Thomas Bayes and Fluxions 381
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Brief but Important Note on the Product Rule
A brief but important note on the product rule Peter Merrotsy The University of Western Australia [email protected] The product rule in the Australian Curriculum he product rule refers to the derivative of the product of two functions Texpressed in terms of the functions and their derivatives. This result first naturally appears in the subject Mathematical Methods in the senior secondary Australian Curriculum (Australian Curriculum, Assessment and Reporting Authority [ACARA], n.d.b). In the curriculum content, it is mentioned by name only (Unit 3, Topic 1, ACMMM104). Elsewhere (Glossary, p. 6), detail is given in the form: If h(x) = f(x) g(x), then h'(x) = f(x) g'(x) + f '(x) g(x) (1) or, in Leibniz notation, d dv du ()u v = u + v (2) dx dx dx presupposing, of course, that both u and v are functions of x. In the Australian Capital Territory (ACT Board of Senior Secondary Studies, 2014, pp. 28, 43), Tasmania (Tasmanian Qualifications Authority, 2014, p. 21) and Western Australia (School Curriculum and Standards Authority, 2014, WACE, Mathematical Methods Year 12, pp. 9, 22), these statements of the Australian Senior Mathematics Journal vol. 30 no. 2 product rule have been adopted without further commentary. Elsewhere, there are varying attempts at elaboration. The SACE Board of South Australia (2015, p. 29) refers simply to “differentiating functions of the form , using the product rule.” In Queensland (Queensland Studies Authority, 2008, p. 14), a slight shift in notation is suggested by referring to rules for differentiation, including: d []f (t)g(t) (product rule) (3) dt At first, the Victorian Curriculum and Assessment Authority (2015, p. -
The Open Handbook of Formal Epistemology
THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way. -
A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx. -
The Bayesian Approach to the Philosophy of Science
The Bayesian Approach to the Philosophy of Science Michael Strevens For the Macmillan Encyclopedia of Philosophy, second edition The posthumous publication, in 1763, of Thomas Bayes’ “Essay Towards Solving a Problem in the Doctrine of Chances” inaugurated a revolution in the understanding of the confirmation of scientific hypotheses—two hun- dred years later. Such a long period of neglect, followed by such a sweeping revival, ensured that it was the inhabitants of the latter half of the twentieth century above all who determined what it was to take a “Bayesian approach” to scientific reasoning. Like most confirmation theorists, Bayesians alternate between a descrip- tive and a prescriptive tone in their teachings: they aim both to describe how scientific evidence is assessed, and to prescribe how it ought to be assessed. This double message will be made explicit at some points, but passed over quietly elsewhere. Subjective Probability The first of the three fundamental tenets of Bayesianism is that the scientist’s epistemic attitude to any scientifically significant proposition is, or ought to be, exhausted by the subjective probability the scientist assigns to the propo- sition. A subjective probability is a number between zero and one that re- 1 flects in some sense the scientist’s confidence that the proposition is true. (Subjective probabilities are sometimes called degrees of belief or credences.) A scientist’s subjective probability for a proposition is, then, more a psy- chological fact about the scientist than an observer-independent fact about the proposition. Very roughly, it is not a matter of how likely the truth of the proposition actually is, but about how likely the scientist thinks it to be. -
The Newton-Leibniz Controversy Over the Invention of the Calculus
The Newton-Leibniz controversy over the invention of the calculus S.Subramanya Sastry 1 Introduction Perhaps one the most infamous controversies in the history of science is the one between Newton and Leibniz over the invention of the infinitesimal calculus. During the 17th century, debates between philosophers over priority issues were dime-a-dozen. Inspite of the fact that priority disputes between scientists were ¡ common, many contemporaries of Newton and Leibniz found the quarrel between these two shocking. Probably, what set this particular case apart from the rest was the stature of the men involved, the significance of the work that was in contention, the length of time through which the controversy extended, and the sheer intensity of the dispute. Newton and Leibniz were at war in the later parts of their lives over a number of issues. Though the dispute was sparked off by the issue of priority over the invention of the calculus, the matter was made worse by the fact that they did not see eye to eye on the matter of the natural philosophy of the world. Newton’s action-at-a-distance theory of gravitation was viewed as a reversion to the times of occultism by Leibniz and many other mechanical philosophers of this era. This intermingling of philosophical issues with the priority issues over the invention of the calculus worsened the nature of the dispute. One of the reasons why the dispute assumed such alarming proportions and why both Newton and Leibniz were anxious to be considered the inventors of the calculus was because of the prevailing 17th century conventions about priority and attitude towards plagiarism. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Matrix Calculus
Appendix D Matrix Calculus From too much study, and from extreme passion, cometh madnesse. Isaac Newton [205, §5] − D.1 Gradient, Directional derivative, Taylor series D.1.1 Gradients Gradient of a differentiable real function f(x) : RK R with respect to its vector argument is defined uniquely in terms of partial derivatives→ ∂f(x) ∂x1 ∂f(x) , ∂x2 RK f(x) . (2053) ∇ . ∈ . ∂f(x) ∂xK while the second-order gradient of the twice differentiable real function with respect to its vector argument is traditionally called the Hessian; 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂x1 ∂x1∂x2 ··· ∂x1∂xK 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 2 K f(x) , ∂x2∂x1 ∂x2 ··· ∂x2∂xK S (2054) ∇ . ∈ . .. 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂xK ∂x1 ∂xK ∂x2 ∂x ··· K interpreted ∂f(x) ∂f(x) 2 ∂ ∂ 2 ∂ f(x) ∂x1 ∂x2 ∂ f(x) = = = (2055) ∂x1∂x2 ³∂x2 ´ ³∂x1 ´ ∂x2∂x1 Dattorro, Convex Optimization Euclidean Distance Geometry, Mεβoo, 2005, v2020.02.29. 599 600 APPENDIX D. MATRIX CALCULUS The gradient of vector-valued function v(x) : R RN on real domain is a row vector → v(x) , ∂v1(x) ∂v2(x) ∂vN (x) RN (2056) ∇ ∂x ∂x ··· ∂x ∈ h i while the second-order gradient is 2 2 2 2 , ∂ v1(x) ∂ v2(x) ∂ vN (x) RN v(x) 2 2 2 (2057) ∇ ∂x ∂x ··· ∂x ∈ h i Gradient of vector-valued function h(x) : RK RN on vector domain is → ∂h1(x) ∂h2(x) ∂hN (x) ∂x1 ∂x1 ··· ∂x1 ∂h1(x) ∂h2(x) ∂hN (x) h(x) , ∂x2 ∂x2 ··· ∂x2 ∇ . -
Most Honourable Remembrance. the Life and Work of Thomas Bayes
MOST HONOURABLE REMEMBRANCE. THE LIFE AND WORK OF THOMAS BAYES Andrew I. Dale Springer-Verlag, New York, 2003 668 pages with 29 illustrations The author of this book is professor of the Department of Mathematical Statistics at the University of Natal in South Africa. Andrew I. Dale is a world known expert in History of Mathematics, and he is also the author of the book “A History of Inverse Probability: From Thomas Bayes to Karl Pearson” (Springer-Verlag, 2nd. Ed., 1999). The book is very erudite and reflects the wide experience and knowledge of the author not only concerning the history of science but the social history of Europe during XVIII century. The book is appropriate for statisticians and mathematicians, and also for students with interest in the history of science. Chapters 4 to 8 contain the texts of the main works of Thomas Bayes. Each of these chapters has an introduction, the corresponding tract and commentaries. The main works of Thomas Bayes are the following: Chapter 4: Divine Benevolence, or an attempt to prove that the principal end of the Divine Providence and Government is the happiness of his creatures. Being an answer to a pamphlet, entitled, “Divine Rectitude; or, An Inquiry concerning the Moral Perfections of the Deity”. With a refutation of the notions therein advanced concerning Beauty and Order, the reason of punishment, and the necessity of a state of trial antecedent to perfect Happiness. This is a work of a theological kind published in 1731. The approaches developed in it are not far away from the rationalist thinking. -
Infinitesimal Calculus
Infinitesimal Calculus Δy ΔxΔy and “cannot stand” Δx • Derivative of the sum/difference of two functions (x + Δx) ± (y + Δy) = (x + y) + Δx + Δy ∴ we have a change of Δx + Δy. • Derivative of the product of two functions (x + Δx)(y + Δy) = xy + Δxy + xΔy + ΔxΔy ∴ we have a change of Δxy + xΔy. • Derivative of the product of three functions (x + Δx)(y + Δy)(z + Δz) = xyz + Δxyz + xΔyz + xyΔz + xΔyΔz + ΔxΔyz + xΔyΔz + ΔxΔyΔ ∴ we have a change of Δxyz + xΔyz + xyΔz. • Derivative of the quotient of three functions x Let u = . Then by the product rule above, yu = x yields y uΔy + yΔu = Δx. Substituting for u its value, we have xΔy Δxy − xΔy + yΔu = Δx. Finding the value of Δu , we have y y2 • Derivative of a power function (and the “chain rule”) Let y = x m . ∴ y = x ⋅ x ⋅ x ⋅...⋅ x (m times). By a generalization of the product rule, Δy = (xm−1Δx)(x m−1Δx)(x m−1Δx)...⋅ (xm −1Δx) m times. ∴ we have Δy = mx m−1Δx. • Derivative of the logarithmic function Let y = xn , n being constant. Then log y = nlog x. Differentiating y = xn , we have dy dy dy y y dy = nxn−1dx, or n = = = , since xn−1 = . Again, whatever n−1 y dx x dx dx x x x the differentials of log x and log y are, we have d(log y) = n ⋅ d(log x), or d(log y) n = . Placing these values of n equal to each other, we obtain d(log x) dy d(log y) y dy = . -
Calculus Formulas and Theorems
Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9. -
Maty's Biography of Abraham De Moivre, Translated
Statistical Science 2007, Vol. 22, No. 1, 109–136 DOI: 10.1214/088342306000000268 c Institute of Mathematical Statistics, 2007 Maty’s Biography of Abraham De Moivre, Translated, Annotated and Augmented David R. Bellhouse and Christian Genest Abstract. November 27, 2004, marked the 250th anniversary of the death of Abraham De Moivre, best known in statistical circles for his famous large-sample approximation to the binomial distribution, whose generalization is now referred to as the Central Limit Theorem. De Moivre was one of the great pioneers of classical probability the- ory. He also made seminal contributions in analytic geometry, complex analysis and the theory of annuities. The first biography of De Moivre, on which almost all subsequent ones have since relied, was written in French by Matthew Maty. It was published in 1755 in the Journal britannique. The authors provide here, for the first time, a complete translation into English of Maty’s biography of De Moivre. New mate- rial, much of it taken from modern sources, is given in footnotes, along with numerous annotations designed to provide additional clarity to Maty’s biography for contemporary readers. INTRODUCTION ´emigr´es that both of them are known to have fre- Matthew Maty (1718–1776) was born of Huguenot quented. In the weeks prior to De Moivre’s death, parentage in the city of Utrecht, in Holland. He stud- Maty began to interview him in order to write his ied medicine and philosophy at the University of biography. De Moivre died shortly after giving his Leiden before immigrating to England in 1740. Af- reminiscences up to the late 1680s and Maty com- ter a decade in London, he edited for six years the pleted the task using only his own knowledge of the Journal britannique, a French-language publication man and De Moivre’s published work. -
CHAPTER 1 VECTOR ANALYSIS ̂ ̂ Distribution Rule Vector Components
8/29/2016 CHAPTER 1 1. VECTOR ALGEBRA VECTOR ANALYSIS Addition of two vectors 8/24/16 Communicative Chap. 1 Vector Analysis 1 Vector Chap. Associative Definition Multiplication by a scalar Distribution Dot product of two vectors Lee Chow · , & Department of Physics · ·· University of Central Florida ·· 2 Orlando, FL 32816 • Cross-product of two vectors Cross-product follows distributive rule but not the commutative rule. 8/24/16 8/24/16 where , Chap. 1 Vector Analysis 1 Vector Chap. Analysis 1 Vector Chap. In a strict sense, if and are vectors, the cross product of two vectors is a pseudo-vector. Distribution rule A vector is defined as a mathematical quantity But which transform like a position vector: so ̂ ̂ 3 4 Vector components Even though vector operations is independent of the choice of coordinate system, it is often easier 8/24/16 8/24/16 · to set up Cartesian coordinates and work with Analysis 1 Vector Chap. Analysis 1 Vector Chap. the components of a vector. where , , and are unit vectors which are perpendicular to each other. , , and are components of in the x-, y- and z- direction. 5 6 1 8/29/2016 Vector triple products · · · · · 8/24/16 8/24/16 · ( · Chap. 1 Vector Analysis 1 Vector Chap. Analysis 1 Vector Chap. · · · All these vector products can be verified using the vector component method. It is usually a tedious process, but not a difficult process. = - 7 8 Position, displacement, and separation vectors Infinitesimal displacement vector is given by The location of a point (x, y, z) in Cartesian coordinate ℓ as shown below can be defined as a vector from (0,0,0) 8/24/16 In general, when a charge is not at the origin, say at 8/24/16 to (x, y, z) is given by (x’, y’, z’), to find the field produced by this Chap.