3527334297 Bindex.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

3527334297 Bindex.Pdf Index a Acanthaceae 305 Acanthodoris 1335, 1376 AAP bacteria 93 Acanthacerebroside A 1554 Acanthodoris nanaimoensis 1377 Aaptamine 716, 1026, 1486 Acanthacerebroside B 1554 Acanthodoryx 844 Aaptanone 716 Acanthacerebroside C 1554 Acanthodoryx fibrosa 844 Aaptos 623, 834, 1194, 1486 Acanthacerebroside D 1554 Acanthogorgia 1089, 1107 Aaptos aaptos 716, 717 Acanthacerebroside F 1554 Acanthogorgia sp. 1089, 1107 Aaptos ciliata 713 Acanthaganglioside A 1557 Acanthogorgia turgida 1165 Aaptos papillata 640 Acanthaganglioside E 1557 Acanthogorgia vagae 1111 Aaptos sp. 620, 623, 704, 716, 1194, 1486 Acanthaganglioside F 1558 Acanthogorgiidae 1089, 1146 Aaptos suberitoides 716 Acanthaganglioside H 1558 Acanthoisis 1089 Aaptosamine 717 Acanthaganglioside I 1558 Acantholide B 888 Aaptosine 717 Acanthaganglioside J 1558 Acantholide D (4S) 888 Abeohyousterone 1618 Acanthaglycoside A 1547 Acantholide E (4R) 888 Aberrarane 1203 Acanthaglycoside B 1547 Acanthomine A 836 Aberrarone 1203 Acanthaglycoside C 1547 Acanthopeltis 314, 490 Abietinaria 1090, 1231 Acanthaglycoside D 1547 Acanthopeltis sp. 491 Abietinaria sp. 1090, 1232 Acanthaglycoside E 1547 Acanthophora 314 Abietinarin B 1232 Acanthalactoside A 1557 Acanthophora spicifera 324 Aboa 1083 Acanthalactoside B 1557 Acanthopolymastia 620 D-Abrine 690 Acanthascus 617 Acanthorhabdus 620 Abruptoside A 1101 Acanthascus sp. 618, 1425 Acanthosolenia 227 Abruptoside B 1101 Acanthaster 1501 Acanthosterol sulfate A 660 Abudefduf vaigiensis 32, 1742 Acanthaster planci 1344, 1488, 1499, 1508, Acanthosterol sulfate I 660 Abudinol A 765 1547–1549, 1554, 1557, 1558, 1649 Acanthosterol sulfates 893 Abudinol B 765 Acanthasterol 1522 Acanthostrongylophora 620, 821 ent-Abudinol B 958, 1026 Acanthella 621, 645 Acanthostrongylophora aff. ingens 822, 824 Aburatubolactam A 98, 102 Acanthella acuta 769 Acanthostrongylophora ingens 836 Abyssal zone 23 Acanthella aurantiaca 647, 753 Acanthosulfate 890 Abyssocladia dominalba 842 Acanthella carteri 624, 789, 790 Acanthotetilla 620 Abyssocladia huitzilopochtli 842 Acanthella cavernosa 766, 772, 1053, 1383 Acanthotriaena 620 Abyssocladia inflata 842 Acanthella cf. cavernosa 769 Acanthovagasteroid A 1111 Abyssocladia naudur 842 Acanthella cristagalli 647 Acanthovagasteroid B 1111 Abyssocucumis 1501 Acanthella klethra 766, 772 Acanthovagasteroid C 1111 Abyssocucumis abyssorum 1562 Acanthella sp. 620, 645, 749, 756, 757, 768, Acanthovagasteroid D 1111 Abyssomicin C 102, 136 772, 789, 1377, 1480 Acanthus 305 Abyssomicin D 136 Acanthella vulgata 766 Acanthus ilicifolius 520, 534 Abyssomicins 136 Acanthene A 1378, 1481 Acarnidaes 620, 842 Acabaria 1089, 1093, 1114 Acanthene B 1378, 1481 Acarnidines 1026 Acabaria undulata 1102 Acanthene C 1378, 1481 Acarnus 620, 842 Acalle 621 Acanthephyra acanthitelsonis 1466 ACE inhibitory peptides 1421 Acalycigorgia 1093 Acanthifolicin 252, 864 Acerolide 1155 Acalycigorgia inermis 1165 Acanthochaetetes 620 Acerosolide 1272, 1275 Acalycigorgia sp. 1089, 1114, 1145, Acanthochaetetidae 620 Acerosterol 1105 1149, 1160 Acanthochiton 1335 Acetabularia 286 Acalycigorgin B 1165 Acanthoclada 620 2-Acetamido-2-deoxy-D-galacturonic Acalycigorgin D 1165 Acanthocora 620 acid 118 Acalycixeniolide B 1165 Acanthodendrilla 622, 660 Acetopterine 1168 Acalycixeniolide C 1165 Acanthodendrilla sp. 620, 658, 660, 879, 2-Acetoxy acids 642 Acalycixeniolide E 1165 880, 888, 890, 893, 1522 10-Acetoxyangasiol 357 Acalycixeniolide I 1165 Acanthodoral 1272, 1377, 1456 20-Acetoxyclavulone II (PGA) 1095 Encyclopedia of Marine Natural Products, Second Edition. Jean-Michel Kornprobst. # 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA. 1762 Index Acetoxycrenulide 438, 1355 Acropora nobilis 1209 Adociacetylene A 799 11-Acetoxy-4-deoxyasbestinin D Acropora palifera 1209 Adociacetylene B 797, 1026 1272, 1273 Acropora sp. 43, 1209 Adociane 768, 804 22j-Acetoxyechinoside-A 1573 Acroporidae 1090, 1209 Adociaquinol 810 Acetoxyfimbrolides 383 Acrosiphonia coalita 293 Adociaquinone A 838 7-Acetoxy-8-hydroxylophotoxin 1154 Actineria 1089 Adociaquinone B 838 Acetoxyisocopalenal 1052 Actineria villosa 1225 Adociaquinones 1027 25-Acetoxyluffariellin A 921 Actinia 1089 Adocia. sp. 620, 625, 768, 793, 797, 799, 5-Acetoxynakafuran 8 885 Actinia cari 1225 804, 805, 807, 837 6b-Acetoxy-olepupuane 1377 Actinia equina 1214, 1225 Adocia sulfate 1 809 5-Acetoxyoxachamigrene 344 Actinia tenebrosa 1214, 1225 Adocia sulfate 2 809 4 Acetoxyplakinamine B 679 Actiniaria 1089 Adocia sulfate 3 809 15-Acetoxytubipofuran 1286 Actiniarin A 1214 Adocia sulfate 4 809 12-Acetylalcyopterosin D 1129 Actiniarin C 1214 Adocia sulfate 8 809 Acetyldendrillol-1 1077 Actiniidae 1089 Adocia sulfate 9 809 11-Acetyl-24-desmethyl-stoloniferone Actinioerythrin 1214, 1388 Adocia sulfate 10 810 C 1285 Actinodendron 1089 Adocia sulfate 11 810 Acetyldidemnin A 1644 Actinodendron plumosum 1225 Adocia sulfate 12 807,810 Acetylelatol 1356 Actinodiscidae 1090 Adocidae 805 11-O-Acetyl-22-epihippuristanol 1120 Actinoflavoside 98, 102 Adreus 620 N(10)-Acetyleudistomin L 1724 Actinofuranone A 102 Adriatoxin (ATX) 247, 1412, 1414 N-Acetyl-galactosamine 685 Actinofuranones 99 Adriatoxin-B 1412, 1414 N-Acetylglucosamine 91, 147, 685 Actinogeton 1089 Aeolidia 1335, 1376 Acetylmajapolene A 347 Actinomonas 223 Aeolidia papillosa 1478 Acetylmajapolene B 347 Actinomyces 96 Aequipecten opercularis 1409 N-Acetylmuramic acid 91, 137 Actinomycetes 97, 1745 Aequorea 1090 N-Acetylneuraminic acid 1581 Actinopyga 1501 Aequorea aequorea 52, 1228, 1229 N-Acetylpipecolic acid 548 Actinopyga agassizi 1564, 1567, 1573 Aequorea victoria 1228, 1230 Achelia 1462 Actinopyga echinites 1573 Aequoreiidae 1090 Acheliderma 620 Actinopyga flammea 1573 Aequorin 52, 1224, 1228 Achramorpha 610 Actinopyga mauritiana 1573 Aeromicrobium erythreum 592 Achramorphidae 610 Actinopyga sp. 1501, 1574 Aeromonas 96, 1484, 1745 Aciculites 620, 742, 743 Actinostolidae 1089 Aeromonas sp. 116, 1745 Aciculites orientalis 744 Actinothoe 1089 Aerophobin-1 1372 Aciculites pulchra 652 Actinotrichia 341 Aeroplysinin-1 937, 1027 Aciculitin A 743, 744 Actinotrichia fragilis 528 Aeroplysinin 2 937 Aciculitin B 743 Acutanol 1151 Aeropyrum 73, 74 Aciculitin C 743 Acutiphycin 193 Aeropyrum pernix 77 Acidianus 74 Acyclodidemnin A 1647 Aerothionin 935, 938, 1027, 1506, D5,9 Acids 629 N-Acyl-1-deoxysphingenine- 1507, 1508 Acinetobacter baumannii 1487 1-sulfonate 208 Aeruginosamide 193 Acinetobacter sp. 635 N-Acyl-L-homoserine lactones 1486 Aeruginoside 126A 179 Acodontaster conspicuus 1528 N-Acylphosphatidylethanolamines 148 Aeruginoside 126B 179 Acrasiomycetes 508 Acylpolymalonate pathway 297 Aeruginosin 98-A 179 Acremofuranone A 539 Acyltunichlorins 1611, 1613 Aeruginosin 102-A 179 Acremolide A 520 Acystis 211, 459 Aeruginosin 205-A 179 Acremolide C 521 Adalaria 1335, 1376 Aeruginosin 205-B 179 Acremonisol A 528 Adalaria loveni 1387, 1388 Aeruginosin 298-A 193 Acremonium 509, 513, 519,521, 528 Adalaria sp. 1339, 1480 Aeruginosins 899 Acremonium alabamense 528 Ada 164 Africanane 1130, 1133 Acremonium sp. 39, 509, 513, 519–521, Adda 164, 193 Africanene 1128 528, 539, 542, 544, 547, 557, 559 Adenochrome 1420 Africanol 1133, 1272 Acremonium striatisporum 553, 554 seco-Adenochromine 1421 Agar 491, 492 Acremonium strictum 545 Adenochromines 1421 Agaran 319 Acrocarpia 459 Adenochromines A 1420 Agarases 594, 595 Acrochaete 286 Adenochromines B 1420 Agardhiella 317, 319 Acrochaete operculata 1484 Adenochromines C 1420 Agardhiella sublunata 323 Acrochaetiaceae 314 Adenocystaceae 418 Agardhiella tenera 322 Acrochaetiales 314 Adenocystis 418 Agardhilactone 405 Acrochaetium 314 Adenosine-50-phosphosulfate 31 Agardhipeptin A 780, 784 Acropora 1090 S-Adenosylmethionine 123, 633 Agaricia 1090 Acropora cerealis 1090, 1209 AdenocystisS utricularis 496 Agariciidae 1090 Acropora formosa 1209 Adocia 622, 625 Agarobiose 318 Acropora gemmifera 1209 Adocia aculeata 809 Agaropectin 319 Index 1763 Agarophytes 319 Agelasphin-9a 51 Aiptasiidae 1089 Agarose 319 Agelasphin-9b 51 Aipysurus laevis 1749 Agars 595 Agelasphine 7a 668 Ajuga 1212 Agarum 418, 428 Agelasphine 9a 668 Ajugasterone C 1212 Agarum cribosum 529 Agelasphine 9b 668 Aka 804 Agassizin 1386 Agelasphins 50, 577, 579, 666, 667, 748 Aka Adocia sp. 809, 810 Agathic acid 513 Agelastatin A 750, 753, 1027, 1028 Aka coralliphaga 804 Age-related macular degeneration Agelastatin B 753, 1028 Aka coralliphagum 804 (ARMD) 51 Agelastatin C 753 Aka sp. 620, 804 Ageladine A 754, 1027, 1063 Agelastatin D 753 Akaterpin 807, 809, 1028 Agelagalastatin 748 Agelastatin E 753 Aklam33 1359 Agelanesin A 754 Agelastatin F 753 Aklam36 1359 Agelanesin B 754 Agelaxanthin A 745, 1082 5-[L-Ala]-motuporin 1060 Agelanesin C 754 Agelaxanthin C 745 Alanine 772 Agelanesin D 754 Ageliferin 751, 1028, 1074 b-Alanine 547 Agelas 620, 744, 746, 756, 789 Ageline A 1028 Alaninol 153 Agelas ceylonica 1050 Ageline B 746 Alanolide 1168 Agelas cf. mauritiana 752, 753 Agelocaissarine A1 941 Alanopine 1299 Agelas clathrodes 748, 750 Agelongine 756, 787 Alantolactone 327 Agelas conifera 629, 751 Agesamide A 753 Alaria 418, 420 Agelas dendromorpha 753 Agesamide B 753 Alaria angustata 424 Agelas dilatata 634, 748, 754, 756 Aglaja 1335, 1368, 1369 Alaria esculenta 489 Agelas dispar 545, 748, 754, 756, Aglaja depicta 1369, 1370 Alariacea 425 1042, 1045 Aglajne 1 1369 Alariaceae 418, 444 Agelas gracilis 746 Aglajne 2 1370 Albicanol 1386, 1448, 1759 Agelas linnaei 754 Aglajne 3 1370 Albicanyl acetate 1386, 1387, 1448, 1759 Agelas longissima 748, 754, 756 Aglaophenia 1090
Recommended publications
  • The Ascidian-Derived Metabolites with Antimicrobial Properties
    antibiotics Review The Ascidian-Derived Metabolites with Antimicrobial Properties Marcello Casertano , Marialuisa Menna * and Concetta Imperatore Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; [email protected] (M.C.); [email protected] (C.I.) * Correspondence: [email protected]; Tel.: +39-081678518 Received: 30 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: Among the sub-phylum of Tunicate, ascidians represent the most abundant class of marine invertebrates, with 3000 species by heterogeneous habitat, that is, from shallow water to deep sea, already reported. The chemistry of these sessile filter-feeding organisms is an attractive reservoir of varied and peculiar bioactive compounds. Most secondary metabolites isolated from ascidians stand out for their potential as putative therapeutic agents in the treatment of several illnesses like microbial infections. In this review, we present and discuss the antibacterial activity shown by the main groups of ascidian-derived products, such as sulfur-containing compounds, meroterpenes, alkaloids, peptides, furanones, and their derivatives. Moreover, the direct evidence of a symbiotic association between marine ascidians and microorganisms shed light on the real producers of many extremely potent marine natural compounds. Hence, we also report the antibacterial potential, joined to antifungal and antiviral activity, of metabolites isolated from ascidian-associate microorganisms by culture-dependent methods. Keywords: ascidian; antibacterial; antimicrobial; antiviral; marine natural products; ascidian- associated microorganisms 1. Introduction Antimicrobial agents (including antibiotic, antiviral, antifungal, and antiprotozoal drugs) certainly are critical tools for the treatment of infectious diseases, and many feats of modern medicine and surgery also are determined by the availability of effective antibiotics.
    [Show full text]
  • Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development
    Nat. Prod. Bioprospect. DOI 10.1007/s13659-016-0115-5 REVIEW Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development Satheesh Kumar Palanisamy . N. M. Rajendran . Angela Marino Received: 19 November 2016 / Accepted: 14 December 2016 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994–2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from\3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11–12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized. Keywords Cancer Á Cytotoxicity Á Diversity Á Metabolites Á Pharmacology 1 Introduction from marine invertebrates, especially sponges, ascidians, bryozoans and molluscs in which some of them are The study of marine natural products (MNPs) is becoming approved by FDA and currently utilized in clinical trials ever more sophisticated and an increasingly collaborative [1].
    [Show full text]
  • Sunscreen, Antioxidant, and Bactericide Capacities of Phlorotannins from the Brown Macroalga Halidrys Siliquosa
    1 Journal Of Applied Phycology Achimer December 2016, Volume 28 Issue 6 Pages 3547-3559 http://dx.doi.org/10.1007/s10811-016-0853-0 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00366/47682/ © Springer Science+Business Media Dordrecht 2016 Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa Le Lann Klervi 1, *, Surget Gwladys 1, Couteau Celine 2, Coiffard Laurence 2, Cerantola Stephane 3, Gaillard Fanny 4, Larnicol Maud 5, Zubia Mayalen 6, Guerard Fabienne 1, Poupart Nathalie 1, Stiger-Pouvreau Valerie 1 1 UBO, European Inst Marine Studies IUEM, LEMAR UMR UBO CNRS Ifremer IRD 6539, Technopole Brest Iroise, F-29280 Plouzane, France. 2 Nantes Atlant Univ, Univ Nantes, Fac Pharm, LPiC,MMS,EA2160, 9 Rue Bias,BP 53508, F-44000 Nantes, France. 3 UBO, RMN RPE MS, 6 Ave,Victor Le Gorgeu CS93837, F-29238 Brest 3, France. 4 CNRS, Plateforme Spectrometrie Masse MetaboMER, FR2424, Stn Biol, Pl Georges Teissier,BP 74, F-29682 Roscoff, France. 5 Venelle Carros, Labs Sci & Mer, CS 70002, F-29480 Le Relecq Kerhuon, France. 6 Univ Polynesie Francaise, EIO UMR 244, LabEx CORAIL, BP 6570, Faaa 98702, Tahiti, Fr Polynesia. * Corresponding author : Klervi Le Lann, email address : [email protected] Abstract : The present study focused on a brown macroalga (Halidrys siliquosa), with a particular emphasis on polyphenols and their associated biological activities. Two fractions were obtained by liquid/liquid purification from a crude hydroethanolic extract: (i) an ethyl acetate fraction and (ii) an aqueous fraction. Total phenolic contents and antioxidant activities of extract and both fractions were assessed by in vitro tests (Folin–Ciocalteu test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power assay, superoxide anion scavenging assay, and β-carotene–linoleic acid system).
    [Show full text]
  • From the National Park La Restinga, Isla Margarita, Venezuela
    Biota Neotrop., vol. 10, no. 1 Inventory of ascidians (Tunicata, Ascidiacea) from the National Park La Restinga, Isla Margarita, Venezuela Rosana Moreira Rocha1,11, Edlin Guerra-Castro2, Carlos Lira3, Sheila Marquez Pauls4, Ivan Hernández5, Adriana Pérez3, Adriana Sardi6, Jeannette Pérez6, César Herrera6, Ana Karinna Carbonini7, Virginia Caraballo3, Dioceline Salazar8, Maria Cristina Diaz9 & Juan José Cruz-Motta6,10 1 Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 82531-980 Curitiba, PR, Brasil 2Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, CP 21827, Caracas 1020-A, Venezuela, e-mail: [email protected] 3Laboratorio de Zoología, Universidad de Oriente, Núcleo de Nueva Esparta, Escuela de Ciencias Aplicadas del Mar, CP 658, Porlamar 6301, Isla Margarita, Venezuela, e-mail: [email protected], [email protected], [email protected] 4Instituto de Zoologia Tropical, Escuela de Biologia, Universidad Central de Venezuela, CP 47058, Caracas 1041, Venezuela, e-mail: [email protected] 5Departamento de Ciencias, Universidad de Oriente, Núcleo de Nueva Esparta, Guatamara, Isla de Margarita, Venezuela, e-mail: [email protected] 6Laboratorio de Ecología Experimental, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected], [email protected], [email protected] 7Laboratorio de Biología Marina, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 8Departamento de Biología, Escuela de Ciencias, Universidad de Oriente, Núcleo de Sucre, CP 245, CEP 6101,Cumaná, Venezuela, e-mail: [email protected] 9Museo Marino de Margarita, Bulevar El Paseo, Boca del Río, Margarita, Edo. Nueva Esparta, Venezuela, e-mail: [email protected] 10Departamento de Estudios Ambientales, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 11Corresponding author: Rosana Moreira Rocha, e-mail: [email protected] ROCHA, R.M., GUERRA-CASTRO, E., LIRA, C., PAUL, S.M., HERNÁNDEZ.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham To cite this article: Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham (2016): An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2016.1259209 To link to this article: http://dx.doi.org/10.1080/10408398.2016.1259209 Accepted author version posted online: 11 Nov 2016. Published online: 11 Nov 2016. Submit your article to this journal Article views: 322 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [130.194.127.231] Date: 09 July 2017, At: 16:18 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2016.1259209 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray a, Aimee L. Dordevic b, Lisa Ryan b, and Maxine P. Bonham a aDepartment of Nutrition, Dietetics and Food, Monash University, Victoria, Australia; bDepartment of Natural Sciences, Galway-Mayo Institute of Technology, Galway, Ireland ABSTRACT KEYWORDS Marine macroalgae are gaining recognition among the scientific community as a significant source of Anti-inflammatory; functional food ingredients.
    [Show full text]
  • Molecular Phylogeography and Climate Change Biology of the Invasive Green Marine Macroalgae Caulerpa Taxifolia and Caulerpa Cylindracea in Australia
    Molecular phylogeography and climate change biology of the invasive green marine macroalgae Caulerpa taxifolia and Caulerpa cylindracea in Australia Submitted by William Maxwell Grant BSc (Hons) Thesis submitted in total fulfillment of the requirements for the degree of Doctor of Philosophy Department of Ecology and Environmental Sciences School of Biology Faculty of Science The University of Adelaide Adelaide, South Australia 5005 Australia February 2015 1 Table of Contents Acknowledgments 4 Thesis Summary 6 Thesis Declaration 9 Chapter One: Thesis Introduction Introduction 11 Study Aims 17 Chapter Two: Molecular Ecology of Caulerpa taxifolia and Caulerpa cylindracea : a review Statement of Authorship 20 Caulerpa taxifolia 21 Molecular studies on Caulerpa taxifolia 23 Caulerpa cylindracea 33 Molecular studies on Caulerpa cylindracea 35 Conclusion 37 Chapter Three: Phylogeography of the invasive marine green macroalga Caulerpa taxifolia (M. Vahl) C.Agardh in Australian waters: a next generation sequencing approach to marker discovery Statement of Authorship 43 Abstract 44 Introduction 45 Materials and Methods: 49 Results: 56 Discussion 66 Chapter 4: Phylogeography of the invasive marine green macroalga Caulerpa cylindracea Sonder in Australia. Statement of Authorship 74 2 Abstract 75 Introduction 76 Materials and Methods: 79 Results 82 Discussion 88 Chapter 5: The effect of climate change experiments on DNA, RNA, and protein concentrations, and protein profiles native and invasive Caulerpa spp. Statement of Authorship Statement of Authorship 92 Abstract 93 Introduction 94 Materials and Methods: 97 Results: 99 Discussion 108 Chapter 6: General Discussion General discussion 114 References 122 3 Acknowledgments I would like to thank my supervisors, Dr Fred Gurgel, Dr Marty Deveney, and Assoc.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Palermo This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Fish & Shellfish Immunology 32 (2012) 101e109 Contents lists available at SciVerse ScienceDirect Fish & Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis Aiti Vizzini, Daniela Parrinello, Maria Antonietta Sanfratello, Giuseppina Salerno, Matteo Cammarata, Nicolò Parrinello* Department of Environmental Biology and Biodiversity, Laboratory of Marine Immunobiology, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy article info abstract Article history: Although ascidians belong to a key group in chordate phylogenesis, amino acid sequences of Ciona Received 26 May 2011 intestinalis galectin-CRDs (CiLgals-a and -b) have been retained too divergent from vertebrate galectins. Received in revised form In the present paper, to contribute in disclosing Bi-CRD galectin evolution a novel attempt was carried 14 October 2011 out on CiLgals-a and -b CRDs phylogenetic analysis, and their involvement in ascidian inflammatory Accepted 23 October 2011 responses was shown.
    [Show full text]
  • Alkaloids from Marine Ascidians
    Molecules 2011, 16, 8694-8732; doi:10.3390/molecules16108694 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Alkaloids from Marine Ascidians Marialuisa Menna *, Ernesto Fattorusso and Concetta Imperatore The NeaNat Group, Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131, Napoli, Italy * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-678-518; Fax: +39-081-678-552. Received: 16 September 2011; in revised form: 11 October 2011 / Accepted: 14 October 2011 / Published: 19 October 2011 Abstract: About 300 alkaloid structures isolated from marine ascidians are discussed in term of their occurrence, structural type and reported pharmacological activity. Some major groups (e.g., the lamellarins and the ecteinascidins) are discussed in detail, highlighting their potential as therapeutic agents for the treatment of cancer or viral infections. Keywords: natural products; alkaloids; ascidians; ecteinascidis; lamellarins 1. Introduction Ascidians belong to the phylum Chordata, which encompasses all vertebrate animals, including mammals and, therefore, they represent the most highly evolved group of animals commonly investigated by marine natural products chemists. Together with the other classes (Thaliacea, Appendicularia, and Sorberacea) included in the subphylum Urochordata (=Tunicata), members of the class Ascidiacea are commonly referred to as tunicates, because their body is covered by a saclike case or tunic, or as sea squirts, because many species expel streams of water through a siphon when disturbed. There are roughly 3,000 living species of tunicates, of which ascidians are the most abundant and, thus, the mostly chemically investigated.
    [Show full text]
  • Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria
    marine drugs Review Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria James Lever 1 , Robert Brkljaˇca 1,2 , Gerald Kraft 3,4 and Sylvia Urban 1,* 1 School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476V Melbourne, VIC 3001, Australia; [email protected] (J.L.); [email protected] (R.B.) 2 Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia 3 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia; [email protected] 4 Tasmanian Herbarium, College Road, Sandy Bay, Tasmania 7015, Australia * Correspondence: [email protected] Received: 29 January 2020; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented. Keywords: marine macroalgae; bioactivity; secondary metabolites 1.
    [Show full text]
  • Brown Algae As a Source of Bioactive Compounds for Pancreatic Cancer
    Brown algae as a source of bioactive compounds for pancreatic cancer treatment Thanh Trung Dang B.Eng (Nha Trang University, Khanh Hoa, Vietnam) MSc (Nha Trang University, Khanh Hoa, Vietnam) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Food Science School of Environmental and Life Sciences, Faculty of Science University of Newcastle Australia May 2018 STATEMENT OF ORIGINALITY I hereby certify that to the best of my knowledge and belief this thesis is my own work and contains no material previously published or written by another person except where due references and acknowledgements are made. It contains no material which has been previously submitted by me for the award of any other degree or diploma in any university or other tertiary institution. Thanh Trung Dang Date: 6/5/2018 i DECLARATION OF AUTHORSHIP I hereby certify that this thesis is in the form of a series of 8 papers. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers. Thanh Trung Dang Date: 6/5/2018 ii ACKNOWLEDGEMENTS Firstly, I would like to give a great appreciation to my supervisors: Principal supervisor: A/Prof. Christopher J. Scarlett; Co-supervisors: A/Prof. Michael C. Bowyer and Dr. Ian A. Van Altena for their supervision and support during my PhD course. The suggestions and encouragement from the supervisor panel played an important role in my research achievements. I acknowledge the financial support from University of Newcastle; the Vietnamese Government through the Ministry of Education and Training; the Ministry of Agriculture and Rural Development for awarding a VIED-TUIT scholarship, which enabled me to study for a PhD at the University of Newcastle, with full cover for academic expenses, as well as living and travellingallowances.
    [Show full text]
  • Marine Natural Products from Tunicates and Their Associated Microbes
    marine drugs Review Marine Natural Products from Tunicates and Their Associated Microbes Chatragadda Ramesh 1,2,*, Bhushan Rao Tulasi 3, Mohanraju Raju 2, Narsinh Thakur 4 and Laurent Dufossé 5,* 1 Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India 2 Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India; [email protected] 3 Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India; [email protected] 4 Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India; [email protected] 5 Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France * Correspondence: [email protected] (C.R.); [email protected] (L.D.); Tel.: +91-(0)-832-2450636 (C.R.); +33-668-731-906 (L.D.) Abstract: Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisi- tion of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily Citation: Ramesh, C.; Tulasi, B.R.; originated from their bacterial symbionts, which are involved in their chemical defense function, indi- Raju, M.; Thakur, N.; Dufossé, L. cating the ecological role of symbiotic microbial association with tunicates. This review has garnered Marine Natural Products from comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts.
    [Show full text]