Elegia Cuspidata | Plantz Africa About:Reader?Url=

Total Page:16

File Type:pdf, Size:1020Kb

Elegia Cuspidata | Plantz Africa About:Reader?Url= Elegia cuspidata | Plantz Africa about:reader?url=http://pza.sanbi.org/elegia-cuspidata pza.sanbi.org Elegia cuspidata | Plantz Africa Elegia cuspidata Mast. Family: Restionaceae Common names: blombiesie (Afr.) Introduction At last, a restio that you will not struggle to identify! Elegia cuspidata has distinctive features and is suited for planting in a Cape Peninsula wetland garden. Description Description Elegia cuspidata has sturdy upright stems and grows 0.5-1.1 m tall. Plants stay neatly clumped as they do not have a spreading rhizome and culms are unbranched. Chestnut brown sheaths enclose each node and as the culm grows the sheaths splay outwards and drop off. They leave behind a circular ring known as an abscission line. This occurs from the base of the culm upwards. Male and female flowers occur on separate plants. Inflorescences are dark brown and can sometimes appear almost black. Individual flowers are almost microscopic and can number anywhere from 50 to over 500 flowers per inflorescence. Each flower sits within a bract which has a long-pointed tip. These bracts give the inflorescence its distinctive brush-like appearance. 1 of 5 2016/12/14 03:32 PM Elegia cuspidata | Plantz Africa about:reader?url=http://pza.sanbi.org/elegia-cuspidata The easiest way to tell male from female is at flowering time. This occurs through the summer months. The male plant produces pollen and the female plant has white fluffy styles that receive the pollen and form the seed. Tiny shiny brown seeds are released in autumn. Conservation Status Status Least Concern. Distribution and habitat Distribution description Elegia cuspidata is a coastal species endemic to the Western Cape. It occurs in the sandveld along the West Coast, along the Palmiet River in the Kogelberg, and on the Peninsula at Cape Point. It forms extensive dominant populations in seasonally wet marshy areas at an altitude of below 300 m. Soils are acidic and sandy. Derivation of name and historical aspects History African Restionaceae contains 8 genera made up of ± 350 species. Restios are one of the main components of fynbos and are found growing mainly in the Western & Eastern Cape. Other well-known species within Elegia are Elegia capensis and Elegia tectorum . The specific name cuspidata is Latin for pointed or, in botanical usage, abruptly tipped with a sharp rigid point. This refers to the pointed tips of the floral bracts. The genus name Elegia comes from the Greek word elegos which means 'song of lamentation', as in the English word elegy. This may refer to the sound restios make while they are moving in the breeze. 2 of 5 2016/12/14 03:32 PM Elegia cuspidata | Plantz Africa about:reader?url=http://pza.sanbi.org/elegia-cuspidata Ecology Ecology Summer in the Western Cape is characterized by strong southeasterly winds. These winds are responsible for pollinating restios. If you tap the culms of flowering male restios you will see big clouds of dust-like pollen being released. Bees and beetles are always in attendance when male plants flower but they are stealing the pollen for themselves and not performing any pollination function. Uses Use Elegia cuspidata is used as a landscape plant or as cut greenery in the floral trade. Growing Elegia cuspidata Grow Elegia cuspidata requires the following growing conditions to flourish in your garden: Full sun for most of the day, good air circulation and preferably exposure to wind. If light or air circulation are not sufficient, plants may become weak and spindly and turn yellow. This restio naturally occurs in seasonally flooded marshes in acidic soils. It experiences hot windy summers and cold rainy winters with its feet submerged in water. At Kirstenbosch it is planted in well-drained soils and, provided it receives enough water, grows well. This plant is suited to a more naturalisticly themed garden where it can be combined with other fynbos species with similar growing requirements. For example Erica patersonii, Mimetes cucullatus , Mimetes hirtus , Erica margaritacea , Witsenia maura , Zantedeschia aethiopica , Watsonia species.Plant in large swathes as a filler with colourful flowering shrubs popping about above and in between. Restios are relatively disease-free plants, and no major pests and diseases are likely to affect Elegia cuspidata . 3 of 5 2016/12/14 03:32 PM Elegia cuspidata | Plantz Africa about:reader?url=http://pza.sanbi.org/elegia-cuspidata There are two ways to propagate restios: dividing the rhizome and sowing seed. Dividing the rhizome entails digging up an established plant and breaking the rhizome into pieces at least 150 mm long. Plant these pieces into the ground or into pots. Water them well after planting. This is done during winter before the plant sends up new culms. The plants will take at least a year to start growing strongly and produce new shoots. At Kirstenbosch we use seed propagation for all the restios. This is a fast and easy method to use if you require large quantities of plants. The seed is planted in April-May (autumn) when the days are warm (20-30°C) and the nights are cool (10-15°C). Treat the seed prior to planting with Instant Smoke Primer. This smoke treatment greatly improves germination. Seed is planted into seed trays 100 mm deep and filled with a well-drained medium. Plant the seed thickly as 50 % of restio seed is not viable. Cover the seed lightly with sand, and water. Place the trays in a light well-ventilated area. Keep the trays moist but not wet. After 3-4 weeks germination should take place. Once the plants have developed a few small culms, after ± 6 - 12 weeks, and are 30 mm tall, they can be pricked out into 6-packs or plug trays. Use a fynbos potting medium consisting of 1 part loam, 8 parts bark and 3 parts sand. Harden off the plants in a semi-shaded area until they are growing strongly (± 4 weeks) before placing in the sun. Once the roots start to show through the bottom of the trays they can be potted into small black bags. After growing on they will be ready to be planted in the garden. Plant out into the garden at the start of the rainy season and mix in some well rotted compost into the planting hole. Water well if no rain is predicted. Maintain plants by removing old dead culms. Depending on growing conditions plants will need to be replaced after about 5 years. They will last longer than this in the garden but do tend to become untidy with age. References Booyens, J. 2008. Honeybee pollen thieves, a one-sided relationship with restios. Veld & Flora 94(3): 148-149. Dorrat-Haaksma, E. & Linder, H. P. 2000. Restios of the Fynbos. The Botanical Society of South Africa, Cape Town. Goldblatt, P. & Manning, J.C. 2000. Cape plants. A conspectus of the Cape flora of South Africa. Strelitzia 9. National Botanical Institute, Cape Town. Linder, H.P., & Hardy, C.R. 2010. A generic classification of the Restioneae (Restionaceae), southern Africa.Bothalia 40, 1: 1-35. Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A. & 4 of 5 2016/12/14 03:32 PM Elegia cuspidata | Plantz Africa about:reader?url=http://pza.sanbi.org/elegia-cuspidata Manyama, P.A. 2009. Red List of South African plants. Strelitzia 25. South African National Biodiversity Institute, Pretoria. Credits Louise Nurrish Kirstenbosch National Botanical Garden June 2011 5 of 5 2016/12/14 03:32 PM.
Recommended publications
  • 1 March 27 a Few Days Ago, While Finding Refuge Indoors
    1 March 27 A few days ago, while finding refuge indoors from the strong wind (mainly due to the dust factor), I was quite amazed how the dynamics of the landscape seem to change with wind. Although the wind was predominately from the west, the trees and other plants would sway in all directions. They would bend to the east, straighten up and then without hesitation sway to the south and then to the north! Confusing to try and determine the actual directional source but be that as it may there was another exciting element to it all. It was the graceful dance of continuity that had no formality or predetermined steps. I so enjoy seasonal changes as each one brings something different which is a requirement of our natural world. Changes in light and temperature wake some plants up while others take a break or just go to sleep. I often think wind is an overlooked characteristic of seasonal change and for many it is just another windy day resulting in irritation and inconvenience. We can’t live without it as it is responsible for rain, spreading fire, moving soils, seed, pollen, insects, bird migration and disease. It is the power behind land, sea and air travel and the smallest of gusts can take your hat off. Like so much of the natural world we cannot control it…thankfully. Movement brings life to the garden physically and through colour as leaves flutter and show the variation between top and underside. Unfortunately, this wonderful phenomenon, is rather lost in formal gardens due to the stiffness of man made lines and unnatural shapes.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • Architectural Design Manual Constantia Nek Estate
    ARCHITECTURAL DESIGN MANUAL CONSTANTIA NEK ESTATE OWNERS ASSOCIATION Established in terms of Section 61 of the City of Cape Town Municipal Planning By-Law, 2015 Rev. 05 September 2020 CONTENTS ARCHITECTURAL RULES 1. Site Description 2. Vision 3. Objectives 4. Design Framework 4.1. Building Typologies 4.2. Building Envelope 4.3. Building Form 4.4. Floor Space 4.5. Roof Forms 4.5.1 Height 4.5.2 Width 4.5.3 Length 4.5.4 Roof Types 4.5.5 Roof Lights / Windows 4.5.6 Dormers 4.6. Solar Heating 4.7. Walls 4.8. Windows 4.9. Doors 4.10. Verandahs 4.11. Terraces 4.12. Balconies 4.13. Decks 4.14. Pergolas 4.15. Balustrading 4.16. Burglar Bars 4.17. Garaging 4.18. Waste Pipes 4.19. Retaining Structures 4.20. Perimeter Conditions 4.21. Gables 4.22. Eaves 4.23. Parapets 4.24. Gutters 4.25. Chimneys 4.26. Vehicular Access 4.27. Cabling 4.28. Outdoor Lighting 4.29. Laundry & Refuse Areas 4.30. Swimming Pools 4.31. Fire Precautions 4.32. Storm Water/External drainage 4.33. Numbering and Signage 4.34. Hard Surfaces 4.35. General 2 LANDSCAPING – PRIVATE ERVEN 1. Introduction 2. Garden Elements 3. Boundary Walls/Fences 4. Retaining walls/Steps/Ramps 5. Pergolas 6. Swimming Pools/Water Features 7. Gazebos/Summer Houses 8. Planting Elements 8.1 Screening 8.2 Planting Character 8.3 Plant List PRIVATE ERVEN DEVELOPMENT PLANNING, SUBMISSION & APPROVAL REQUIREMENTS 1. Architectural Review Committee (ARC) 2. Approval Process 3. Scrutiny Fees/ Deposit 4. Building Operations 5.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Vicariance, Climate Change, Anatomy and Phylogeny of Restionaceae
    Botanical Journal of the Linnean Society (2000), 134: 159–177. With 12 figures doi:10.1006/bojl.2000.0368, available online at http://www.idealibrary.com on Under the microscope: plant anatomy and systematics. Edited by P. J. Rudall and P. Gasson Vicariance, climate change, anatomy and phylogeny of Restionaceae H. P. LINDER FLS Bolus Herbarium, University of Cape Town, Rondebosch 7701, South Africa Cutler suggested almost 30 years ago that there was convergent evolution between African and Australian Restionaceae in the distinctive culm anatomical features of Restionaceae. This was based on his interpretation of the homologies of the anatomical features, and these are here tested against a ‘supertree’ phylogeny, based on three separate phylogenies. The first is based on morphology and includes all genera; the other two are based on molecular sequences from the chloroplast genome; one covers the African genera, and the other the Australian genera. This analysis corroborates Cutler’s interpretation of convergent evolution between African and Australian Restionaceae. However, it indicates that for the Australian genera, the evolutionary pathway of the culm anatomy is much more complex than originally thought. In the most likely scenario, the ancestral Restionaceae have protective cells derived from the chlorenchyma. These persist in African Restionaceae, but are soon lost in Australian Restionaceae. Pillar cells and sclerenchyma ribs evolve early in the diversification of Australian Restionaceae, but are secondarily lost numerous times. In some of the reduction cases, the result is a very simple culm anatomy, which Cutler had interpreted as a primitively simple culm type, while in other cases it appears as if the functions of the ribs and pillars may have been taken over by a new structure, protective cells developed from epidermal, rather than chlorenchyma, cells.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Early Cretaceous Lineages of Monocot Flowering Plants
    Early Cretaceous lineages of monocot flowering plants Kåre Bremer* Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyva¨gen 18D, SE-752 36 Uppsala, Sweden Edited by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, and approved February 14, 2000 (received for review October 1, 1999) The phylogeny of flowering plants is now rapidly being disclosed tionally complex and not feasible for dating large trees with by analysis of DNA sequence data, and currently, many Cretaceous several reference fossils. fossils of flowering plants are being described. Combining molec- Herein, the focus is on divergence times for the basal nodes of ular phylogenies with reference fossils of known minimum age the monocot phylogeny, and any precision in dating the upper makes it possible to date the nodes of the phylogenetic tree. The nodes of the tree is not attempted. To this end, mean branch dating may be done by counting inferred changes in sequenced lengths from the terminals to the basal nodes of the tree are genes along the branches of the phylogeny and calculating change calculated. Unequal rates in different lineages are manifested as rates by using the reference fossils. Plastid DNA rbcL sequences and unequal branch lengths counting from the root to the terminals eight reference fossils indicate that Ϸ14 of the extant monocot in phylogenetic trees, and the procedure of calculating mean lineages may have diverged from each other during the Early branch lengths reduces the problem of unequal rates toward the Cretaceous >100 million years B.P. The lineages are very different base of the tree.
    [Show full text]
  • Effects of a Fire Response Trait on Diversification in Replicated Radiations
    ORIGINAL ARTICLE doi:10.1111/evo.12273 EFFECTS OF A FIRE RESPONSE TRAIT ON DIVERSIFICATION IN REPLICATED RADIATIONS Glenn Litsios,1,2 Rafael O. Wuest,¨ 3 Anna Kostikova,1,2 Felix´ Forest,4 Christian Lexer,5 H. Peter Linder,6 Peter B. Pearman,3 Niklaus E. Zimmermann,3 and Nicolas Salamin1,2,7 1Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland 2Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland 3Landscape Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom 5Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Chemin du Musee´ 10, CH-1700 Fribourg, Switzerland 6Insitute for Systematic Botany, University of Zurich, 8008 Zurich, Switzerland 7E-mail: [email protected] Received May 14, 2013 Accepted September 9, 2013 Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia.
    [Show full text]
  • Nuclear Genes, Matk and the Phylogeny of the Poales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.
    [Show full text]
  • Botanical Impact Assessment for the Proposed Residential Development at Rocky Coast Farm (Portions 78 and 79 of the Farm Ongegund Vryheid No
    Appendix D(iv): Botanical Specialist Assessment Botanical Impact Assessment for the proposed residential development at Rocky Coast Farm (Portions 78 and 79 of the Farm Ongegund Vryheid No. 746), Cape St Francis, Kouga Municipality Report prepared by: Dr B. Adriaan Grobler PO Box 32289, Summerstrand, Port Elizabeth, 6019 Report prepared for: Public Process Consultants 120 Diaz Street, Adcockvale, Port Elizabeth, 6001 Report v. 2.0 | 2 September 2019 214 Table of Contents Abbreviations ................................................................................................................................ 216 1 Introduction .......................................................................................................................... 217 2 Study Area ............................................................................................................................. 217 3 Terms of Reference ............................................................................................................... 218 4 Methodology and Limitations ............................................................................................... 221 5 Regional Context ................................................................................................................... 222 5.1 Biogeography ................................................................................................................. 222 5.2 Conservation Planning ..................................................................................................
    [Show full text]
  • Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp.
    [Show full text]
  • The Garden 2015 Index
    GardenThe INDEX 2015 Volume 140, Parts 1–12 Index 2015 1 January 2015 2 February 2015 3 March 2015 4 April 2015 5 May 2015 6 June 2015 Coloured numbers in 12: 38 George VI Memorial bold before the page Dissectum Group Park, Ramsgate AWARD OF GARDEN MERIT (AGM) number(s) denote the 11: 58 (letter) 8: 19, 19 part number (month). ‘Garnet’ 11: 59 ‘Mediopicta Alba’ PLANT PROFILES Each part is paginated var. heptalobum 6: 49 Acer griseum 12: 25, 25 Dactylorhiza elata 5: 28– Prunus mume ‘Beni- separately. 11: 59 celsii 6: 49 Anemone hupehensis 29, 28–29 chidori’ 2: 20, 20 ‘Sango-kaku’ 11: 24, lophantha 6: 49 var. japonica ‘Pamina’ Escallonia bifida 9: 22, 22 radishes 3: 26–27 Numbers in italics 58 mitis 6: 49 9: 22, 22 Eschscholzia californica redcurrant ‘Red Lake’ denote an image. ‘Red Flamingo’ 11: 24 montana 6: 47, 49, 49 Bergenia ‘Eric Smith’ ‘Dali’ 7: 23, 23 7: 23, 23 Acer Corner: Eli Kling ovatifolia 3: 12, 12; 6: 49 1: 22, 22–23 Hyacinthus 4: 26–27 Rhodohypoxis baurii Where a plant has a and Jo Naiman’s foliage parryi 6: 49, 49 Camellia ‘Cornish Snow’ Iris Median Bearded 7: 22–23, 22–23 Trade Designation (also garden in Wendover, univittata 6: 49 2: 20–21, 21 6: 24–25 Salix alba var. vitellina known as a selling Bucks, by Nicola victoriae-reginae 6: 49 Chrysanthemum hardy, Lathyrus grandiflorus ‘Yelverton’ 1: 23, 23 name) it is typeset in a Stocken 11: 46–47 Ageratina altissima RHS Plant Trial of 5: 29, 29 Skimmia x confusa ‘Kew different font to Aceriphyllum rossii 5: 61 ‘Chocolate’ 12: 37 10: 20–21 Laurus nobilis ‘Aurea’ Green’ 2: 20, 20 distinguish it from the acidity 3: 65 AGM (see Award of Clematis cirrhosa 5: 29, 29 Streptocarpus RHS Plant cultivar name (shown Aciphylla aurea 5: 82 Garden Merit; Award var.
    [Show full text]