Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins foods Review Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins Bertoka Fajar Surya Perwira Negara 1,2, Jae Hak Sohn 1,3, Jin-Soo Kim 4,* and Jae-Suk Choi 1,3,* 1 Seafood Research Center, IACF, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; [email protected] (B.F.S.P.N.); [email protected] (J.H.S.) 2 Department of Marine Science, University of Bengkulu, Jl. W.R Soepratman, Bengkulu 38371, Indonesia 3 Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea 4 Department of Seafood and Aquaculture Science, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do 53064, Korea * Correspondence: [email protected] (J.-S.K.); [email protected] (J.-S.C.); Tel.: +82-557-729-146 (J.-S.K.); +82-512-487-789 (J.-S.C.) Abstract: Phlorotannins are polyphenolic compounds produced via polymerization of phloroglucinol, and these compounds have varying molecular weights (up to 650 kDa). Brown seaweeds are rich in phlorotannins compounds possessing various biological activities, including algicidal, antioxidant, anti-inflammatory, antidiabetic, and anticancer activities. Many review papers on the chemical characterization and quantification of phlorotannins and their functionality have been published to date. However, although studies on the safety and toxicity of these phlorotannins have been conducted, there have been no articles reviewing this topic. In this review, the safety and toxicity of phlorotannins in different organisms are discussed. Online databases (Science Direct, PubMed, MEDLINE, and Web of Science) were searched, yielding 106 results. Following removal of duplicates Citation: Negara, B.F.S.P.; Sohn, J.H.; and application of the exclusion criteria, 34 articles were reviewed. Phlorotannins from brown Kim, J.-S.; Choi, J.-S. Effects of seaweeds showed low toxicity in cell lines, invertebrates, microalgae, seaweeds, plants, animals (fish, Phlorotannins on Organisms: Focus mice, rats, and dogs), and humans. However, the safety and toxicity of phlorotannins in aquaculture on the Safety, Toxicity, and fish, livestock, and companion animals are limited. Further studies in these organisms are necessary Availability of Phlorotannins. Foods 2021, 10, 452. https://doi.org/ to carry out a systematic analysis of the safety and toxicity of phlorotannins and to further identify 10.3390/foods10020452 the potential of phlorotannins as functional foods, feeds, and pharmaceuticals. Academic Editors: Montaña Cámara Keywords: phlorotannins; toxicity; plant; invertebrates; animal; human and Patricia Morales Received: 19 January 2021 Accepted: 15 February 2021 Published: 19 February 2021 1. Introduction Phlorotannins are polyphenols found in brown seaweeds, consisting of phlorogluci- Publisher’s Note: MDPI stays neutral nol (Figure1) (1,3,5-trihydroxybenzene) units that are bonded to each other by different with regard to jurisdictional claims in pathways. They are found in the range of 126–650 kDa, and their concentration in dried published maps and institutional affil- brown seaweeds varies from 0.5% to 2.5% [1,2]. The concentration of phlorotannins in dried iations. brown seaweeds can differ according to the biological factors, such as age, size, and type of tissue, as well as environmental conditions, such as light intensity, water temperature, season, nutrient levels, and herbivory intensity. Phlorotannins are classified into four groups based on linkage, such as those with an Copyright: © 2021 by the authors. ether linkage (fuhalols and phlorethols), phenyl linkage (fucols), ether and phenyl linkages Licensee MDPI, Basel, Switzerland. (fucophloroethols), and dibenzodioxin linkage (eckols). Numerous phlorotannins have This article is an open access article been discovered from brown seaweeds, including eckol [3–5], phlorofucofuroeckol A [6–9], distributed under the terms and dieckol [2,7–20], 6,60-bieckol [21,22], 8,80-bieckol [23], 7-phloroeckol [24], fucodiphloroethol conditions of the Creative Commons G, phloroglucinol [14], and bifuhalol [25]. Among seaweeds, brown seaweeds including Attribution (CC BY) license (https:// Ecklonia cava, have been reported to produce higher concentrations of phlorotannins than creativecommons.org/licenses/by/ other marine phenolic compounds [12]. In brown seaweeds, phlorotannins act as UV 4.0/). Foods 2021, 10, 452. https://doi.org/10.3390/foods10020452 https://www.mdpi.com/journal/foods Foods 2021, 10, 452 2 of 19 Foods 2021, 10, x FOR PEER REVIEW 2 of 18 protectors and antioxidants, prevent stress and herbivory, and play an important role in the structure of the cell wall [14–16]. FigureFigure 1. The 1. basic The structurebasic structure of phlorotannins of phlorotannins are composed are composed of phloroglucinol of phloroglucinol units. units. PhlorotanninsEisenia bicyclis, are E. classified arborea, E. into cava, four E. kurome,groups E.based stolonifera, on linkage, Pelvetia such siliquosa, as thoseand withIshige an etherokamurae, linkageas (fuhalols well as from and thephlorethols), genera Cystophora phenyl linkageand Fucus (fucols),, contain ether phlorotannins and phenyl link- that agespossess (fucophloroethols), antidiabetic, antioxidant, and dibenzodioxin antitumor, linkage anti-inflammatory, (eckols). Numerous and anticancer phlorotannins proper- haveties [been26–28 discovered]. Furthermore, from brownE. cava seaweeds,contains eckol,including triphlorethol eckol [3–5], A, phlorofucofuroeckol fucodiphlorethol G, Adieckol, [6–9], dieckol dioxinodehydroeckol, [2,7–20], 6,6′-bieckol phloroglucinol, [21,22], 8,8′-bieckol and phlorofucofuroeckol [23], 7-phloroeckol A [24], [23 ],fucodi- and it phloroetholexerts antihypertensive G, phloroglucinol [29] and [14], skin-whitening and bifuhalol [25]. [12] effects.AmongE. seaweeds, kurome and brownE. bicyclis seaweedswere includingalso reported Ecklonia to containcava, have dieckol, been phlorofucofuroeckolreported to produce higher A, and concentrations eckol [30]. An of extract phloro- of tanninsE. arborea than, which other contains marine phenolic phlorofucofuroeckol-B, compounds [12]. eckol, In brown and phlorofucofuroeckol seaweeds, phlorotannins A [31], I. okamurae acthas as also UV protectors shown antiallergic and antioxidants, effect. Moreover, prevent stress the and brown herbivory, seaweed and play an importantcontains phloroglucinol and 6,60-bieckol and diphlorethohydroxycarmalol (DPHC) [32]. role in the structure of the cell wall [14–16]. Various biological activities have been reported for phlorotannins, including anti- Eisenia bicyclis, E. arborea, E. cava, E. kurome, E. stolonifera, Pelvetia siliquosa, and Ishige cancer [23], antioxidant [32], anti-inflammatory [33], antidiabetic, and neuroprotective [18] okamurae, as well as from the genera Cystophora and Fucus, contain phlorotannins that pos- activities. The biological activities exhibited by these compounds suggest that they are po- sess antidiabetic, antioxidant, antitumor, anti-inflammatory, and anticancer properties tentially useful as new ingredients in the food [34,35], feed, and pharmaceutical industries. [26–28]. Furthermore, E. cava contains eckol, triphlorethol A, fucodiphlorethol G, dieckol, Nonetheless, it is important to study the safety and toxicity of these compounds before dioxinodehydroeckol, phloroglucinol, and phlorofucofuroeckol A [23], and it exerts anti- the development of new products. In this regard, a review of the safety and toxicity of hypertensive [29] and skin-whitening [12] effects. E. kurome and E. bicyclis were also re- phlorotannins is urgently needed in view of their functionality and potential for industrial ported to contain dieckol, phlorofucofuroeckol A, and eckol [30]. An extract of E. arborea, applications. Many articles reviewing the characterization and quantitative analysis of which contains phlorofucofuroeckol-B, eckol, and phlorofucofuroeckol A [31], has also phlorotannin compounds [36–38], as well as the functionality of phlorotannins [2,27,39–42] shownhavebeen antiallergic published effect. to date.Moreover, However, the brown although seaweed studies I. okamurae on the safety contains and phloroglu- toxicity of cinolphlorotannins and 6,6′-bieckol have beenand diphlorethohydroxycarmalol conducted, there are no review (DPHC) papers [32]. on this topic. Therefore, thisVarious article reviews biological studies activities conducted have been to test reported the safety for andphlorotannins, toxicity of phlorotannins including anti- in cancervarious [23], organisms. antioxidant [32], anti-inflammatory [33], antidiabetic, and neuroprotective [18] activities. The biological activities exhibited by these compounds suggest that they are2. Materialspotentially and useful Methods as new ingredients in the food [34,35], feed, and pharmaceutical industries.Literature Nonetheless, search was it is conducted important systematically to study the safety based and onthe toxicity Systematic of these Reviews com- poundsand Meta-Analyses before the development (PRISMA) guidelines of new products. [43]. Online In this databases, regard, a review including of the Science safety Direct, and toxicityPubMed, of MEDLINE,phlorotannins and is Web urgently of Science needed databases in view were of their used. functionality The search strategy and potential focused foron industrial the terms applications. “phlorotannins” Many and
Recommended publications
  • Nutritional Value of Seaweeds and Their Potential Pharmacological Role of Polyphenolics Substances: a Review
    © 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162) NUTRITIONAL VALUE OF SEAWEEDS AND THEIR POTENTIAL PHARMACOLOGICAL ROLE OF POLYPHENOLICS SUBSTANCES: A REVIEW Arumugam Abirami, Selvaraj Uthra and Muthuvel Arumugam* Faculty of Marine Sciences, CAS in Marine Biology, Annamalai University, Parangipettai-608 502, Tamil Nadu, India. ABSTRACT : seaweed shows extensive species diversity with inevitable ecological importance on marine biodiversity. It creates a unique marine ecosystem that acts as a shelter or nursery ground for marine organisms. Moreover, seaweeds are considered as vital sea food due to their richness of various food ingredients such as polysaccharides, dietary fiber, amino acids, minerals and vitamins, etc. They are available in different colors due to the presence of distinct pigments such as chlorophyll, fucoxanthin and phycoerythrin. In traditional Indian medical system, the dried or processed seaweeds are consumed as promising natural medicine for the treatment of various ailments. Seaweed contains various polyphenolic substances such as phlorotannins, phloroglucinol, eckol, dieckol, fucodiphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol, which play a major role in human health. The preclinical studies proved that these compounds possess antimicrobial, antitumor, antioxidant activities and also reduce the risk of cardiovascular diseases. The present review deals with the nutritional value of seaweed and the importance of polyphenolic substances. Key words: Seaweeds, phytochemistry, functional foods, polyphenolics, health benefits. INTRODUCTION As there is an increasing demand for search of therapeutic drugs from natural products, there is now a superior concern in marine organisms, especially seaweeds. It serves as a primary producer in water ecosystem and has both ecological and economic value.
    [Show full text]
  • Dieckol, a Component of Ecklonia Cava, Suppresses the Production of MDC/CCL22 Via Down-Regulating STAT1 Pathway in Interferon-Γ Stimulated Hacat Human Keratinocytes
    Original Article Biomol Ther 23(3), 238-244 (2015) Dieckol, a Component of Ecklonia cava, Suppresses the Production of MDC/CCL22 via Down-Regulating STAT1 Pathway in Interferon-γ Stimulated HaCaT Human Keratinocytes Na-Jin Kang1,†, Dong-Hwan Koo1,†, Gyeoung-Jin Kang2, Sang-Chul Han2, Bang-Won Lee2, Young-Sang Koh1,2, Jin-Won Hyun1,2, Nam-Ho Lee3, Mi-Hee Ko4, Hee-Kyoung Kang1,2 and Eun-Sook Yoo1,2,* Departments of 1Biomedicine & Drug Development, 2Medicine, School of Medicine, 3Chemistry, College of Natural Science, Jeju National University, Jeju 690-756, 4Jeju Biodiversity Research Institute, JejuTechnopark, Jeju 699-943, Republic of Korea Abstract Macrophage-derived chemokine, C-C motif chemokine 22 (MDC/CCL22), is one of the inflammatory chemokines that controls the movement of monocytes, monocyte-derived dendritic cells, and natural killer cells. Serum and skin MDC/CCL22 levels are el- evated in atopic dermatitis, which suggests that the chemokines produced from keratinocytes are responsible for attracting inflam- matory lymphocytes to the skin. A major signaling pathway in the interferon-γ (IFN-γ)-stimulated inflammation response involves the signal transducers and activators of transcription 1 (STAT1). In the present study, we investigated the anti-inflammatory effect of dieckol and its possible action mechanisms in the category of skin inflammation including atopic dermatitis. Dieckol inhibited MDC/CCL22 production induced by IFN-γ (10 ng/mL) in a dose dependent manner. Dieckol (5 and 10 mM) suppressed the phos- phorylation and the nuclear translocation of STAT1. These results suggest that dieckol exhibits anti-inflammatory effect via the down-regulation of STAT1 activation.
    [Show full text]
  • Medicinal Values of Seaweeds
    Medicinal Values of Seaweeds Authors Abdul Kader Mohiuddin Assistant Professor, Department of Pharmacy, World University, Dhanmondi, Dhaka, Bangladesh Publication Month and Year: November 2019 Pages: 69 E-BOOK ISBN: 978-81-943354-3-6 Academic Publications C-11, 169, Sector-3, Rohini, Delhi Website: www.publishbookonline.com Email: [email protected] Phone: +91-9999744933 Page | 1 Page | 2 Medicinal Values of Seaweeds Abstract The global economic effect of the five driving chronic diseases- malignancy, diabetes, psychological instability, CVD, and respiratory disease- could reach $47 trillion throughout the following 20 years, as indicated by an examination by the World Economic Forum (WEF). As per the WHO, 80% of the total people principally those of developing countries depend on plant- inferred medicines for social insurance. The indicated efficacies of seaweed inferred phytochemicals are demonstrating incredible potential in obesity, T2DM, metabolic syndrome, CVD, IBD, sexual dysfunction and a few cancers. Hence, WHO, UN-FAO, UNICEF and governments have indicated a developing enthusiasm for these offbeat nourishments with wellbeing advancing impacts. Edible marine macro-algae (seaweed) are of intrigue in view of their incentive in nutrition and medicine. Seaweeds contain a few bioactive substances like polysaccharides, proteins, lipids, polyphenols, and pigments, all of which may have useful wellbeing properties. People devour seaweed as nourishment in different structures: crude as salad and vegetable, pickle with sauce or with vinegar, relish or improved jams and furthermore cooked for vegetable soup. By cultivating seaweed, coastal people are getting an alternative livelihood just as propelling their lives. In 2005, world seaweed generation totaled 14.7 million tons which has dramatically increased (30.4 million tons) in 2015.
    [Show full text]
  • Sunscreen, Antioxidant, and Bactericide Capacities of Phlorotannins from the Brown Macroalga Halidrys Siliquosa
    1 Journal Of Applied Phycology Achimer December 2016, Volume 28 Issue 6 Pages 3547-3559 http://dx.doi.org/10.1007/s10811-016-0853-0 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00366/47682/ © Springer Science+Business Media Dordrecht 2016 Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa Le Lann Klervi 1, *, Surget Gwladys 1, Couteau Celine 2, Coiffard Laurence 2, Cerantola Stephane 3, Gaillard Fanny 4, Larnicol Maud 5, Zubia Mayalen 6, Guerard Fabienne 1, Poupart Nathalie 1, Stiger-Pouvreau Valerie 1 1 UBO, European Inst Marine Studies IUEM, LEMAR UMR UBO CNRS Ifremer IRD 6539, Technopole Brest Iroise, F-29280 Plouzane, France. 2 Nantes Atlant Univ, Univ Nantes, Fac Pharm, LPiC,MMS,EA2160, 9 Rue Bias,BP 53508, F-44000 Nantes, France. 3 UBO, RMN RPE MS, 6 Ave,Victor Le Gorgeu CS93837, F-29238 Brest 3, France. 4 CNRS, Plateforme Spectrometrie Masse MetaboMER, FR2424, Stn Biol, Pl Georges Teissier,BP 74, F-29682 Roscoff, France. 5 Venelle Carros, Labs Sci & Mer, CS 70002, F-29480 Le Relecq Kerhuon, France. 6 Univ Polynesie Francaise, EIO UMR 244, LabEx CORAIL, BP 6570, Faaa 98702, Tahiti, Fr Polynesia. * Corresponding author : Klervi Le Lann, email address : [email protected] Abstract : The present study focused on a brown macroalga (Halidrys siliquosa), with a particular emphasis on polyphenols and their associated biological activities. Two fractions were obtained by liquid/liquid purification from a crude hydroethanolic extract: (i) an ethyl acetate fraction and (ii) an aqueous fraction. Total phenolic contents and antioxidant activities of extract and both fractions were assessed by in vitro tests (Folin–Ciocalteu test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power assay, superoxide anion scavenging assay, and β-carotene–linoleic acid system).
    [Show full text]
  • On Anti-Lipid Peroxidation in Vitro and in Vivo
    Research Article Algae 2015, 30(4): 313-323 http://dx.doi.org/10.4490/algae.2015.30.4.313 Open Access Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo Ji-Hyeok Lee1, Ju-Young Ko1, Jae-Young Oh1, Eun-A Kim1, Chul-Young Kim2 and You-Jin Jeon1,* 1Department of Marine Life Science, Jeju National University, Jeju 63243, Korea 2Natural Product Research Center, Hanyang University, Ansan 15588, Korea Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organ- ism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlo- rotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihy- drochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a signifi- cantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic pro- teins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation.
    [Show full text]
  • Polyphenols in Cancer Prevention: New Insights (Review)
    INTERNATIONAL JOURNAL OF FUNCTIONAL NUTRITION 1: 9, 2020 Polyphenols in cancer prevention: New insights (Review) GIUSI BRIGUGLIO1, CHIARA COSTA2, MANUELA POLLICINO1, FEDERICA GIAMBÒ1, STEFANIA CATANIA1 and CONCETTINA FENGA1 1Department of Biomedical and Dental Sciences and Morpho‑functional Imaging, Occupational Medicine Section, and 2Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy Received July 30, 2020; Accepted September 21, 2020 DOI:10.3892/ijfn.2020.9 Abstract. A huge volume of literature data suggests that a diet Contents rich in fruits and vegetables, mostly due to the contribution of natural polyphenols, could reduce the incidence of specific 1. Introduction cancers. Resveratrol, epigallocatechin gallate and curcumin 2. Literature search are among the most extensively studied polyphenols: The 3. Classification of polyphenols majority of the effects attributed to these compounds are 4. Prostate cancer linked to their antioxidant and anti‑inflammatory properties. 5. Colon cancer The multiple mechanisms involved include the modulation 6. Breast cancer of molecular events and signaling pathways associated with 7. Lung cancer cell survival, proliferation, differentiation, migration, angio‑ 8. Bladder cancer genesis, hormonal activities, detoxification enzymes and 9. Skin cancer immune responses. Notwithstanding their promising role in 10. Pancreatic cancer cancer prevention and treatment, polyphenols often have a 11. Leukemia poor bioavailability when administered as pure active prin‑
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • (Ascophyllum Nodosum, Fucus Vesiculosus and Bifurcaria Bifurcata) and Micro-Algae (Chlorella Vulgaris and Spirulina Platensis) Assisted by Ultrasounds
    International Doctoral School Rubén Agregán Pérez DOCTORAL DISSERTATION “Seaweed extract effect on the quality of meat products” Supervised by the PhD: José Manuel Lorenzo Rodríguez, Daniel José Franco Ruiz and Francisco Javier Carballo García Year: 2019 “International mention” International Doctoral School JOSÉ MANUEL LORENZO RODRÍGUEZ, Researcher and Head of the Area of Chromatography, DANIEL JOSÉ FRANCO RUIZ, Researcher, both from The Centro Tecnolóxico da Carne, and FRANCISCO JAVIER CARBALLO GARCÍA, Professor of the Area of Food Technology of the University of Vigo, DECLARES that the present work, entitled “Seaweed extract effect on the quality of meat products”, submitted by Mr RUBÉN AGREGÁN PÉREZ, to obtain the title of Doctor, was carried out under their supervision in the PhD programme “Ciencia y Tecnología Agroalimentaria” and he accomplishes the requirements to be Doctor by the University of Vigo. Ourense, 25 February 2019 The supervisors José Manuel Lorenzo Rodríguez, PhD Daniel José Franco Ruiz, PhD Francisco Javier Carballo García, PhD ACKNOWLEDGMENTS First, I would like to thank my directors, José Manuel Lorenzo Rodríguez, PhD, Daniel José Franco Ruiz, PhD and Francisco Javier Carballo García, PhD for all the knowledge provided to me and for all the advice I received, specially to José Manuel Lorenzo for guiding me during this stage of my professional career. I also want to express my gratitude to the Centro Tecnolóxico da Carne and its manager, Mr Miguel Fernández Rodríguez, for having allowed me to do my Doctoral Thesis in its facilities, and to INIA for granting me a predoctoral scholarship for that purpose. Second, I would like to thank all my laboratory colleagues for all the assistance I received and their companionship during this time, especially my laboratory supervisor, Laura Purriños Pérez, PhD, for providing me with all the required materials and equipment needed.
    [Show full text]
  • Biologically Active Compounds in Seaweed Extracts Useful in Animal Diet
    20 The Open Conference Proceedings Journal, 2012, 3, (Suppl 1-M4) 20-28 Open Access Biologically Active Compounds in Seaweed Extracts - the Prospects for the Application Katarzyna Chojnacka*, Agnieszka Saeid, Zuzanna Witkowska and Łukasz Tuhy Institute of Inorganic Technology and Mineral Fertilizers, Wroclaw University of Technology ul. Smoluchowskiego 25, 50-372 Wroclaw, Poland Abstract: The paper covers the latest developments in research on the utilitarian properties of algal extracts. Their appli- cation as the components of pharmaceuticals, feeds for animals and fertilizers was discussed. The classes of various bio- logically active compounds were characterized in terms of their role and the mechanism of action in an organism of hu- man, animal and plant. Recently, many papers have been published which discuss the methods of manufacture and the composition of algal ex- tracts. The general conclusion is that the composition of extracts strongly depends on the raw material (geographical loca- tion of harvested algae and algal species) as well as on the extraction method. The biologically active compounds which are transferred from the biomass of algae to the liquid phase include polysaccharides, proteins, polyunsaturated fatty ac- ids, pigments, polyphenols, minerals, plant growth hormones and other. They have well documented beneficial effect on humans, animals and plants, mainly by protection of an organism from biotic and abiotic stress (antibacterial activity, scavenging of free radicals, host defense activity etc.) and can be valuable components of pharmaceuticals, feed additives and fertilizers. Keywords: Algal extracts, feed additives, fertilizers, pharmaceuticals, biologically active compounds. 1. INTRODUCTION was paid to biologically active compounds, useful as the components of pharmaceuticals, feeds and fertilizers.
    [Show full text]
  • WO 2010/087983 Al
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 5 August 2010 (05.08.2010) WO 2010/087983 Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61F 2/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US2010/000257 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 29 January 2010 (29.01 .2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/206,391 29 January 2009 (29.01 .2009) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 61/212,722 15 April 2009 (15.04.2009) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 61/271,498 22 July 2009 (22.07.2009) US TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, 61/271,961 29 July 2009 (29.07.2009) US ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, (72) Inventor; and TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (71) Applicant : MOAZED, Kambiz, Thomas [US/US]; ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
    Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale
    [Show full text]
  • PDF, Also Known As Version of Record
    A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds Ford, L., Theodoridou, K., Sheldrake, G. N., & Walsh, P. J. (2019). A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochemical Analysis. https://doi.org/10.1002/pca.2851 Published in: Phytochemical Analysis Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:24. Sep. 2021 Received: 10 January 2019 Revised: 7 May 2019 Accepted: 7 May 2019 DOI: 10.1002/pca.2851 REVIEW A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds Lauren Ford1 | Katerina Theodoridou2 | Gary N.
    [Show full text]