Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development

Total Page:16

File Type:pdf, Size:1020Kb

Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development Nat. Prod. Bioprospect. DOI 10.1007/s13659-016-0115-5 REVIEW Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development Satheesh Kumar Palanisamy . N. M. Rajendran . Angela Marino Received: 19 November 2016 / Accepted: 14 December 2016 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract This present study reviewed the chemical diversity of marine ascidians and their pharmacological applications, challenges and recent developments in marine drug discovery reported during 1994–2014, highlighting the structural activity of compounds produced by these specimens. Till date only 5% of living ascidian species were studied from\3000 species, this study represented from family didemnidae (32%), polyclinidae (22%), styelidae and polycitoridae (11–12%) exhibiting the highest number of promising MNPs. Close to 580 compound structures are here discussed in terms of their occurrence, structural type and reported biological activity. Anti-cancer drugs are the main area of interest in the screening of MNPs from ascidians (64%), followed by anti-malarial (6%) and remaining others. FDA approved ascidian compounds mechanism of action along with other compounds status of clinical trials (phase 1 to phase 3) are discussed here in. This review highlights recent developments in the area of natural products chemistry and biotechnological approaches are emphasized. Keywords Cancer Á Cytotoxicity Á Diversity Á Metabolites Á Pharmacology 1 Introduction from marine invertebrates, especially sponges, ascidians, bryozoans and molluscs in which some of them are The study of marine natural products (MNPs) is becoming approved by FDA and currently utilized in clinical trials ever more sophisticated and an increasingly collaborative [1]. effort between marine biologist, chemist and pharmacolo- Ascidians or sea squirts (Phylum: Chordata, Class: gist, which involves the discovery of new natural products Ascidiacea) are also known as tunicates due to their to enter preclinical studies and clinical tests. Since the external covering, found tied to rocks and high-current 1990s, several MNPs and their applications towards marine fields. There are approximately 3000 living species of biotechnological and therapeutical potential were reported. ascidians were reported [2]. The production of chemical Large numbers of bioactive compounds were dragged up compounds is principally important for soft bodied ascid- ian species, which use secondary metabolites to deter predatory fishes, to compete for space, to control settlement S. K. Palanisamy (&) Á A. Marino and growth of microbial fauna and other fouling organisms. Department of Chemical, Biological, Pharmaceutical and Ascidians represent the most highly evolved group of Environmental Science, University of Messina, 98166 Messina, Italy marine organisms commonly investigated for identification e-mail: [email protected] of MNPs and provide rich sources of bioactive secondary metabolite with promising potential biomedical applica- N. M. Rajendran tions [3–5]. So far a few novel compounds have been Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, purified and characterized with a view of developing Chinese Academy of Sciences, Beijing 100190, China marine drug discovery. However, the most well known 123 S. K. Palanisamy et al. didemnins has been isolated from whole body homogenates of promising MNPs (Fig. 1). The distribution of chemistry of Caribbean ascidians belonging to the genus of Tridide- class of ascidian MNPs are given in (Fig. 2). Close to 580 nium sp. [6]. More than 80% of new ascidians compounds compound structures are here discussed in terms of their contain nitrogen, and nearly 70% of nitrogenous metabo- occurrence, structural type and reported biological activity. lites are alkaloids [7–9]. These compounds often exhibit a Anti-cancer drugs are the main area of interest in the range of biological activities such as cytotoxicity, antibi- screening of MNPs from ascidians (64%), followed by otic, immunosuppressive activities, inhibition of topoiso- anti-malarial (6%) and remaining others (Fig. 3). The merases and cyclin kinases [10]. On the other hand, non- National Cancer Institute-United states estimate that nitrogenous metabolites are fewer available in ascidians approximately 1% of MNPs showing anti-tumor cytotoxi- and also less significant. Hence, identification of the bio- city properties as against only 0.01% amongst their ter- genetic origin of ascidian natural products is often chal- restrial counterparts. Accordingly, finding MNPs research lenging [11]. The first bioactive metabolite geranyl must being continued to progress to improve existing hydroquinone was isolated from the ascidian Aplidium sp. therapies and to develop novel cures. [12]; only 230 metabolites were isolated from ascidians This review focuses on the chemical diversity of marine during 1974–1992 [3]. ascidians. The recent research on MNPs has been surveyed at At that time, a wide-ranging attention has focused on relatively frequent intervals [4, 5, 9, 13]. Davidson [3] was ascidians because of their biologically active metabolites published the first review on secondary metabolites derived and the chemical diversity of ascidians has become one of ascidians from 1988 to 1993. Additionally, in contrast to the the most significant sources of MNPs. It has been review of ascidian metabolites, the present study provides demonstrated that marine ecosystems are essential pro- complete list of the compounds with biological activities; the ducers of unusual chemical compounds and potent bioac- primary focus of this article is addressed to structures and tivities [4, 5, 9, 13]. Nonetheless, significant research in the properties of promising ascidian metabolites and their bio- area of marine pharmacology is a very recent origin, and logical activities. In this latter regard, anti-bacterial, anti- also few products (or their analogues) have already reached fungi, anti-diabetic, anti-viral, anti-HIV, anti-inflammatory, the market as therapeutic drugs. Indeed, ascidian-derived anti-proliferative, anti-malarial, anti-oxidant, anti-tumor, natural products have yielded promising drug leads, among anti-cancer compounds, described in marine ascidians dur- which ecteinascidin 743 (YondelisÒ) and dehydrodidemnin ing 1994–2014 were reported here in. In this study, we did B (AplidinÒ) are in clinical usage for the treatment of not aim to review proceedings of conference, scientific specific cancers [14, 15]. reports and patent literature. Wherever possible, we made The research attempt on MNPs has not targeted all attempt to focus on their potential biogenesis, chemical marine invertebrates equally. Ascidians are one of the most structure–activity relationships. Nevertheless, the present intensely studied organisms during the 21st century so that study has been mainly focused on their recent developments 572 secondary metabolites were reported from 1994 to in the preclinical studies, biotechnology advances and future 2014. This present study represented MNPs studied from directions of ascidian secondary metabolites. Meanwhile, family didemnidae (32%), polyclinidae (22%), styelidae the possible cytotoxicity and growth inhibition of MNPs is an and polycitoridae (11–12%) exhibiting the highest number identifying and short-listing of a potential drug molecule. Distribution of Chemistry classes of MNPs MNPs reported from the Family Ascidian Alkyl sulfates Pseudodistomidae 3% Saturosporine Steroids 4% Spiroketals Polyketide 5% Perphoridae 2% Clavelinidae Esters 1% 2% 2% 5% 1% Polysachride Pyrocridine Molugulidae Alkene 2% Alkaloids 1% Polyclinidae Ascididae 3% 18% Alkane 1% Peptides 22% 3% Holozoidae 4% Didemnidae 1% β Carboline Indole/ Alkaloids 32% Polycitoridae Alkaloids 48% Cionidae 11% 8% 4% Pyuridae Styelidae 5% 12% Fig. 1 Marine nature products studied from the family ascidian on Fig. 2 Distribution of chemistry class of MNPs with high biomedical 1994–2014 potential application studied from 1994 to 2014 123 Natural Products Diversity Distribution of Drug Class L-histidine (9) and N-(6-bromo-1H-indolyl-3-carbonyl)-L- Anti fungal enduracididine (10) compounds. Furthermore, the other 3% Anti viral 1% metabolites leptoclinidamines A–C (11–13) were reported Anti bacterial 2 14% Anti-HIV from the ascidian L. durus [18] and C -a-D-manno- Anti malarial 3% sylpyranosyl-L-tryptophan (14) was isolated from L. dubius 6% Anti tumor/Cancer Anti diabetic [19]. 64% 1% A new hexacyclic pyridoacridine alkaloid, nordehydro- Anti oxidant cyclodercitin (15) was reported from the ascidians, Aplid- 2% Anti ium sp. and A. cratiferum collected in Great Barrier Reef, inflammatory Australia [20]. Nordehydrocyclodercitin was structurally Central Nervous 3% System related to stellettamine [21] and cyclodercitin [22], which 3% is earlier reported from the sponge metabolites. Compound 16 Fig. 3 Distribution of drug classes of MNPs with high biomedical cycloshermilamine D ( ) was reported from the ascidian potential application studied from 1994 to 2014 Cystodytes violatinctus, it is an analogue of stellettamine with a 6-membered non-aromatic heterocycle in place of This review is restricted to those compounds exhibiting the thiazole ring [23]. Two new pyridoacridine alkaloids promising in vitro activity which was reported during the kuanoniamines E and F (17, 18), a new ring-opened pyri- above period. We listed out 327 anti-tumor/cancer,
Recommended publications
  • Bacteria Associated with Tunicate, Polycarpa Aurata, from Lease Sea, Maluku, Indonesia Exhibiting Anti-Multidrug Resistant Bacteria
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 4, April 2019 E-ISSN: 2085-4722 Pages: 956-964 DOI: 10.13057/biodiv/d200404 Bacteria associated with tunicate, Polycarpa aurata, from Lease Sea, Maluku, Indonesia exhibiting anti-multidrug resistant bacteria DIAH AYUNINGRUM1,5, RHESI KRISTIANA1, AYUNDA AINUN NISA2, SEPTHY KUSUMA RADJASA2, SAKTI IMAM MUCHLISSIN2,4, OCKY KARNA RADJASA2,3, AGUS SABDONO2, AGUS TRIANTO2, 1Department of Coastal Resource Management, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. Soedharto SH, Semarang 50275, Central Java, Indonesia 2Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. Soedarto, SH, Tembalang, Semarang 50275, Central Java, Indonesia. Tel.: +62-24-7474698, Fax.: +62-24-7474698, email: [email protected]. 3Directorate of Research and Community Services, Ministry of Research, Technology and Higher Education. D Building, Jl. Jenderal Sudirman Pintu Satu, Senayan, Jakarta Pusat 10279, Indonesia 4Tropical Marine Biotechnology Laboratory, Universitas Diponegoro Jl. Lingkar Utara Undip, Semarang 50275, Central Java, Indonesia 1Department of Aquatic Resource Management, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. Soedharto SH, Semarang 50275, Central Java, Indonesia Manuscript received: 30 January 2019. Revision accepted: 10 March 2019. Abstract. Ayuningrum D, Kristiana R, Nisa AA, Radjasa SK, Muchlissin SI, Radjasa OK, Sabdono A, Trianto A. 2019. Bacteria associated with tunicate, Polycarpa aurata, from Lease Sea, Maluku, Indonesia exhibiting anti-multidrug resistant bacteria. Biodiversitas 20: 956-964. Tunicate is a rich secondary metabolites producer with various biological activities whether as an original producer or produced by the associated microorganisms. In this study, a total of 11 tunicate specimens were identified as Polycarpa aurata with four color variations based on morphological characteristic and COI gene identification and BLAST analysis.
    [Show full text]
  • The Ascidian-Derived Metabolites with Antimicrobial Properties
    antibiotics Review The Ascidian-Derived Metabolites with Antimicrobial Properties Marcello Casertano , Marialuisa Menna * and Concetta Imperatore Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; [email protected] (M.C.); [email protected] (C.I.) * Correspondence: [email protected]; Tel.: +39-081678518 Received: 30 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Abstract: Among the sub-phylum of Tunicate, ascidians represent the most abundant class of marine invertebrates, with 3000 species by heterogeneous habitat, that is, from shallow water to deep sea, already reported. The chemistry of these sessile filter-feeding organisms is an attractive reservoir of varied and peculiar bioactive compounds. Most secondary metabolites isolated from ascidians stand out for their potential as putative therapeutic agents in the treatment of several illnesses like microbial infections. In this review, we present and discuss the antibacterial activity shown by the main groups of ascidian-derived products, such as sulfur-containing compounds, meroterpenes, alkaloids, peptides, furanones, and their derivatives. Moreover, the direct evidence of a symbiotic association between marine ascidians and microorganisms shed light on the real producers of many extremely potent marine natural compounds. Hence, we also report the antibacterial potential, joined to antifungal and antiviral activity, of metabolites isolated from ascidian-associate microorganisms by culture-dependent methods. Keywords: ascidian; antibacterial; antimicrobial; antiviral; marine natural products; ascidian- associated microorganisms 1. Introduction Antimicrobial agents (including antibiotic, antiviral, antifungal, and antiprotozoal drugs) certainly are critical tools for the treatment of infectious diseases, and many feats of modern medicine and surgery also are determined by the availability of effective antibiotics.
    [Show full text]
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • From the National Park La Restinga, Isla Margarita, Venezuela
    Biota Neotrop., vol. 10, no. 1 Inventory of ascidians (Tunicata, Ascidiacea) from the National Park La Restinga, Isla Margarita, Venezuela Rosana Moreira Rocha1,11, Edlin Guerra-Castro2, Carlos Lira3, Sheila Marquez Pauls4, Ivan Hernández5, Adriana Pérez3, Adriana Sardi6, Jeannette Pérez6, César Herrera6, Ana Karinna Carbonini7, Virginia Caraballo3, Dioceline Salazar8, Maria Cristina Diaz9 & Juan José Cruz-Motta6,10 1 Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 82531-980 Curitiba, PR, Brasil 2Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, CP 21827, Caracas 1020-A, Venezuela, e-mail: [email protected] 3Laboratorio de Zoología, Universidad de Oriente, Núcleo de Nueva Esparta, Escuela de Ciencias Aplicadas del Mar, CP 658, Porlamar 6301, Isla Margarita, Venezuela, e-mail: [email protected], [email protected], [email protected] 4Instituto de Zoologia Tropical, Escuela de Biologia, Universidad Central de Venezuela, CP 47058, Caracas 1041, Venezuela, e-mail: [email protected] 5Departamento de Ciencias, Universidad de Oriente, Núcleo de Nueva Esparta, Guatamara, Isla de Margarita, Venezuela, e-mail: [email protected] 6Laboratorio de Ecología Experimental, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected], [email protected], [email protected] 7Laboratorio de Biología Marina, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 8Departamento de Biología, Escuela de Ciencias, Universidad de Oriente, Núcleo de Sucre, CP 245, CEP 6101,Cumaná, Venezuela, e-mail: [email protected] 9Museo Marino de Margarita, Bulevar El Paseo, Boca del Río, Margarita, Edo. Nueva Esparta, Venezuela, e-mail: [email protected] 10Departamento de Estudios Ambientales, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 11Corresponding author: Rosana Moreira Rocha, e-mail: [email protected] ROCHA, R.M., GUERRA-CASTRO, E., LIRA, C., PAUL, S.M., HERNÁNDEZ.
    [Show full text]
  • Ascidians from the Tropical Western Pacific
    Ascidians from the tropical western Pacific Françoise MONNIOT Claude MONNIOT CNRS UPESA 8044, Laboratoire de Biologie des Invertébrés marins et Malacologie, Muséum national d’Histoire naturelle, 55 rue Buffon, F-75005 Paris (France) [email protected] Monniot F. & Monniot C. 2001. — Ascidians from the tropical western Pacific. Zoosystema 23 (2) : 201-383. ABSTRACT A large collection of 187 identified ascidian species is added to the records published in 1996 from the same tropical western Pacific islands. Most of the specimens were collected by the US Coral Reef Research Foundation (CRRF). They come from depths accessible by SCUBA diving. Most of the collection’s species are described and figured, their color in life is illustrated by 112 underwater photographs; among them 48 are new species represent- ing a fourth of the material collected. This demonstrates how incomplete the knowledge of the ascidian diversity in this part of the world remains. Moreover, very small or inconspicuous species were seldom collected, as com- pared to the highly coloured and large forms. Many other immature speci- mens were also collected but their precise identification was not possible. Almost all littoral families are represented with the exception of the Molgulidae which are more characteristic of soft sediments, a biotope which was not investigated. Among the very diversified genera, the colonial forms largely dominate, including not only all the Aplousobranchia genera but also some Phlebobranchia and Stolidobranchia. Very often only one specimen was KEY WORDS Tunicata, available, so a detailed biogeographical distribution cannot be given, and no western Pacific Ocean. island endemism can be defined. ZOOSYSTEMA • 2001 • 23 (2) © Publications Scientifiques du Muséum national d’Histoire naturelle, Paris.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Ascidians from Bocas Del Toro, Panama. I. Biodiversity
    Caribbean Journal of Science, Vol. 41, No. 3, 600-612, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Ascidians from Bocas del Toro, Panama. I. Biodiversity. ROSANA M. ROCHA*, SUZANA B. FARIA AND TATIANE R. MORENO Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: *[email protected] ABSTRACT.—An intensive survey of ascidian species was carried out in August 2003, in different environ- ments of the Bocas del Toro region, northwestern Panama. Most samples are from shallow waters (< 3 m) in coral reefs, among mangrove roots and in Thallasia testudines banks. Of the 58 species found, 14 are new species. Of the 26 sampling sites, the most diverse were Crawl Key Canal (9°15.050’N, 82°07.631’W), Solarte ,Island (9°17.929’N, 82°11.672’W), Wild Cane Key (9° 20؅40؅N, 82°10؅20؅W), Isla Pastores (9°14.332’N W), the bay behind the STRI Lab (9°21؅4.3؅ N, 82°15’25.6؅ W), and the entrance of Bocatorito Bay’82°19.968 (9°13.375’N, 82°12.555’W). Ascidians have been studied and reported from 31 locations within the Caribbean, and 139 species have been reported. This count will increase with the description of the 14 new species, and Bocas del Toro may be considered a region of high ascidian diversity since > 40% of the total known Caribbean ascidian fauna occurs there. KEYWORDS.—Ascidian taxonomy, Caribbean, checklist INTRODUCTION found and discuss the relationship of this fauna with that of other Caribbean loca- tions.
    [Show full text]
  • New Cytotoxic Natural Products from Marine Invertebrates
    New cytotoxic natural products from marine invertebrates (Neue zytotoxische Naturstoffe aus marinen Invertebraten) Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Cong-Dat Pham Aus Tönisvorst, Bundesrepublik Deutschland Düsseldorf, 03.02.2014 Aus dem Institut für Pharmazeutische Biologie und Biotechnologie der Heinrich-Heine Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Unterstützung des BMBF Referent: Prof. Dr. Peter Proksch Koreferent: Prof. Dr. Matthias U. Kassack Tag der mündlichen Prüfung: _______________ „Ich habe keine besondere Begabung, sondern bin nur leidenschaftlich neugierig.“ Albert Einstein CONTENTS 1. ABSTRACT 6 2. ZUSAMMENFASSUNG 9 3. INTRODUCTION 12 3.1 Significance of the study 12 3.2 Marine invertebrates 12 3.2.1 Sponges 13 3.2.2 Ascidians 15 3.2.3 Microbial communities in marine invertebrates 17 3.3 Marine natural products and their biological activities 18 3.3.1 Angiogenesis 20 3.3.2 Apoptosis 20 3.3.3 Mitosis 21 3.3.4 Topoisomerases and DNA polymerases 23 3.4 Current marine derived drugs in pre-clinical and clinical trials 23 3.5 Aim of the study 25 4. PUBLICATION 1: AAPTOS SUBERITOIDES 26 5. PUBLICATION 2: POLYCARPA AURATA 55 6. PUBLICATION 3: CALLYSPONGIA SP. 77 7. DISCUSSION 118 7.1. Isolated natural products from Aaptos suberitoides 118 7.1.1 Benzo[de][1,6]-naphthyridine alkaloids 118 7.2. Isolated natural products from Polycarpa aurata 121 7.2.1 Sulfur containing guanidine alkaloids 121 7.2.2 -carboline alkaloids 124 7.3.
    [Show full text]
  • 1 Phylogeny of the Families Pyuridae and Styelidae (Stolidobranchiata
    * Manuscript 1 Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) 2 inferred from mitochondrial and nuclear DNA sequences 3 4 Pérez-Portela Ra, b, Bishop JDDb, Davis ARc, Turon Xd 5 6 a Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 7 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 8 9 b Marine Biological Association of United Kingdom, The Laboratory Citadel Hill, PL1 10 2PB, Plymouth, UK, and School of Biological Sciences, University of Plymouth PL4 11 8AA, Plymouth, UK 12 13 c School of Biological Sciences, University of Wollongong, Wollongong NSW 2522 14 Australia 15 16 d Centre d’Estudis Avançats de Blanes (CSIC), Accés a la Cala St. Francesc 14, Blanes, 17 Girona, E-17300, Spain 18 19 Email addresses: 20 Bishop JDD: [email protected] 21 Davis AR: [email protected] 22 Turon X: [email protected] 23 24 Corresponding author: 25 Rocío Pérez-Portela 26 Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 27 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 28 Phone: + 351 21 8811226 29 Fax: + 351 21 8860954 30 [email protected] 31 1 32 Abstract 33 34 The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. 35 Early molecular data was consistent with monophyly of the Stolidobranchiata and also 36 the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae 37 were inconclusive however. In order to clarify these points we used mitochondrial and 38 nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees 39 recovered the Pyuridae as a monophyletic clade, and their genera appeared as 40 monophyletic with the exception of Pyura.
    [Show full text]
  • Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts
    marine drugs Review Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts Xiaoju Dou 1,4 and Bo Dong 1,2,3,* 1 Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 4 College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China * Correspondence: [email protected]; Tel.: +86-0532-82032732 Received: 29 October 2019; Accepted: 25 November 2019; Published: 28 November 2019 Abstract: Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • INDEX of TAXA
    INDEX of TAXA INDEX of TAXA abjornseni, Fritillaria 226 altarium, Amaroucium 95 abjornseni, Polyandrocarpa 180 altarium, Aplidium 95 abjornseni, Polycarpa 180 Althoffia 232 abradata, Pyura 156, 164 Althoffia tumida 232 abranchiata, Styeloides 193 aluta, Stolonica 182 Abyssascidia vasculosa 127 Amaroucium 95 abyssorum, Megalocercus 232 Amaroucium aequalisiphonalis 116 acanthifera, Microcosmus 159 Amaroucium altarium 95 aciculus, Leptoclinides 50 Amaroucium anomalum 113 aclara, Ascidia 129 Amaroucium argus 101 acroporum, Aplidium 95 Amaroucium crateriferum 97 acuatum, Pseudodistoma 110 Amaroucium distomoides 79 aculeata, Ascidia 131 Amaroucium proliferum 95 aculeata, Cnemidocarpa 185 Amaroucium protectans 92 Adagnesia 124 Amaroucium ritteri 100 Adagnesia charcoti 124 Amaroucium rotundatum 120 Adagnesia opaca 124 amboinensis, Ritteriella 215 Adagnesia venusta 124 amboinensis, Salpa 215 aenigmatica, Ascidia 143 amiculum, Trididemnum 67 aequale, Ecteinascidia 139 amorphatum, Aplidium 96 aequalisiphonalis, Amaroucium 116 Amphicarpa 182 affinis, Ascidia 131 Amphicarpa elongata 183 affinis, Cyclosalpa 211 Amphicarpa meridiana 182 affinis, Salpa 211 Amphicarpa nodula 183 africana, Perophora 141 amphora, Cnemidocarpa 185 africana, Salpa 216 amplexa, Clavelina 24 agglutinans, Microcosmus 162 amplum, Eudistoma 87 aggregata, Cynthia 182 amplus, Polycitor 87 agitata, Metandrocarpa 179 ampulloides, Molgula 151 agnata, Stolonica 182 amygala, Fritillaria 226 Agnesia 124 Anadistoma 110 Agnesia capensis 124 Anadistoma attenuatum 110 Agnesia glaciata 122,
    [Show full text]