY HELIOS-A AND IMP-7,8 a ray amplification at the forward shock is M. Witte large for ambient spectra near the cri­ H. Hempe P E.' T? Sarris| (Max-Planck-Institut, Lindau, FRG) tically steep Ua, (3) if the spectral H. Kunow (all Institut fur Reine und Angewandte index of U exceeds 2, the cosmic ray S. M. Krimigis (APL/JHU, Laurel, Maryland) a Kernphysik, Universitat Kiel, 2300 Kiel, density falls off vehind the forward W.-Germany shock, becoming small in the vicinity of In studying the interplanetary acceleration of G. Musmann the contact surface, and (4) the cosmic energetic particles, i.e. shock-spikes and in F.M. Neubauer (both Institut fiir Geophysik u. ray density in the vicinity of the re­ particular ESP events, it is important to distin­ Meteorologie der TU, 3300 Braunschweig, verse shock is qualitatively similar, guish the short term (few minutes) intensive W.-Germany producing an overall double-humped acceleration at shock fronts, which depends local­ profile across the shock pair. For a solar event of rather simple structure ly on the direction of the interplanetary magnetic observed by HELIOS sectorized particle data of field w.r.t. the short front, from a still unknown the University of Kiel Cosmic Ray Experiment but occasionally assumed to exist long-lasting 1. Simon, M. and Axford, W. I., Shock were analysed by the method described by Green (days) acceleration of particles in the downstream Waves in the Interplanetary Medium, in this meeting using flux gate magnetic field shocked medium. Favorable arrangements of widely Planet. Space Sci., 14, 901, 1966. data from the University of Braunschweig Mag­ separated spacecraft in the interplanetary medium netometer Experiment. are needed in order to study these events. Presum­ This event is an example for the advantages of ably, under different local conditions of the up­ this method: The pitch angle distributions are stream interplanetary magnetic field at the shock SC 23 determined up to the fourth harmonic, the in­ front the short term acceleration may be shut-off fluence of the magnetic field elevation out at one spacecraft whereas the long-lasting effects PERSISTENT SUNWARD FLOW OF M.6 MEV PROTONS of the ecliptic plane is revealed, field on the particle population may still persist. AT 1 AU aligned anisotropics can be detected down to low values by applying a Compton Getting Such a favorable geometry obtained during the F. E. Marshall correction and by accumulating the data on the Nov. 23, 1975 shock event between the HELIOS-A E. C. Stone (both at: Dept. of Physics, Calif. ground over sufficiently long time intervals and IMP-7 and 8 spacecraft where HELIOS-A was Inst, of Technology, Pasadena, CA 91125) to improve the statistics using a coordinate ~ 0.1 AU inside of the Earth orbit and only 6° off system which rotates together with the field the Sun-Earth line. Detailed directional and The anisotropy of 1.3 to 2.3 MeV protons has azimuth. spectral information on the energetic particle been measured with the Caltech Electron/Isotope event, which is associated with the shock wave Spectrometer aboard IMP-7 for periods between passage by both HELIOS-A and the Earth, were prompt solar particle events from 72/273 to obtained by the E 8 experiment on HELIOS-A 74/2. The diffusive anisotropy, which has been (80 keV £E 6200 keV, 16 keV SEp £2000 keV) and p computed by subtracting the independently de­ by the APL/JHU experiments on IMP-7 and 8 termined convective anisotropy from the ob­ SOLAR PARTICLE OBSERVATIONS AT SOLAR MINIMUM (Ep > 290 keV, E >220 keV, % > 640 keV/nuc, e served anisotropy, is predominantly directed E (Z *3)* 770 keV/nuc). The measurements and their u toward the sun with a typical radial component J. Maslev implications on the acceleration mechanism(s) are of 14%. This sunward diffusion is typical of _• M. B. Baker (both at: Aerojet ElectroSysterns discussed. intensities from 0.012 to 1.2 (cm2-sec-sr-MeV)~ Co., Azusa, CA 91702) and indicates that a positive radial gradient of 1.3 to 2.3 MeV protons is associated with Characteristics of 8 solar cosmic ray events these modestly enhanced fluxes. The direction observed during the minimum of the current solar of this flow is opposite to that produced by cycle will be discussed. The events were ob­ the continuous solar sources used to explain served during the period 1974-1976 by orthogonal increases previously observed near 1 AU. The solid state detector telescopes on ATS-6 in direction of the diffusive anisotropy strongly synchronous orbit. The telescopes determine a depends on the direction of the concurrently differential energy spectrum for protons from measured magnetic field, indicating that 300 KeV to 200 MeV and for alpha particles from ACCELERATION OF ENERGETIC PARTICLES BY SHOCK diffusion is preferentially along rather than 2 MeV to 220 MeV with North and East view direct­ WAVES .,Kj_< K ). ions. The observed proton intensity will be dis­ across the magnetic field lines (i.e |( cussed as a function of energy, arrival direction, E. Leer magnetic activity, local time and the inter­ G. Skadron planetary intensity. W.I. Axford (all at: Max-Planck-Institut fiir SC 24 Aeronomie, 3411 Katlenburg-Lindau 3, FRG) A STEADY-STATE MODEL OF SUNWARD FLOW OF LOW The problem of acceleration of energetic par­ ENERGY PROTONS ticles by shock waves propagating in a scatter­ CORONAL CONTROL OF PLASMA AND ENERGETIC PARTICLE ing medium has been considered by Fisk in his E. C. Stone EMISSION FROM THE APRIL 10, 1969 SOLAR FLARE discussion of energetic storm particle events F. E. Marshall (both at: Dept. of Physics, and shock spikes. We will review this work and Calif. Inst, of Technology, Pasadena, CA R. Reinhard (ESTEC, ESA, Noordwijk, Holland) add some additional comments concerning steady 91125) R. E. Gold state solutions and energy spectra of general E. P. Keath form. In addition, we will discuss the situation The persistent sunward flow of M.6 MeV in which the energetic particle pressure is suf­ E. C. Roelof (all at: JHU/APL, Laurel, Maryland) protons observed on IMP-7 has been modeled as ficient to affect the background flow. The re­ steady-state injection of protons beyond 1 AU. We have re-examined interplanetary solar wind sults are of interest with regard to the termi­ The propagation of these particles is computed and energetic particle data for the March-April nation of the solar wind and to the acceleration using a series solution to the Fokker-Planck 1969 period of solar activity from Pioneers 6-9 of low energy cosmic rays in corotating inter­ equation, which includes diffusion, convection, in deep space and Explorer 34 near Earth.
Recommended publications
  • IBM Explorer for Z/OS: Host Configuration Reference Guide RSE Daemon and Thread Pool Logging
    IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 IBM Explorer for z/OS IBM Host Configuration Reference Guide SC27-8438-02 Note Before using this information, be sure to read the general information under “Notices” on page 175. Third edition (September, 2017) This edition applies to IBM Explorer for z/OS Version 3.1.1 (program number 5655-EX1) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright IBM Corporation 2017. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures .............. vii Certificate Authority (CA) validation ..... 24 (Optional) Query a Certificate Revocation List Tables ............... ix (CRL) ............... 25 Authentication by your security software ... 25 Authentication by RSE daemon....... 26 About this document ......... xi Port Of Entry (POE) checking ........ 27 Who should use this document ........ xi Altering client functions .......... 27 Description of the document content ...... xi OFF.REMOTECOPY.MVS ......... 28 Understanding z/OS Explorer ....... xii Push-to-client developer groups ....... 28 Security considerations ......... xii Send message security........... 30 TCP/IP considerations ......... xii Log file security ............. 31 WLM considerations .......... xii UNIXPRIV class permits.......... 32 Tuning considerations .......... xii BPX.SUPERUSER profile permit ....... 33 Performance considerations ........ xii UID 0 ............... 33 Push-to-client considerations ....... xii Miscellaneous information ......... 33 User exit considerations ......... xii GATE trashing ............ 33 Customizing the TSO environment ..... xiii Managed ACEE ............ 33 Troubleshooting configuration problems ... xiii ACEE caching ............ 34 Setting up encrypted communication and X.509 TCP/IP port reservation ......... 34 authentication ............ xiii z/OS Explorer configuration files ....... 34 Setting up TCP/IP........... xiii JES Job Monitor - FEJJCNFG.......
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Asa R-/ 130090
    rl),,; ASA R-/130090 The University of Texas at Dallas Final Technical Report NASA Contract NAS 5-9075 on Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle by R. A. R. Palmeira and F. R. Allum The University of Texas at Dallas Dallas, Texas This report was prepared for submission to NASA/Goddard Space Flight Center in partial fulfillment of the terms of the Contract NAS 5-9075. October 1972 (NASA-CR-130090 ) MEASUREMENT OF THE DEGREE N72-3376 OF ANISOTROPY OF THE COSMIC RADIATION USING 8 THE IMP SPACE VEHICLE Final Technical Report R.A.R. Palmeira, et al (Texas Unclas Univ.) Oct. 1972 31 p CSCL 03B G3/29 45262 The University of Texas at Dallas Final Technical Report on "Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle" NASA Contract NAS 5-9075 by R.A.R. Palmeira and F. R. Allum The University of Texas at Dallas, Dallas, Texas INTRODUCTION This report describes the detector and data reduction techniques used in connection with the UTD cosmic-ray experiments designed for and flown on board the Explorer 34 and 41 satellites. It is intended to supplement and summarize the more detailed information supplied during the course of the program, including but not restricted to the information contained in the contractually required Monthly Technical Reports submitted throughout the duration of the program. This final technical report is divided into three categories: i) a brief history of the UTD program development; ii) a description of the particle detectors and the methods of data analysis; and iii) present status of data processing.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Profit Embedded PHD : Process Trend User's Guide
    Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Uniformance 160 Process Trend (Profit Embedded PHD) User's Guide Copyright, Notices, and Trademarks Copyright, Notices, and Trademarks © Honeywell Inc. 1998 – 2001. All Rights Reserved. Release 160 – March 30, 2001 While this information is presented in good faith and believed to be accurate, Honeywell disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no express warranties except as may be stated in its written agreement with and for its customers. In no event is Honeywell liable to anyone for any indirect, special or consequential damages. The information and specifications in this document are subject to change without notice. Honeywell, TotalPlant, Uniformance, and Business.FLEX are U.S. registered trademarks of Honeywell Inc. Other brand or product names are trademarks of their respective owners. Release Information Uniformance 160 Revision: 1 Revision Date: April 2001 Document Number: AP20-530PS Honeywell Inc. Industrial Automation and Control Automation College 2500 West Union Hills Drive Phoenix, AZ, 85027 ii • Uniformance Process Trend User Guide Contents Contents Copyright, Notices, and Trademarks ii Release Information ii Contents iii About Process Trend 9 Overview 9 About this Guide 10 Who Should Use this Guide 10 What's in this Guide 10 Conventions Used in this Guide 11 Contact Us 11 Getting Started 13 System Requirements 13 Starting Process Trend 13 Logging into Process Trend 13 Bypassing the PHD Login 14 Saving
    [Show full text]
  • Solar Parameters for Modeling Interplanetary Background
    — 2 — Solar parameters for modeling interplanetary background M. Bzowski, J.M. Sokoł´ Space Research Center Polish Academy of Sciences, Warsaw, Poland M. Tokumaru,K.Fujiki Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Japan E. Quemerais,R.Lallement LATMOS-IPSL, Universite Versailles Saint-Quentin, Guyancourt, France S. Ferron ACRI-ST, Sophia Antipolis, France P. Bochsler Space Science Center & Department of Physics, University of New Hampshire, Durham NH Physikalisches Institut, University of Bern, Bern, Switzerland D.J. McComas Southwest Research Institute, San Antonio TX University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Work- ing Team of the International Space Science Institute (ISSI) in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required a credible and up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shap- arXiv:1112.2967v1 [astro-ph.SR] 13 Dec 2011 ing the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the question of solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the process of pho- toionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is 1 2 2.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Charged
    UNIVERSITY OF CALIFORNIA Los Angeles Charged Particle Energization and Transport in the Magnetotail during Substorms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Qingjiang Pan 2015 ABSTRACT OF THE DISSERTATION Charged Particle Energization and Transport in the Magnetotail during Substorms by Qingjiang Pan Doctor of Philosophy in Physics University of California, Los Angeles, 2015 Professor Maha Ashour-Abdalla, Chair This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or ii shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical.
    [Show full text]
  • ESRO SP-72 European Space Research Organisation
    ESRO SP-72 I. Proc. ESRO-GRI ESRO SP-72 I. Proc ESRO-GRI European Space Research Organisation Colloquium March 1971 European Space Research Organisation Colloquium March 1971 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 COLLOQUIUM ON WAVE-PARTICLE INTER­ II. ESRO SP-72 ACTIONS IN THE MAGNETOSPHERE HI. Texts in English ACTIONS IN THE MAGNETOSPHERE III. Texts in English September 1971 September 1971 iv + 284 pages iv + 284 pages The Colloquium on wave-particle interactions in the magnetosphere held in The Colloquium on wave-particle interactions in the magnetosphere held in Orleans (March 17-19,1971) intended to review the outstanding problems still unsolved Orleans (March 17-19, 1971) intended to review the outstanding problems still unsolved in this field : in this field : — large-scale dynamics of the magnetosphere; — large-scale dynamics of the magnetosphere; — distribution of 'Oasma parameters; — distribution of plasma parameters; — decoupling of n..gnetospheric from ionospheric plasma; — decoupling of magnetospheric from ionospheric plasma; — acceleration and convection mechanisms; — acceleration and convection mechanisms; — substorms; — substorms; — polar wind..., — polar wind..., as well as the theoretical and experimental work needed to solve these problems in the as well as the theoretical and experimental work needed to solve these problems in the light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) light of previous experiments (rocket launchings in auroral zone, Ariel 3 satellite...) and of technical achievements (onboard computers, new sensors...). and of technical achievements (onboard computers, new sensors...). Ensuing discussions attempted to define types of missions which could be carried Ensuing discussions attempted to define types of missions which could be carried out in the future by the Small Scientific Satellites now being considered by ESRO.
    [Show full text]
  • A Y' 1969-Deeber 1972
    - -7 5, 41, AN MA 969-DECEMBER43 D 47 197 AY' 1969-DEEBER 1972 S(NASA-TM-X-70481) TRAJECTORIES OF N73-33809 EXPLORERS 33, 35, 41, 43 AND 47, MAY 1969 - DEC. 1972 (NASA) 72 p HC $5.75 CSCL 22C Unclas "f -" G3/30 19441 D.' -'.FAIRFIELD K. W. BEAANNON( R. P LEPPING N. F. NESS "NFORMATN SERVI-E i -- SSpringfield, _ e te. VA.o Com 22151 e 1 AR -SPAC FLIGHT CETER S-ENBET MA RYLAND -N 14 N- TRAJECTORIES OF EXPLORERS 33, 35, 41, 43 and 47 May 1969-Dec 1972 D.H. Fairfield K.W. Behannon R.P. Lepping N.F. Ness Laboratory for Extraterrestrial Physics Goddard Space Flight Center Greenbelt, Maryland October 1973 /0 This document represents a continuation of a previous document (Behannon et al. 1970) and is presented with the intention that it will stimulate and facilitate correlative studies of data from various spacecraft. Figures 1-54 consist primarily of solar ecliptic plane projections of orbits of five different satellites although a limited number of XZ projections are shown to illustrate the large excursions of Explorer 33 away from the ecliptic plane. Nominal positions of the magnetopause and bow shock are included for reference. The plots are intended only to represent the trajectory of the spacecraft and imply nothing about the operational status of the various experiments nor the availability of the data. Information on these latter points can be ob- tained from the National Space Science Data Center, (e.g. King, 1971). It should be pointed out, however, that Explorers33 and 35 were very long lived spacecraft (> 2 yrs) and numerous experiments either ceased operation or exhibited a gradual deterioration during the extended lifetime.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Ulf Magnetic Fluctuations in the Plasma Sheet As Recorded by the Explorer 34 Satellite
    RICE UNIVERSITY ULF MAGNETIC FLUCTUATIONS IN THE PLASMA SHEET AS RECORDED BY THE EXPLORER 34 SATELLITE by Henry Berry Garrett A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS Thesis Director's Signature: September, 1972 ULF MAGNETIC FLUCTUATIONS IN THE PLASMA SHEET AS RECORDED BY THE EXPLORER 34 SATELLITE by Henry Berry Garrett ABSTRACT From 1967 to 1969, the Explorer 34 satellite made approximately 20 passes (6 were used in this study) through the earth's plasma sheet at a distance of 20 to 34 R . On board was a tri-axial, fluxgate magnetometer which made possible the observation of the magnetic field vector every 2.556 seconds. This provided a platform for studying ULF (ultra-low-frequency) magnetic waves in the 0.01 to 0.2 Hz band. The signal was anlayzed by calculating the power spectral density function. This function was proportional to the inverse square of the frequency in the plasma sheet and exhibited few, if any, significant spectral peaks. Further, the plasma sheet was characterized by higher power spectral density values than the high-latitude tail. The Xsm ^Sm: s°lar“ma9netosP*ier:*-c coordinate) component ex¬ hibited the greatest power spectral density levels in com¬ parison to the other two components. The most significant result, however, was that the power spectral density, cal¬ culated from the frequency range 0.012 to 0.1 Hz in the plasma sheet, increased from minimal levels during quiet- times to maximum levels during the later stages of the sub¬ storm. It is shown that this result is of importance in I testing substorm theories.
    [Show full text]
  • Bepicolombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S
    BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, Yeon Joo Lee, Susan Mckenna-Lawlor, Davide Grassi, Daniel Heyner, Alexander S. Kozyrev, et al. To cite this version: Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, et al.. BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, Springer Verlag, 2021, 217, pp.23. 10.1007/s11214-021-00797-9. insu-03139759 HAL Id: insu-03139759 https://hal-insu.archives-ouvertes.fr/insu-03139759 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Space Sci Rev (2021) 217:23 https://doi.org/10.1007/s11214-021-00797-9 BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury Valeria Mangano1 · Melinda Dósa2 · Markus Fränz3 · Anna Milillo1 · Joana S. Oliveira4,5 · Yeon Joo Lee 6 · Susan McKenna-Lawlor7 · Davide Grassi1 · Daniel Heyner8 · Alexander S. Kozyrev9 · Roberto Peron1 · Jörn Helbert10 · Sebastien Besse11 · Sara de la Fuente12 · Elsa Montagnon13 · Joe Zender4 · Martin Volwerk14 · Jean-Yves Chaufray15 · James A.
    [Show full text]