Computability in Principle and in Practice in Algebraic Number Theory: Hensel to Zassenhaus

Total Page:16

File Type:pdf, Size:1020Kb

Computability in Principle and in Practice in Algebraic Number Theory: Hensel to Zassenhaus COMPUTABILITY IN PRINCIPLE AND IN PRACTICE IN ALGEBRAIC NUMBER THEORY: HENSEL TO ZASSENHAUS by Steven Andrew Kieffer M.Sc., Carnegie Mellon University, 2007 B.Sc., State University of New York at Buffalo, 2003 a Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Mathematics) in the Department of Mathematics Faculty of Science c Steven Andrew Kieffer 2012 SIMON FRASER UNIVERSITY Spring 2012 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for \Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Steven Andrew Kieffer Degree: Master of Science (Mathematics) Title of Thesis: Computability in principle and in practice in algebraic num- ber theory: Hensel to Zassenhaus Examining Committee: Dr. Jason Bell Chair Dr. Michael Monagan Senior Supervisor Professor Dr. Nils Bruin Supervisor Professor Dr. Tom Archibald Supervisor Professor Dr. J. Lennart Berggren Internal Examiner Professor Date Approved: 16 April 2012 ii Abstract In the early years of algebraic number theory, different mathematicians built the theory in terms of different objects, and according to different rules, some seeking always to demon- strate that the objects were computable in principle. Later, prominently in the era in which electronic computers were becoming available for academic research, efforts were initiated by some to compute the objects of the theory in practice. By examining writings, research, and correspondence of mathematicians spanning these early and late computational peri- ods, we seek to demonstrate ways in which ideas from the old tradition influenced the new. Among the connections we seek are personal influence on problem selection, and borrowing of computational methods. In particular, we examine such links among the works of Kurt Hensel, Helmut Hasse, Olga Taussky, and Hans Zassenhaus. iii For Mom and Dad iv \Wie man sich in der Musik nach der in heroischen und d¨amonischen Werken und in k¨uhnstenPhantasien schwelgenden romantischen und nachromantischen Epoche heute bei aller Freude an diesem Schaffen doch auch wieder st¨arker auf den Urquell reiner und schlichter Musikalit¨atder alten Meister besinnt, so scheint mir auch in der Zahlentheorie, die ja wie kaum eine andere mathematische Disziplin von dem Gesetz der Harmonie beherrscht wird, eine R¨uckbesinnung auf das geboten, was den großen Meistern, die sie begr¨undethaben, als ihr wahres Gesicht vorgeschwebt hat." | Helmut Hasse, 1945 v Acknowledgments I am grateful to my advisors Michael Monagan and Nils Bruin for sharing their expertise and enjoyment of computer algebra and number theory, for their careful comments and revisions, for the assignment to study Hensel's lemma, which has proved a more interesting topic than I ever expected, and for the gift of time in which to think about mathematics. I also thank my parents and friends for their support. Len Berggren generously gave his time to participate on the examining committee, and he and others in the department helped to make the history seminars interesting. Ideas from my former advisor Jeremy Avigad were surely at the back of my mind as I searched for interesting questions to ask about the methodology of mathematics. And finally, I would like to give very special thanks to Tom Archibald: for long discussions of historiographic questions, for a great deal of thoughtful feedback, for running the history seminars, and for his generous guidance and continual encouragement in the study and telling of history. vi Contents Approval ii Abstract iii Dedication iv Quotation v Acknowledgments vi Contents vii List of Tables xi List of Figures xii Preface xiii 1 Introduction 1 2 The Integral Basis 20 2.1 Kronecker's Grundz¨uge, 1882 . 22 2.2 Dedekind's Supplement XI, 1894 . 27 2.3 Hilbert's Zahlbericht, 1897 . 33 2.4 Hensel's Theorie der algebraischen Zahlen, 1908 . 36 2.4.1 TAZ Chapters 1 and 2 . 38 2.4.2 TAZ Chapters 3 and 4 . 40 2.4.3 TAZ Chapter 5 and the integral basis . 54 vii 2.4.4 Hensel's \subroutines" . 57 2.4.5 Algorithms and efficiency in Hensel . 59 3 Turn of the Century through World War II 65 3.1 Hensel and Hilbert . 66 3.2 Existence and construction of class fields . 75 3.3 Reciprocity laws . 86 3.3.1 Artin's law, explicit laws . 86 3.3.2 Hasse . 87 3.3.3 Artin . 89 3.3.4 Explicit reciprocity laws . 89 3.3.5 The Klassenk¨orperbericht . 92 3.4 Political unrest . 95 3.5 Olga Taussky . 97 3.6 Hans Zassenhaus . 103 4 Setting the stage in the 1940s 106 4.1 A photo-electric number sieve . 108 4.2 D.H. Lehmer's Guide to Tables, 1941 . 110 4.3 Weyl 1940 . 115 4.4 Hasse's view . 120 4.4.1 Hasse's Zahlentheorie . 121 4.4.2 Hasse's Uber¨ die Klassenzahl abelscher Zahlk¨orper . 123 5 Taussky-Hasse correspondence in the 1950s 139 5.1 Reestablishing contact . 143 5.2 Number theory on the computer in the early 1950s . 146 5.3 A survey talk, 1953 . 167 5.3.1 Rational methods . 170 5.3.2 Routine methods . 171 5.3.3 On generalization in number theory . 173 5.4 Letters from the 1960s and 70s . 174 5.5 Coda . 177 viii 6 Zassenhaus's work in the 1960s 178 6.1 Algebraic numbers in the computer { 1959 at Caltech . 183 6.2 Integral bases etc. in the mid 1960s . 190 6.2.1 Number theoretic experiments in education . 190 6.2.2 The ORDMAX algorithm { 1965 . 193 6.2.3 Berwick's algorithm . 195 6.2.4 Zassenhaus's algorithm . 197 6.2.5 \Round 2" . 200 6.3 On a problem of Hasse . 202 p 6.3.1 Background on the class field construction over Q( −47) . 204 6.3.2 Computing by machine and by hand . 209 6.3.3 The second class field construction . 210 6.3.4 Setting problems for Zassenhaus and Liang . 211 6.3.5 Solutions found . 213 6.3.6 The p-adic algorithm . 222 6.4 On Hensel factorization . 227 6.4.1 Zassenhaus's algorithm . 228 7 Epilogue 233 Appendix A Hensel's theory as generalization of Kummer's 244 A.1 Preliminaries . 247 A.2 Hensel's prime divisors . 260 A.3 Kummer's prime divisors . 263 A.4 Conclusions . 270 p Appendix B Hasse's first paper on Q( −47) 273 B.1 The Cases d = −23 and d = −31 . 274 B.1.1 Ascent to Generation of N 3=Ω3 . 275 B.1.2 Descent to Generation of K=Q . 277 B.2 The Case d = −47 . 279 B.2.1 Ascent to Generation of N 5=Ω5 . 279 B.2.2 Descent to Generation of K=Q . 285 ix Appendix C The Legendre-Germain computation 288 x List of Tables 1.1 Abbreviations for certain important works. 19 3.1 Early Jahresbericht data. 69 5.1 Data pertaining to the Legendre-Sophie-Germain criterion for ` = 79, follow- ing Hasse and Taussky, using primitive root 3 mod 79. 158 6.1 Years of Zassenhaus's earliest published contributions to his computational algebraic number theory program, by subject. 180 A.1 Correspondence for an example of Kummer's chemistry analogy. 272 xi List of Figures 3.1 Movements of selected mathematicians among selected German universities, 1841 to 1966. 67 3.2 Number of works cited per year in bibliography of Hilbert's Zahlbericht from 1825 forward, omitting three earlier references, from 1796, 1798, and 1801. 70 3.3 List of authors cited more than once in Hilbert's Zahlbericht, together with number of citations. 70 3.4 Number of papers published by Kurt Hensel each year, from 1884 to 1937. Source: (Hasse 1950b). 73 4.1 Number of papers published by Helmut Hasse each year, from 1923 to 1979. Source: (Hasse 1975) . 120 6.1 Number of papers published by Hans Zassenhaus each year, from 1934 to 1991. Source: (Pohst 1994) . 183 6.2 Flow chart for Zassenhaus's ORDMAX algorithm. 198 6.3 Field lattice for Hasse's problem. 207 7.1 Number of works cited per year in bibliography of Zimmer's survey (Zimmer 1972). 238 A.1 Field lattice for Henselian treatment of a cyclotomic field. 266 xii Preface This thesis originated from the idea of studying Zassenhaus's use of Hensel's lemma for a polynomial factorization algorithm. If this seems a far cry from the resulting study, consider that polynomial factorization over the p-adics is central to Hensel's version of algebraic number theory, in its role in the definition of prime divisors. Consider furthermore that Hensel's factorization algorithm demonstrated computability mainly in principle, whereas Zassenhaus was concerned with practical factorization. From this starting point, the history examined here presented itself. xiii Chapter 1 Introduction The subject of algebraic number theory, taught today with algebraic number fields Q(α) as the central objects, and with unique factorization recovered through the theory of ideals, has been built and rebuilt since the early nineteenth century in terms of different objects, and according to different methodologies. We review the nature of these alternative approaches here, and in the process will encounter the major questions that we will be concerned with in this thesis. In early work, such as P.G.L. Dirichlet's (1805 - 1859) studies on what we today call units in the rings of integers of number fields, 1 the notion was not that one was studying a collection called a \number field” but that one was simply studying the rational functions in a given algebraic number, i.e.
Recommended publications
  • Of the American Mathematical Society August 2017 Volume 64, Number 7
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves
    [Show full text]
  • Hilbert Constance Reid
    Hilbert Constance Reid Hilbert c COPERNICUS AN IMPRINT OF SPRINGER-VERLAG © 1996 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc in 1996 All rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Library ofCongress Cataloging·in-Publication Data Reid, Constance. Hilbert/Constance Reid. p. Ctn. Originally published: Berlin; New York: Springer-Verlag, 1970. Includes bibliographical references and index. ISBN 978-0-387-94674-0 ISBN 978-1-4612-0739-9 (eBook) DOI 10.1007/978-1-4612-0739-9 I. Hilbert, David, 1862-1943. 2. Mathematicians-Germany­ Biography. 1. Title. QA29.HsR4 1996 SIO'.92-dc20 [B] 96-33753 Manufactured in the United States of America. Printed on acid-free paper. 9 8 7 6 543 2 1 ISBN 978-0-387-94674-0 SPIN 10524543 Questions upon Rereading Hilbert By 1965 I had written several popular books, such as From liro to Infinity and A Long Way from Euclid, in which I had attempted to explain certain easily grasped, although often quite sophisticated, mathematical ideas for readers very much like myself-interested in mathematics but essentially untrained. At this point, with almost no mathematical training and never having done any bio­ graphical writing, I became determined to write the life of David Hilbert, whom many considered the profoundest mathematician of the early part of the 20th century. Now, thirty years later, rereading Hilbert, certain questions come to my mind.
    [Show full text]
  • Prof. Dr. Phil. Rudolfkochendörffer (21.11.1911 - 23.8.1980) Bestandsverzeichnis Aus Dem Wissenschaftsarchiv Der Universität Dortmund
    Mitteilungen aus der Universitätsbibliothek Dortmund Herausgegeben von Valentin Wehefritz Nr.5 Prof. Dr. phil. RudolfKochendörffer (21.11.1911 - 23.8.1980) Bestandsverzeichnis aus dem Wissenschaftsarchiv der Universität Dortmund Mit Beiträgen von Prof. Dr. Albert Sc1uleider (Dortmund) und Prof. Dr. Hans Rohrbach (Mainz) Dortmund 1985 Dieses Dokument ist urheberrechtlich geschützt! Inhaltsverzeichnis Vorwort des Herausgebers 5 Geleitwort des Dekans des Fachbereiches Mathematik 5 Prof.Dr.phi]. Rudalf Kochendörffer, 21.11.1911 - 23.8.1980. Von Albert Schneider 7 Rudalf Kochendörffer als Forscher. Von Hans Rohrbach 15 Bestandsverzeichnis 41 Rudolf Kochendörffer als Studierender 43 Rudalf Kochendörffer als Forscher 57 Rudalf Kochendörffer als Herausgeber 69 Rudalf Kochendörffer als Referent mathematischer Literatur 83 Rudolf Kochendörffer als akade m:ischer Lehrer 87 Lehrrucher und Aufsätze 89 Vorlesungen 94 W:issenscha.ft1iche PIÜfungsarbeiten 109 Verschiedene biographische Doku mente 117 Personenregister 127 Signaturenreg:ister 129 -5­ Vorwort des Hera1.lS3ebers. Nachdem die Univetsitätsb:i.bliDt:hek Dortmund 1980 das Nachlaßverzeichnis von Prof. Dr. Werner Dittmar herausgegeben hat, legt die B:ibliothek nun das Bestandsverzeichnis des wissenschaftlichen Nachlasses von Prof. Dr. Kochendörffer der Öffentlichkeit vor. Das Verzeichnis wird durch die Aufsätze von Albert Schncider und Hans Rohrbach zu einer umfassenden würdigung Rudalf Kochendörffers. Professor Kochendörffer hat durch sein hohes Ansehen in der wissenschaftlichen Welt wesentlich zur Festigung des Rufes der jungen Universität Dortmund beigetragen. Die würdigung, die diese Schrift darstellt, ist auch als Dank der Univetsität Dortmund zu verstehen, der Professor Kochendömer gebührt. Dortmund, d. 25.4.1985 Valentin Wehefritz Ltd. Bibliotheksdirektor Zum Geleit Die UniversitätsbibliDthek Dortmund unternimmt es hiermit in dankenswerter Weise, Leben und Werk unseres ehemaligen Abte:iJ.ungsmitgliedes Rudalf Kochendörffer zu dokumentieren.
    [Show full text]
  • On the Similarity Transformation Between a Matirx and Its Transpose
    Pacific Journal of Mathematics ON THE SIMILARITY TRANSFORMATION BETWEEN A MATIRX AND ITS TRANSPOSE OLGA TAUSSKY AND HANS ZASSENHAUS Vol. 9, No. 3 July 1959 ON THE SIMILARITY TRANSFORMATION BETWEEN A MATRIX AND ITS TRANSPOSE OLGA TAUSSKY AND HANS ZASSENHAUS It was observed by one of the authors that a matrix transforming a companion matrix into its transpose is symmetric. The following two questions arise: I. Does there exist for every square matrix with coefficients in a field a non-singular symmetric matrix transforming it into its transpose ? II. Under which conditions is every matrix transforming a square matrix into its transpose symmetric? The answer is provided by THEOREM 1. For every n x n matrix A — (aik) with coefficients in a field F there is a non-singular symmetric matrix transforming A into its transpose Aτ'. THEOREM 2. Every non-singular matrix transforming A into its transpose is symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial i.e. if A is similar to a com- panion matrix. Proof. Let T = (ti1c) be a solution matrix of the system Σ(A) of the linear homogeneous equations. (1) TA-ATT=O ( 2 ) T - Tτ = 0 . The system Σ(A) is equivalent to the system (3) TA-ATTT = 0 ( 4 ) T - Tτ = 0 which states that Γand TA are symmetric. This system involves n2 — n equations and hence is of rank n2 — n at most. Thus there are at least n linearly independent solutions of Σ(A).1 On the other hand it is well known that there is a non-singular matrix To satisfying - A* , Received December 18, 1958.
    [Show full text]
  • Early History of the Riemann Hypothesis in Positive Characteristic
    The Legacy of Bernhard Riemann c Higher Education Press After One Hundred and Fifty Years and International Press ALM 35, pp. 595–631 Beijing–Boston Early History of the Riemann Hypothesis in Positive Characteristic Frans Oort∗ , Norbert Schappacher† Abstract The classical Riemann Hypothesis RH is among the most prominent unsolved prob- lems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe the history of this topic essentially between 1920 and 1940. This includes the proof of the ana- logue of the Riemann Hyothesis for elliptic curves over a finite field, and various ideas about how to generalize this to curves of higher genus. The 1930ies were also a period of conflicting views about the right method to approach this problem. The later history, from the proof by Weil of the Riemann Hypothesis in charac- teristic p for all algebraic curves over a finite field, to the Weil conjectures, proofs by Grothendieck, Deligne and many others, as well as developments up to now are described in the second part of this diptych: [44]. 2000 Mathematics Subject Classification: 14G15, 11M99, 14H52. Keywords and Phrases: Riemann Hypothesis, rational points over a finite field. Contents 1 From Richard Dedekind to Emil Artin 597 2 Some formulas for zeta functions. The Riemann Hypothesis in characteristic p 600 3 F.K. Schmidt 603 ∗Department of Mathematics, Utrecht University, Princetonplein 5, 3584 CC
    [Show full text]
  • Mendelssohn Studien
    3 MENDELSSOHN STUDIEN Beiträge zur neueren deutschen Kulturgeschichte Band 19 Herausgegeben für die Mendelssohn-Gesellschaft von Roland Dieter Schmidt-Hensel und Christoph Schulte Wehrhahn Verlag 4 Bibliograische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliograie; detaillierte bibliograische Daten sind im Internet über <http://dnb.ddb.de> abrufbar. 1. Aulage 2015 Wehrhahn Verlag www.wehrhahn-verlag.de Satz und Gestaltung: Wehrhahn Verlag Umschlagabbildung: Fromet Mendelssohn. Reproduktion einer verschollenen Miniatur aus dem Jahr 1767 Druck und Bindung: Beltz Bad Langensalza GmbH Alle Rechte vorbehalten Printed in Germany © by Wehrhahn Verlag, Hannover ISSN 0340–8140 ISBN 978–3–86525–469–6 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin 295 50 Jahre Mendelssohn-Archiv der Staatsbibliothek zu Berlin Geschichte und Bestände 1965–2015 Von Roland Dieter Schmidt-Hensel Die Musikabteilung der Staatsbibliothek zu Berlin – Preußischer Kulturbesitz verwahrt nicht nur eine der weltweit größten und bedeutendsten Sammlungen von Musikautographen und -abschriften, Musikerbriefen und -nachlässen so- wie gedruckten Notenausgaben, sondern besitzt mit dem Mendelssohn-Archiv auch eine der wichtigsten Sammelstätten für Handschriften, Briefe und son- stige Originaldokumente aus der und über die gesamte Familie Mendelssohn weit über die drei Komponisten der Familie – Felix Mendelssohn Bartholdy, Fanny Hensel und Arnold Ludwig Mendelssohn – hinaus. Den Grundstock dieses Mendelssohn-Archivs bildet eine umfangreiche Sammlung, die Hugo von Mendelssohn Bartholdy (1894–1975), Urenkel und letzter namenstragen- der Nachfahre des Komponisten Felix, aufgebaut hatte und 1964 als Schen- kung der Stiftung Preußischer Kulturbesitz übereignete, wo sie der Musikab- teilung der Staatsbibliothek angegliedert wurde. Mit dieser Schenkung stellte sich Hugo von Mendelssohn Bartholdy in die Tradition früherer Generationen seiner Familie, die sich im 19.
    [Show full text]
  • Journal Für Die Reine Und Angewandte Mathematik
    BAND 771 · FeBRUAR 2021 Journal für die reine und angewandte Mathematik (Crelles Journal) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON Carl Wilhelm Borchardt ∙ Karl Weierstrass ∙ Leopold Kronecker Lazarus Fuchs ∙ Kurt Hensel ∙ Ludwig Schlesinger ∙ Helmut Hasse Hans Rohrbach ∙ Martin Kneser ∙ Peter Roquette GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding, Cambridge MA ∙ Jun-Muk Hwang, Seoul Daniel Huybrechts, Bonn ∙ Rainer Weissauer, Heidelberg Geordie Williamson, Sydney JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK (CRELLES JOURNAL) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON August Leopold Crelle (1826–1855) Peter Roquette (1977–1998) Carl Wilhelm Borchardt (1857–1881) Samuel J. Patterson (1982–1994) Karl Weierstrass (1881–1888) Michael Schneider (1984–1995) Leopold Kronecker (1881–1892) Simon Donaldson (1986–2004) Lazarus Fuchs (1892–1902) Karl Rubin (1994–2001) Kurt Hensel (1903–1936) Joachim Cuntz (1994–2017) Ludwig Schlesinger (1929–1933) David Masser (1995–2004) Helmut Hasse (1929–1980) Gerhard Huisken (1995–2008) Hans Rohrbach (1952–1977) Eckart Viehweg (1996–2009) Otto Forster (1977–1984) Wulf-Dieter Geyer (1998–2001) Martin Kneser (1977–1991) Yuri I. Manin (2002–2008) Willi Jäger (1977–1994) Paul Vojta (2004–2011) Horst Leptin (1977–1995) Marc Levine (2009–2012) GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding Jun-Muk Hwang Daniel Huybrechts Rainer Weissauer Geordie Williamson AUSGABEDATUM DES BANDES 771 Februar 2021 CONTENTS G. Tian, G. Xu, Virtual cycles of gauged Witten equation . 1 G. Faltings, Arakelov geometry on degenerating curves . .. 65 P. Lu, J. Zhou, Ancient solutions for Andrews’ hypersurface flow . 85 S. Huang, Y. Li, B. Wang, On the regular-convexity of Ricci shrinker limit spaces . 99 T. Darvas, E.
    [Show full text]
  • Historical Notes on Loop Theory
    Comment.Math.Univ.Carolin. 41,2 (2000)359–370 359 Historical notes on loop theory Hala Orlik Pflugfelder Abstract. This paper deals with the origins and early history of loop theory, summarizing the period from the 1920s through the 1960s. Keywords: quasigroup theory, loop theory, history Classification: Primary 01A60; Secondary 20N05 This paper is an attempt to map, to fit together not only in a geographical and a chronological sense but also conceptually, the various areas where loop theory originated and through which it moved during the early part of its 70 years of history. 70 years is not very much compared to, say, over 300 years of differential calculus. But it is precisely because loop theory is a relatively young subject that it is often misinterpreted. Therefore, it is extremely important for us to acknowledge its distinctive origins. To give an example, when somebody asks, “What is a loop?”, the simplest way to explain is to say, “it is a group without associativity”. This is true, but it is not the whole truth. It is essential to emphasize that loop theory is not just a generalization of group theory but a discipline of its own, originating from and still moving within four basic research areas — algebra, geometry, topology, and combinatorics. Looking back on the first 50 years of loop history, one can see that every decade initiated a new and important phase in its development. These distinct periods can be summarized as follows: I. 1920s the first glimmerings of non-associativity II. 1930s the defining period (Germany) III. 1940s-60s building the basic algebraic frame and new approaches to projective geometry (United States) IV.
    [Show full text]
  • Meesters Van Het Diamant
    MEESTERS VAN HET DIAMANT ERIC LAUREYS Meesters van het diamant De Belgische diamantsector tijdens het nazibewind www.lannoo.com Omslagontwerp: Studio Lannoo Omslagillustratie: Grote Zaal van de Beurs voor Diamanthandel Foto’s: Beurs voor Diamanthandel Kaarten: Dirk Billen © Uitgeverij Lannoo nv, Tielt, 2005 en Eric Laureys D/2005/45/432 – ISBN 90 209 6218 3 – NUR 688 Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm, internet of op welke wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. Gedrukt en gebonden bij Drukkerij Lannoo nv, Tielt Inhoud Dankwoord 9 Woord vooraf 11 Terminologische afspraken en afkortingen 15 1. Inleiding tot de diamantsector 23 Economisch belang van de diamantsector 23 Diamantontginning 24 Diamantbewerking 27 2. Ontstaan en ontwikkeling van machtscentra 35 De Beers en het Zuid-Afrikaanse kartel 35 Het Londens Syndicaat 38 De Forminière en het Kongolese kartel 41 Het Antwerpse diamantcentrum 48 3. Uitbouw van het Belgische overwicht – De diamantnijverheid tijdens de Eerste Wereldoorlog en de grote crisis 65 De eerste diamantdiaspora 65 Achteruitgang van Amsterdam 70 Contract tussen de Forminière en het Londens Syndicaat 71 Rol van de diamantbanken 75 Consolidatie van De Beers 82 4. De diamantsector, de opkomst van het naziregime en de nakende oorlog 87 Corporatisme in het interbellum 87 De Duitse nieuwe economische orde 91 Naziorganisatie van de Duitse diamantexploitatie 96 België, de vooroorlogse diamantsector en de anti-Duitse boycot 115 De Nederlandse ‘verdedigingsvoorbereiding’ 134 De Britse diamantcontrole en de Schemeroorlog 135 Amerikaanse diamantcontrole op de vooravond van Pearl Harbor 142 5. De grote uitdaging – De diamantsector tijdens de Tweede Wereldoorlog 147 Opgang van het industriediamant 147 Het fiasco van Cognac 151 De tweede diamantdiaspora 163 6 De Duitse greep op de Belgische diamantsector 178 Reorganisatie van de sector in België 203 6.
    [Show full text]
  • Mathematics in the Austrian-Hungarian Empire
    Mathematics in the Austrian-Hungarian Empire Christa Binder The appointment policy in the Austrian-Hungarian Empire In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 43–54. Persistent URL: http://dml.cz/dmlcz/400817 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz THE APPOINTMENT POLICY IN THE AUSTRIAN- -HUNGARIAN EMPIRE CHRISTA BINDER Abstract: Starting from a very low level in the mid oft the 19th century the teaching and research in mathematics reached world wide fame in the Austrian-Hungarian Empire before World War One. How this was complished is shown with three examples of careers of famous mathematicians. 1 Introduction This symposium is dedicated to the development of mathematics in the Austro- Hungarian monarchy in the time from 1850 to 1914. At the beginning of this period, in the middle of the 19th century the level of teaching and researching mathematics was very low – with a few exceptions – due to the influence of the jesuits in former centuries, and due to the reclusive period in the first half of the 19th century. But even in this time many efforts were taken to establish a higher education.
    [Show full text]
  • Quadratic Forms and Their Applications
    Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999.
    [Show full text]
  • Quadratic Forms Over Nonformally Real Fields with a Finite Number of Quaternion Algebras
    Pacific Journal of Mathematics QUADRATIC FORMS OVER NONFORMALLY REAL FIELDS WITH A FINITE NUMBER OF QUATERNION ALGEBRAS CRAIG MCCORMACK CORDES Vol. 63, No. 2 April 1976 PACIFIC JOURNAL OF MATHEMATICS Vol. 63, No. 2, 1976 QUADRATIC FORMS OVER NONFORMALLY REAL FIELDS WITH A FINITE NUMBER OF QUATERNION ALGEBRAS CRAIG M. CORDES This paper is concerned with quadratic forms over a nonformally real field, F, of characteristic not two, which has only a finite number, m, of quaternion algebras. The number q— \F/F*\ is always assumed to be finite. Of central importance will be the radical, R, which can be defined by R = {aeF\G(l, -)a = F} where F=F-{0} and G(l, -a) is the set of nonzero elements represented by the form x2 — ay2 over F. The main result here is that a finite Witt ring (and hence the complete quadratic form structure) is deter- mined when m = 2 by the Witt group and the order of F/R. Other results include analyzing the quadratic form structure for fields which satisfy | F/R | <^ 8 and discovering an upper bound for m in terms of q and the largest index in F of all G(l, a). Finally, the concept of a quadratic form scheme is introduced. This idea comes from an attempt to abstract value sets of binary quadratic forms in order to eliminate the immediate necessity of a field in their study. Kaplansky [4] showed that if m = 2, the ^-invariant of a non- formally real field is four. Lam and Elman [3] demonstrated that the quaternion algebras form a subgroup of the Brauer group only when u = 1, 2, 4, or 8.
    [Show full text]