Bacterial Aminopeptidases: Properties and Functions

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Aminopeptidases: Properties and Functions ELSEVIER FEMS Microbiology Reviews 18(1996) 3 19-344 Downloaded from https://academic.oup.com/femsre/article/18/4/319/529845 by guest on 24 September 2021 Bacterial aminopeptidases: Properties and functions Thierry Gonzales, Janine Robert-Baudouy * Luhorutoire de Ghznttique Mole’culaire des Microorganismes et des Interactions Cellulaires. C.N.R.S. UMR 5577, Institut Natronal des Sciences Applique’eu. B&iment 406. 20 Avenue Albert Einstein. 69621 Villeurbnnne cede.x, France Received 1 November 1995; revised 18 March 1996; accepted 28 March 1996 Abstract Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasic activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichiu coli and the leucine aminopeptidase from Aeromorzas proteo/uica, have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColEI based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pep) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate. Keywords: Aminopeptidase; Classification; Catalytic mechanism; Location; Function Contents 1. Introduction. 320 2. Biochemical properties of bacterial aminopeptidases. ...................................... 320 2.1. Classification ........................................................... 320 2.2.Structure .............................................................. 321 2.2.1. Quatemary structure. .................................................. 321 2.2.2. Crystallographic studies ................................................ 32 1 * Corresponding author. Tel: + 33 72 43 83 31; Fax: + 33 72 43 87 14: E-mail: [email protected] .fr 0168.6445/96/$32.00 Copyright 0 1996 Federation of European Microbiological Societies. Published by Elsevier Science B.V PI/ SOl68-6445(96)00020-4 320 T. Gonzales, J. Robert-Baudouy/FEMS MicrobiologyReviews 18 (1996) 319-344 2.3. Enzymatic mechanisms ..................................................... 326 2.3.1. The metallo-aminopeptidases ............................................. 326 2.3.2. Cysteine and serine aminopeptidases ......................................... 327 2.4. Enzymatic properties ...................................................... 328 2.5. Substrate specificity ....................................................... 328 3. Cellular location and regulation of bacterial aminopeptidases .................... .......... 329 3.1. Cellular location ............................................ .......... 329 3.2. Regulation of enzyme synthesis ................................... .......... 330 Downloaded from https://academic.oup.com/femsre/article/18/4/319/529845 by guest on 24 September 2021 3.2.1. Transcriptional control .................................... .......... 330 3.2.2. Other mechanisms of regulation. .............................. 331 4. Physiological role of bacterial aminopeptidases................... 331 4.1. Utilisation of exogenous peptides as nutrients. ................ 331 4.2, Degradation of intracellular proteins and peptides .............. 332 4.2.1. Protein turnover .............................. 332 4.2.2. The role of peptidases in the degradation of endogenousproteins . 333 4.2.3. Recognition of proteins to be catabolised ............... 333 4.3. Protein maturation ................................. 334 4.4. Other known functions .............................. 335 5. Conclusions............................................................... 335 Acknowledgement............................................................. 336 References . 336 1. Introduction 2. Biochemical properties of bacterial aminopepti- dases Aminopeptidases are enzymes that catalyse the cleavage of amino acid residues at the N-terminal 2. I. Classification position of peptides and proteins. These enzymes are found widely distributed amongst both procaryotic Peptidases, i.e. enzymes that catalyse the degrada- and eucaryotic types. The first studies on bacterial tion of relatively large peptide fragments, may be aminopeptidases, stimulated by both basic and ap- classified into two groups: endopeptidases and ex- plied interests, were carried out over 30 years ago. opeptidases. The first group comprises enzymes that Some bacterial peptidase systems are of considerable cleave peptide links within the polypeptide chain, interest to agro-industries such as the dairy industry whereas the second consists of enzymes that cleave (for reviews see [ 1 -lo]) while others may be studied amino acid residues at the extremities of the in fundamental research (for a review see [l11) or in polypeptide. Enzymes in the latter group may be bacterial taxonomy (for a review see [12]). These either carboxypeptidases, which free an amino acid studies have allowed the characterisation of a wide residue at the C-terminal end of the polypeptide, or number of aminopeptidases at the biochemical, aminopeptidases, which free an amino acid residue at molecular and physiological levels. the N-terminal end of the polypeptide (Fig. 1). The objective of this review is to summarise The properties of the main bacterial aminopepti- current knowledge concerning both the fundamental dases studied to date are summarised in Table 1. In properties of bacterial aminopeptidases and their po- addition, certain enzymes which are not aminopepti- tential physiological functions. dases in the strict sense of the term, such as dipep- T. Gonzales, J. Robert-Baudouy/ FEMS Microbiology Reriews 18 (1996) 319-344 321 buried within the protein structure while also reduc- ing the contact surface with the medium, thus limit- H,N--Xl -x2- x3-x4-x5 -x6-coon ing the quantity of water necessary to stabilise these Fig. I Peptidases classification. Endopeptidases cleave peptidic proteins [ 151. bounds inside polypeptides (1). Exopeptidases cleave residues To date, only two examples of bacterial amino- located at the N-terminal position (2, aminopeptidases) or C- peptidase displaying hetero-multimeric structures are terminal position (3, carboxypeptidases) of polypeptide. known. The 397-kDa aminopeptidase APMy of Mv- coplasma salivarium (Table 1, family 2) is formed Downloaded from https://academic.oup.com/femsre/article/18/4/319/529845 by guest on 24 September 2021 by the association of two monomers of 46 and 50 tidy1 aminopeptidases (which cleave a dipeptide) as kDa [ 161. The API aminopeptidase of Bacillus well as di- and tri-peptidases (which react on di- or stearothermophilus (Table 1, family 31 is a 400-kDa tri-peptides only) have been included. While this enzyme which appeared a priori to be composed of work aims to be as complete as possible, only en- 12 identical sub-units of 36 kDa [ 171. However, zymes on which a minimum number of studies have N-terminal amino acid sequence determination re- been carried out are quoted. vealed the existence of two distinct sub-unit types Different classification systems exist for which share 67% homology [ 181. This high degree of aminopeptidases. The most frequently used classifi- homology would suggest that the two monomer types, cation parameters include substrate specificity, cellu- termed cr and p, are coded for by phylogenetically lar location, catalytic function, requirement for co- related genes. In addition, it was demonstrated that factors and pH optimum [ 13,141. In this biblio- three isoforms of this enzyme exist in vivo, distin- graphic study, bacterial aminopeptidases were guished by different o//3 ratios [ 191, and that both grouped together into families using the following types of sub-unit possess catalytic activity [ 181. Such criteria: substrate specificity; physico-chemical and complexity of structure may be due to the substrate enzymatic properties (catalytic function, molecular specificity of the CYand p sub-units: the (Y sub-unit weight, pH optimum, etc.) and peptide sequence is specific for non-charged amino acids, while the p similarity (where the corresponding genes have been sub-unit preferentially cleaves acid residues [ 181. The charactet-ised and sequenced). Enzymes classed into resulting hetero-multimer therefore possesses a the same family based uniquely on physico-chemical
Recommended publications
  • Table of Contents
    Table of contents SUMMARY IX ZUSAMMENFASSUNG XI 1. INTRODUCTION 1 1.1 The immune system 1 1.1.1 Function 1 1.1.2 Overview 1 1.1.3 Function of MHC molecules 1 1.1.4 The Major Histocompatibility Complex (MHC) Genes 2 1.1.5 Structure of MHC molecules 2 1.2 Antigen presentation 5 1.2.1 Outline of the conventional MHC class I pathway 5 1.3 The components of the peptide loading complex 7 1.3.1 Transporter associated with antigen presentation (TAP) 7 1.3.2 Calreticulin and calnexin 9 1.3.4 ERp 57/ER60 10 1.3.5 Tapasin (Tpn) 11 1.4 (a) The proteasomes 12 1.4 (b) Cytosolic peptidase 15 1.5 Endoplasmic Reticulum Associated Peptidase/s 16 1.6 Protein sorting 17 1.6.2 Vesicular transport in the Golgi apparatus 20 1.6.3 Endocytic pathway 20 1.6.4 Endocytic proteases 24 1.6.4.1 Biosynthesis and transport of cathepsins 25 1.6.4.2 Activation of cathepsins 26 1.6.4.3 Inhibitors of endosomal proteases. 26 1.7 Antigen processing by alternative pathways 27 1.8 Aim of the thesis 30 i 2. MATERIALS AND METHODS 31 2.1 Materials 31 2.1.1 Bacterial strains 31 2.1.2 Plasmids 31 2.1.2.1 Construction of plasmids 31 2.1.3 Primer list 32 2.1.4 PCR conditions 33 2.1.5 Antibiotics 34 2.1.6 Chemicals 34 2.1.7 Media for bacterial cells 34 2.1.8 Protein Chemicals 35 2.1.9 Animal cell culture media 37 2.1.11 Antibodies 39 2.1.11 siRNA oligonucleotides.
    [Show full text]
  • Microrna-145 Overexpression Attenuates Apoptosis and Increases Matrix Synthesis in Nucleus Pulposus Cells T
    Life Sciences 221 (2019) 274–283 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells T Jie Zhoua,1, Jianchao Sunb,c,1, Dessislava Z. Markovad, Shuangxing Lib,c, Christopher K. Keplerd, ⁎ ⁎⁎ Junmin Hongb,c, Yingjie Huangb,e, Weijian Chene, Kang Xub,f, Fuxin Weig, , Wei Yeb,c, a Department of Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China c Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China d Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, USA e Department of Orthopedics, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China f Experimental Center of Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China g Department of Orthopedics, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China ARTICLE INFO ABSTRACT Keywords: Aims: Lower back pain is often associated with intervertebral disc degeneration (IDD), which results from a Intervertebral disc degeneration decrease in nucleus pulposus (NP) cells and an imbalance between the degradation and synthesis of extracellular Nucleus pulposus matrix (ECM) components. Multiple microRNAs play crucial roles in the modulation of NP cell apoptosis and microRNA-145 matrix degradation. miR-145 is an important microRNA related to degenerative diseases such as osteoarthritis. Apoptosis Here, the effect of miR-145 in IDD was elucidated.
    [Show full text]
  • Repression of Anti-Proliferative Factor Tob1 in Osteoarthritic Cartilage
    Available online http://arthritis-research.com/content/7/2/R274 ResearchVol 7 No 2 article Open Access Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage Mathias Gebauer1*, Joachim Saas2*, Jochen Haag3, Uwe Dietz2, Masaharu Takigawa4, Eckart Bartnik2 and Thomas Aigner3 1Aventis Pharma Deutschland, Functional Genomics, Sanofi-Aventis, Frankfurt, Germany 2Sanofi-Aventis, Disease Group Thrombotic Diseases/Degenerative Joint Diseases, Frankfurt, Germany 3Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Germany 4Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan * Contributed equally Corresponding author: Thomas Aigner, [email protected] Received: 10 Aug 2004 Revisions requested: 1 Oct 2004 Revisions received: 22 Oct 2004 Accepted: 19 Nov 2004 Published: 11 Jan 2005 Arthritis Res Ther 2005, 7:R274-R284 (DOI 10.1186/ar1479)http://arthritis-research.com/content/7/2/R274 © 2005 Gebauer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Osteoarthritis is the most common degenerative disorder of the genes were detected between normal and osteoarthritic modern world. However, many basic cellular features and cartilage (P < 0.01). One of the significantly repressed genes, molecular processes of the disease are poorly understood. In Tob1, encodes a protein belonging to a family involved in the present study we used oligonucleotide-based microarray silencing cells in terms of proliferation and functional activity.
    [Show full text]
  • Characterisation of Aspergillus Niger Prolyl Aminopeptidase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications Mol Gen Genomics (2005) 272: 673–679 DOI 10.1007/s00438-004-1094-5 ORIGINAL PAPER Danie¨lle E. J. W. Basten Æ Antoine P. H. A. Moers Albert J. J. van. Ooyen Æ Peter J. Schaap Characterisation of Aspergillus niger prolyl aminopeptidase Received: 29 April 2004 / Accepted: 16 November 2004 / Published online: 15 January 2005 Ó Springer-Verlag 2005 Abstract We have cloned a gene (papA) that encodes a ases and tripeptidases and finally by carboxypeptidases prolyl aminopeptidase from Aspergillus niger. Homolo- and aminopeptidases. The turnover of proteins by pro- gous genes are present in the genomes of the Eurotiales teases provides a ready pool of amino acids as precur- A. nidulans, A. fumigatus and Talaromyces emersonii, sors for the synthesis of new proteins (Bennet and Klich but the gene is not present in the genome of the yeast 1992). Saccharomyces cerevisiae. Cell extracts of strains over- Proteases normally do not hydrolyse bonds adjacent expressing the gene under the control of its own pro- to proline residues. Instead a specialised group of en- moter showed a fourfold to sixfold increase in prolyl zymes has evolved that hydrolyses these bonds. Their aminopeptidase activity, but no change in phenylalanine activity depends on both the isomeric state of the proline or leucine aminopeptidase activity. The overexpressed residue and its position in the peptide chain (Vanhoof enzyme was subsequently purified and characterised. et al. 1995; Cunningham and O’Connor 1997). Proline The enzyme specifically removes N-terminal proline and aminopeptidases (Pap, prolyl iminopeptidase, EC hydroxyproline residues from peptides.
    [Show full text]
  • Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio Alginolyticus
    國 立 交 通 大 學 生物科技研究所 碩士論文 溶藻弧菌胺醯組胺酸雙胜肽酶之生化特性分析 及其功能性胺基酸之研究 Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus 研究生: 陳怡親 指導教授: 吳東昆 博士 中華民國九十六年七月 Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus 研究生:陳怡親 Student: Yi-Chin Chen 指導教授:吳東昆 博士 Advisor: Dr. Tung-Kung Wu 國 立 交 通 大 學 生物科技研究所 碩士論文 A Thesis Submitted to Department of Biological Science and Technology College of Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in Biological Science and Technology July, 2007 Hsinchu, Taiwan, Republic of China 中華民國九十六年七月 溶藻弧菌胺醯組胺酸雙胜肽酶之生化特性分析及其功能性胺基酸 之研究 研究生:陳怡親 指導教授:吳東昆 博士 國立交通大學 生物科技研究所碩士班 摘要 胺醯組胺酸雙胜肽酶(PepD, EC 3.4.13.3)為胜肽酶家族M20 中的一員。胜肽酶家族M20 中的酵素皆屬於金屬雙胜肽酶,而經由研究發現可被應用於抗菌、癌症的臨床治療及神 經傳導物質的調控等方面。過去對於細菌中胺醯組胺酸雙胜肽酶的研究很少,只針對其 序列和部分生化特性進行探討,並無其生理角色或活性區胺基酸相關之研究。本論文將 溶藻弧菌pepD基因殖入pET-28a(+)質體中,表現出N端帶有His-tag之重組蛋白,並利用 Ni-NTA親和層析管柱純化之。純化出的蛋白質對於特定的Xaa-His雙胜肽(例如: L-carnosine)具有水解的能力,但無水解三胜肽之活性。經酵素動力學研究,溶藻弧菌 -1 PepD蛋白對雙胜肽L-carnosine之Km與kcat值分別為 0.36 mM與 8.6 min 。經由序列分析 預測溶藻弧菌PepD蛋白上胺基酸位置His80、Asp82、Asp119、Glu149、Glu150、Asp173 及His461 為活性區胺基酸。其中將所預測影響金屬鍵結之胺基酸Asp119 以及扮演催化 角色之胺基酸Glu149 分別進行飽和定點突變,發現大部分之突變蛋白皆失去或降低原 有之活性。此外,以同屬M20 胜肽酶家族之PepV蛋白結晶結構為模板做出溶藻弧菌PepD 蛋白之同源模擬,顯示出相同之活性區胺基酸。因此,根據本論文實驗結果將首次提出 胺醯組胺酸雙胜肽酶活性區胺基酸之分佈情形與其可能扮演之功能。 I Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus Student : Yi-Chin Chen Advisor : Dr. Tung-Kung Wu Institute of Biological Science and Technology National Chiao Tung University Abstract Proteins of the aminoacylase-1/metallopeptidase 20 (Acyl/M20) family were characterized to contain a zinc-binding domain at their active site. Aminoacylhistidine dipeptidase (PepD, EC 3.4.13.3) is a member of peptidase family M20 which catalyzes the cleavage and release of N-terminal amino acid, usually are neutral or hydrophobic residue, from Xaa-His peptide or polypeptide.
    [Show full text]
  • Catalytic Properties and Inhibition of Proline-Specific Dipeptidyl Peptidases II, IV and VII
    UC Berkeley UC Berkeley Previously Published Works Title Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII Permalink https://escholarship.org/uc/item/4nf146zf Journal Biochemical Journal, 371 ISSN 0264-6021 Authors Leiting, B Pryor, K D Wu, J K et al. Publication Date 2003-04-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biochem. J. (2003) 371, 525–532 (Printed in Great Britain) 525 Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII Barbara LEITING*1, KellyAnn D. PRYOR*, Joseph K. WU*, Frank MARSILIO*, Reshma A. PATEL*, Charles S. CRAIK†, Jonathan A. ELLMAN‡, Richard T. CUMMINGS* and Nancy A. THORNBERRY* *Department of Metabolic Disorders, Merck Research Laboratories, Mail code RY50G-236, P.O. Box 2000, Rahway, NJ 07065, U.S.A., †Department of Pharmaceutical Chemistry, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0446, U.S.A., and ‡Department of Chemistry, University of California, Berkeley, CA 94720, U.S.A. There is currently intense interest in the emerging group of strates and inhibitors for these enzymes, a complete biochemical proline-specific dipeptidases, and their roles in the regulation profile of these enzymes was obtained. The pH profiles, substrate of biological processes. Dipeptidyl peptidase IV (DPP-IV) is specificities as determined by positional scanning, Michaelis– involved in glucose metabolism by contributing to the regulation Menten constants and inhibition profiles for DPP-VII and DPP- of glucagon family peptides and has emerged as a potential target II were shown to be virtually identical, strongly supporting the for the treatment of metabolic diseases.
    [Show full text]
  • Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin
    The Journal of Neuroscience, March 22, 2017 • 37(12):3181–3191 • 3181 Cellular/Molecular Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin Himari Ogino,1* Arisa Hisanaga,1* XTakao Kohno,1 Yuta Kondo,1 Kyoko Okumura,1 Takana Kamei,1 Tempei Sato,2 Hiroshi Asahara,2 Hitomi Tsuiji,1 Masaki Fukata,3 and Mitsuharu Hattori1 1Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan, 2Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and 3Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer’s disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo. Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • What Is a Protease?
    What is a Protease? Proteases (or peptidases) are enzymes secreted by animals for a number of physiological processes, among which is the Dr. Rolando A. Valientes digestion of feed protein. Regional Category Manager- Animals normally secrete suffi - Eubiotics / RONOZYME ProAct cient amount of enzymes to ade - Asia Pacific, DSM quately digest enough of their [email protected] feed so that they grow and remain healthy under normal conditions, such as those found in the wild. Any increased needs for protein (amino acids) for more rapid growth due to improved genetics has been traditionally met by adding more protein (or synthetic amino acids) into the feed. This was facilitated by a relative low cost for most protein-rich ingredi - Dr. Katrine Pontoppidan ents, such as soybean meal, and Research Scientist synthetic amino acids, such as Novozymes L-lysine HCL. Thus, an exogenous [email protected] protease (as a feed supplement) was not considered essential; that is, until recently. size, the rate of passage of feed Today we face not only the prob - through the digestive tract, the lem of feeding animals of continu - age of the animal, and its physio - ously increasing genetic potential logical/health condition. All of (this requires diets increasingly these variables are rather difficult richer in amino acids), but also an to control, but supplementing unprecedented rise in ingredient animal feeds with extra enzymes prices, leaving very small (if any) is rather easy if it can be done in a margin for profitability. Thus, it profitable way. has been deemed essential to seek ways to improve the nutritive Up until recently, any protease value of existing ingredients activity in commercial enzyme reducing feed cost.
    [Show full text]
  • Curcumin Effect on Bleomycin-Induced Pulmonary Fibrosis in Mus Musculus
    JITV Vol. 20 No 2 Th. 2015: 148-157 Curcumin Effect on Bleomycin-Induced Pulmonary Fibrosis in Mus musculus Rahmi A1, Setiyono A2, Juniantito V2 1Graduate School of Animal Biomedical Science, Faculty of Veterinary Medicine, Bogor Agricultural University 2Division of Pathology, Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University E-mail: [email protected]; [email protected] (received 31-03-2015; revised 29-05-2015; accepted 04-06-2015) ABSTRAK Rahmi A, Setiyono A, Juniantito V. 2015. Pengaruh kurkumin terhadap fibrosis paru-paru akibat aplikasi bleomisin pada Mus musculus. JITV 20(2): 148-157. DOI: http://dx.doi.org/10.14334/jitv.v20i2.1169 Kurkumin merupakan bahan aktif utama dari tanaman kunyit (Curcuma longa) diketahui memiliki aktivitas sebagai anti- oksidan dan anti-inflamasi. Bleomisin merupakan salah satu obat anti-kanker yang dapat menginduksi fibrosis paru-paru pada manusia dan hewan. Tujuan penelitian ini adalah untuk mengetahui efek biologis kurkumin pada fibrosis paru-paru yang diinduksi bleomisin pada mencit. Sebanyak 16 ekor mencit galur ddy dibagi dalam 4 kelompok perlakuan: (i) kontrol, 100 µl aquadest steril diinjeksikan secara SC, (ii) bleomisin (BLM), 100 µl bleomisin konsentrasi 1 mg/ml diinjeksikan secara SC, (iii) kurkumin (CMN), 100 µl aquadest steril diinjeksikan secara SC dan 100 mg/kg BB kurkumin dalam 0,5% carboxymethylcellulose (CMC) yang diinjeksikan secara IP, dan (iv) BLM+CMN, 100 µl bleomisin dengan konsentrasi 1 mg/ml diinjeksikan secara SC dan 100 mg/kg BB kurkumin dalam 0,5% CMC diinjeksikan secara IP. Semua perlakuan diberikan setiap hari selama 4 minggu. Organ paru-paru dikoleksi dalam 10% buffered neutral formalin (BNF).
    [Show full text]
  • JASON MARC GOLDSTEIN the Isolation, Characterization
    JASON MARC GOLDSTEIN The Isolation, Characterization and Cloning of Three Novel Peptidases From Streptoccocus gordonii: Their Potential Roles in Subacute Bacterial Endocarditis (Under the Direction of JAMES TRAVIS) Streptococcus gordonii is generally considered a benign inhabitant of the oral microflora yet is a primary etiological agent in the development of subacute bacterial endocarditis (SBE), an inflammatory state that propagates thrombus formation and tissue damage on the surface of heart valves. Colonization and adherence mechanisms have been identified, yet factors necessary to sustain growth remain unidentified. Strain FSS2 produced three extracellular aminopeptidase activities during growth in neutral pH- controlled batch cultures. The first included a serine-class dipeptidyl-aminopeptidase, an x-Pro DPP (Sg-xPDPP) found as an 85 kDa monomer by SDS-PAGE while appearing as a homodimer under native conditions. Kinetic studies indicated a unique and stringent x- Pro specificity comparable to the DPPIV/CD26 and lactococcal x-Pro DPP families. Isolation of the full-length gene uncovered a 759-amino acid polypeptide with a mass of 87,115 Da and theoretical pI of 5.6. Significant homology was found with PepX gene family members from Lactobacillus ssp. and Lactococcus ssp., and putative streptococcal x-Pro DPPs. The second activity was a putative serine-class arginine aminopeptidase (Sg- RAP) with some cysteine-class characteristics. It was found as a protein monomer of 70 kDa under denaturing conditions. Nested PCR cloning enabled the isolation of a 324 bp- long DNA fragment encoding the protein’s 108 amino acid N-terminus. Culture activity profiles and N-terminal sequence analysis indicated the release of this protein from the cell surface.
    [Show full text]
  • Genetic Polymorphism of the Angiotensin-Converting Enzyme (ACE) in Asthmatic Patients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector RESPIRATORY MEDICINE (1998) 92, 1305-1310 Original Articles Genetic polymorphism of the angiotensin-converting enzyme (ACE) in asthmatic patients H. TOMITA, S. SATO, R. MATSUDA, N. OGISU, T. MORI, T. NIIMI AND S. SHIMIZU 2nd Department of Intemal Medicine, Nagoya City University Medical School, Nagoya, Japan Angiotensin-converting enzyme (ACE) inactivates bradykinin, substance P and neurokinin A, which are believed to play important roles in the pathogenesis of asthma, especially in neurogenic inflammation. It has recently been shown that an insertion (1)ldeletion (D) polymorphism in the ACE gene accounts for variation in serum ACE levels. There are thus three genotypes (insertion homozygote, II; deletion homozygote, DD; heterozygotes, DI). The serum ACE level with the DD type is reported to be about double that of the II type and intermediate in the DI case. In the present study, we examined whether asthma is linked with this ACE gene polymorphism. Seventy-one patients with asthma (27 males and 44 females) and 142 sex- and age-matched healthy controls were determined for their genotype by the polymerase chain reaction (PCR) method. Twenty-five asthmatics demonstrated the II type (352%) 37 the DI type (52.1%), and nine the DD type (12.7%). There were no significant differences in the distributions of genotypes and serum ACE levels between healthy controls and patients. No significant differences were evident in serum IgE levels, age at onset, proportion of atopic type patients and severity of asthma among the three genotypes.
    [Show full text]