Freshwater Fishes of North America

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Fishes of North America Freshwater Fishes of North America © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 1 10/24/19 10:32 PM Freshwater Fishes of North Amer i ca VOLUME 2 Characidae to Poeciliidae Edited by Melvin L. Warren, Jr., and Brooks M. Burr With Anthony A. Echelle, Bernard R. Kuhajda, and Stephen T. Ross Illustrated by Joseph R. Tomelleri Johns Hopkins University Press BALTIMORE © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 3 10/24/19 10:32 PM This page intentionally left blank Freshwater Fishes of North Amer i ca VOLUME 2 Characidae to Poeciliidae Edited by Melvin L. Warren, Jr., and Brooks M. Burr With Anthony A. Echelle, Bernard R. Kuhajda, and Stephen T. Ross Illustrated by Joseph R. Tomelleri Johns Hopkins University Press BALTIMORE © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 3 10/24/19 10:32 PM © 2020 Johns Hopkins University Press All rights reserved. Published 2020 Printed in China on acid- free paper 9 8 7 6 5 4 3 2 1 Johns Hopkins University Press 2715 North Charles Street Baltimore, Mary land 21218-4363 www . press . jhu . edu Library of Congress Cataloging- in- Publication Data Freshwater fishes of North Amer i ca / edited by Melvin L. Warren, Jr., and Brooks M. Burr ; illustrated by Joseph R. Tomelleri. volumes cm Includes bibliographical references and index. ISBN-13: 978-1-4214-1201-6 (hardcover : alk. paper) ISBN-13: 978-1-4214-1202-3 (electronic) ISBN-10: 1-4214-1201-2 (hardcover : alk. paper) ISBN-10: 1-4214-1202-0 (electronic) 1. Freshwater fishes—North Amer i ca. I. Warren, Melvin L., Jr., editor of compilation. II. Burr, Brooks M., editor of compilation. QL625.F74 2014 597.176— dc23 2013015264 ISBN-13: 978-1-4214-3512-1 (hardcover : alk. paper) ISBN-13: 978-1-4214-3513-8 (electronic) ISBN-10: 1-4214-3512-8 (hardcover : alk. paper) ISBN-10: 1-4214-3513-6 (electronic) A cata log rec ord for this book is available from the British Library. Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410-516 -6936 or specialsales@press . jhu . edu. Johns Hopkins University Press uses environmentally friendly book materials, including recycled text paper that is composed of at least 30 percent post- consumer waste, whenever pos si ble. © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 4 10/24/19 10:32 PM Robert C. Cashner (1941–2018) Friend, teacher, mentor, leader, and stellar freshwater ichthyologist. We miss you, Bob. © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 5 10/24/19 10:32 PM This page intentionally left blank Contents List of Contributors ix Preface xi Melvin L. Warren, Jr., and Brooks M. Burr Acknowl edgments xix Chapter 14 Characidae: Characins 1 Norman Mercado- Silva, Claudia P. Ornelas- García, Juan Jacobo Schmitter- Soto, Nicholas J. Gidmark, and Andrew M. Simons Chapter 15 Ictaluridae: North American Catfishes 23 Brooks M. Burr, Melvin L. Warren, Jr., and Micah G. Bennett Chapter 16 Ariidae: Sea Catfishes 101 Matthew R. Thomas and Ricardo Betancur- R. Chapter 17 Heptapteridae: Seven- finned Catfishes 123 Matthew R. Thomas and Mark Henry Sabaj Chapter 18 Osmeridae: Smelts 149 Robert L. Hopkins II and Melvin L. Warren, Jr. Chapter 19 Esociformes: Esocidae, Pikes, and Umbridae (Mudminnows) 193 Frank H. McCormick, Terry Grande, Cheryl Theile, Melvin L. Warren, Jr., J. Andrés López, Mark V. H. Wilson, Roger A. Tabor, Julian D. Olden, and Lauren M. Kuehne Chapter 20 Percopsidae: Trout- perches 261 Brooks M. Burr and Melvin L. Warren, Jr. Chapter 21 Amblyopsidae: Cavefishes 281 Ginny L. Adams, Brooks M. Burr, and Melvin L. Warren, Jr. Chapter 22 Aphredoderidae: Pirate Perches 322 Brooks M. Burr and Melvin L. Warren, Jr. © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 7 10/24/19 10:32 PM viii CONTENTS Chapter 23 Gadidae (Gadinae and Lotinae): Cods and Cuskfishes 340 Peter B. Berendzen Chapter 24 Mugilidae: Mullets 367 Steven L. Powers Chapter 25 Atherinopsidae: New World Silversides 384 Kyle R. Piller and Clyde D. Barbour Chapter 26 Beloniformes: Belonidae (Needlefishes) and Hemiramphidae (Halfbeaks) 449 Bruce B. Collette and Stephen J. Walsh Chapter 27 Rivulidae: New World Rivulines 463 Ann M. Uzee O’Connell, Martin T. O’Connell, and Anthony A. Echelle Chapter 28 Profundulidae: Middle American Killifishes 493 Mollie F. Cashner and Anthony A. Echelle Chapter 29 Goodeidae: Goodeids 503 Shane A. Webb Chapter 30 Fundulidae: Topminnows 549 Robert C. Cashner, Jacob Schaefer, Melvin L. Warren, Jr., Anthony A. Echelle, Fernando Galvez, and Michael J. Ghedotti Chapter 31 Cyprinodontidae: Pupfishes 609 Anthony A. Echelle and Alice F. Echelle Chapter 32 Poeciliidae: Livebearers 674 Michael J. Ghedotti, Matthew P. Davis, and Anthony A. Echelle Lit er a ture Cited 739 Index of Scientific Names 889 General Index 898 © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 8 10/24/19 10:32 PM Contributors Ginny L. Adams Michael J. Ghedotti Steven L. Powers University of Central Arkansas Regis University Roanoke College Clyde D. Barbour (retired) Nicholas J. Gidmark Mark Henry Sabaj Wright University Knox College The Academy of Natu ral Sciences Micah G. Bennett Terry Grande of Drexel University U.S. Environmental Protection Agency Loyola University Chicago Jacob Schaefer Peter B. Berendzen Robert L. Hopkins II University of Southern Mississippi University of Northern Iowa University of Rio Grande Juan Jacobo Schmitter- Soto Ricardo Betancur- R. Lauren M. Kuehne El Colegio de la Frontera Sur University of Puerto Rico University of Washington Andrew M. Simons Brooks M. Burr J. Andrés López University of Minnesota Southern Illinois University University of Alaska Roger A. Tabor Mollie F. Cashner Frank H. McCormick U.S. Fish and Wildlife Ser vice Austin Peay State University USDA Forest Ser vice Cheryl Theile Robert C. Cashner (deceased) Norman Mercado- Silva Loyola University Chicago University of New Orleans Universidad Autónoma del Estado Matthew R. Thomas Bruce B. Collette de Morelos Kentucky Department of Fish National Museum of Natu ral History Ann M. Uzee O’Connell and Wildlife Resources Matthew P. Davis University of New Orleans Stephen J. Walsh St. Cloud State University Martin T. O’Connell U.S. Geological Survey Alice F. Echelle University of New Orleans Melvin L. Warren, Jr. Oklahoma State University Julian D. Olden USDA Forest Ser vice Anthony A. Echelle University of Washington Shane A. Webb Oklahoma State University Claudia P. Ornelas- García University of North Georgia Fernando Galvez Universidad Nacional Autónoma de Mark V. H. Wilson (emeritus) Louisiana State University México Tercer Circuito Exterior University of Alberta Kyle R. Piller Southeastern Louisiana University © 2019 The Johns Hopkins University Press UNCORRECTED PROOF Do not quote for publication until verified with finished book All rights reserved. No portion of this may be reproduced or distributed without permission. NOT FOR SALE OR DISTRIBUTION 349-82339_Warren_ch00_1P.indd 9 10/24/19 10:32 PM This page intentionally left blank Preface The North American freshwater fish fauna comprises knowledge of the North American freshwater fish fauna >1,300 native species in about 50 families. It is the most theretofore unknown. Shortly thereafter a physician from thoroughly studied and largest temperate fish fauna Forsythe, Missouri, combined his hobby of scuba diving (Miller et al. 2005; Page & Burr 2011) in the world. In and snorkeling with photography and revealed— new even comparison, an analy sis and compendium of Eu ro pean to specialists— the incredible colors of the North American freshwater fishes included 546 native species in about 24 native fish fauna, especially in their brightest breeding con- families (Kottelat & Freyhof 2007); Eu rope is about one- dition, as well as some of their unique and fascinating natu- third the land area of North Amer i ca. Australia has nearly ral histories. William N. Roston eventually traveled the 300 freshwater fishes in 35 families (Allen 1989; Allen continent looking for clear water and fish to photo graph in et al. 2002) in a land area about that of the United States their natu ral environment (never in aquaria). A number of (minus Alaska). This number includes many marine spe- his photo graphs are used in this volume. cies that enter fresh water, and highly unusual freshwater From the 1970s through the 1990s numerous books fish lineages occur there (e.g., Salamanderfish, Lepidogal- focused on fish faunas of individual states (e.g., Alabama, axias salamandroides; Australian Lungfish, Neoceratodus Arkansas, California, Idaho, Illinois, Kansas, Mississippi, forsteri; and Nurseryfish, Kurtus gulliveri).
Recommended publications
  • Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data
    Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data Lily C. Hughesa,b,1,2, Guillermo Ortía,b,1,2, Yu Huangc,d,1, Ying Sunc,e,1, Carole C. Baldwinb, Andrew W. Thompsona,b, Dahiana Arcilaa,b, Ricardo Betancur-R.b,f, Chenhong Lig, Leandro Beckerh, Nicolás Bellorah, Xiaomeng Zhaoc,d, Xiaofeng Lic,d, Min Wangc, Chao Fangd, Bing Xiec, Zhuocheng Zhoui, Hai Huangj, Songlin Chenk, Byrappa Venkateshl,2, and Qiong Shic,d,2 aDepartment of Biological Sciences, The George Washington University, Washington, DC 20052; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cShenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute Academy of Marine Sciences, Beijing Genomics Institute Marine, Beijing Genomics Institute, 518083 Shenzhen, China; dBeijing Genomics Institute Education Center, University of Chinese Academy of Sciences, 518083 Shenzhen, China; eChina National GeneBank, Beijing Genomics Institute-Shenzhen, 518120 Shenzhen, China; fDepartment of Biology, University of Puerto Rico–Rio Piedras, San Juan 00931, Puerto Rico; gKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306 Shanghai, China; hLaboratorio de Ictiología y Acuicultura Experimental, Universidad Nacional del Comahue–CONICET, 8400 Bariloche, Argentina; iProfessional Committee of Native Aquatic Organisms and Water Ecosystem, China Fisheries Association, 100125 Beijing, China; jCollege of Life Science and Ecology, Hainan Tropical Ocean University, 572022 Sanya, China; kYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China; and lComparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673 Singapore Edited by Scott V.
    [Show full text]
  • Global Diversity of Fish (Pisces) in Freshwater
    Hydrobiologia (2008) 595:545–567 DOI 10.1007/s10750-007-9034-0 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of fish (Pisces) in freshwater C. Le´veˆque Æ T. Oberdorff Æ D. Paugy Æ M. L. J. Stiassny Æ P. A. Tedesco Ó Springer Science+Business Media B.V. 2007 Abstract The precise number of extant fish spe- species live in lakes and rivers that cover only 1% cies remains to be determined. About 28,900 species of the earth’s surface, while the remaining 16,000 were listed in FishBase in 2005, but some experts species live in salt water covering a full 70%. While feel that the final total may be considerably higher. freshwater species belong to some 170 families (or Freshwater fishes comprise until now almost 13,000 207 if peripheral species are also considered), the species (and 2,513 genera) (including only fresh- bulk of species occur in a relatively few groups: water and strictly peripheral species), or about the Characiformes, Cypriniformes, Siluriformes, 15,000 if all species occurring from fresh to and Gymnotiformes, the Perciformes (noteably the brackishwaters are included. Noteworthy is the fact family Cichlidae), and the Cyprinodontiformes. that the estimated 13,000 strictly freshwater fish Biogeographically the distribution of strictly fresh- water species and genera are, respectively 4,035 species (705 genera) in the Neotropical region, 2,938 (390 genera) in the Afrotropical, 2,345 (440 Guest editors: E. V. Balian, C. Le´veˆque, H. Segers & K. Martens genera) in the Oriental, 1,844 (380 genera) in the Freshwater Animal Diversity Assessment Palaearctic, 1,411 (298 genera) in the Nearctic, and 261 (94 genera) in the Australian.
    [Show full text]
  • Seasonal and Diel Movements and Habitat Use of Robust Redhorses in the Lower Savannah River. Georgia, and South Carolina
    Transactions of the American FisheriesSociety 135:1145-1155, 2006 [Article] © Copyright by the American Fisheries Society 2006 DO: 10.1577/705-230.1 Seasonal and Diel Movements and Habitat Use of Robust Redhorses in the Lower Savannah River, Georgia and South Carolina TIMOTHY B. GRABOWSKI*I Department of Biological Sciences, Clemson University, Clemson, South Carolina,29634-0326, USA J. JEFFERY ISELY U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, South Carolina, 29634-0372, USA Abstract.-The robust redhorse Moxostonta robustum is a large riverine catostomid whose distribution is restricted to three Atlantic Slope drainages. Once presumed extinct, this species was rediscovered in 1991. Despite being the focus of conservation and recovery efforts, the robust redhorse's movements and habitat use are virtually unknown. We surgically implanted pulse-coded radio transmitters into 17 wild adults (460-690 mm total length) below the downstream-most dam on the Savannah River and into 2 fish above this dam. Individuals were located every 2 weeks from June 2002 to September 2003 and monthly thereafter to May 2005. Additionally, we located 5-10 individuals every 2 h over a 48-h period during each season. Study fish moved at least 24.7 ± 8.4 river kilometers (rkm; mean ± SE) per season. This movement was generally downstream except during spring. Some individuals moved downstream by as much as 195 rkm from their release sites. Seasonal migrations were correlated to seasonal changes in water temperature. Robust redhorses initiated spring upstream migrations when water temperature reached approximately 12'C. Our diel tracking suggests that robust redhorses occupy small reaches of river (- 1.0 rkm) and are mainly active diumally.
    [Show full text]
  • Atheriniformes : Atherinidae
    Atheriniformes: Atherinidae 2111 Atheriniformes: Atherinidae Order ATHERINIFORMES ATHERINIDAE Silversides by L. Tito de Morais, IRD/LEMAR, University of Brest, Plouzané, France; M. Sylla, Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT), Senegal and W. Ivantsoff (retired), Biology Science, Macquarie University NSW 2109, North Ryde, Australia iagnostic characters: Small, elongate fish, rarely exceeding 15 cm in length. Body elongate and Dsomewhat compressed. Short head, generally flattened dorsally, large eyes, sharp nose, mouth small, oblique and in terminal position, jaws subequal, reaching or slightly exceeding the anterior margin of the eye; premaxilla with ascending process of variable length, with lateral process present or absent; ramus of dentary bone elevated posteriorly or indistinct from anterior part of lower jaw; fine, small and sharp teeth on the jaws, on the roof of mouth (vomer, palatine, pterygoid) or on outside of mouth; 10 to 26 gill rakers long and slender on lower arm of first gill arch. Two well-separated dorsal fins, the first with 6 to 10 thin, flexible spines, located approximately in the middle of the body; the second dorsal and anal fins with a single small weak spine, 1 unbranched soft ray and a variable number of soft rays. Anal fin always originating slightly in advance of second dorsal fin; pectoral fins inserted high on the flanks, directly behind posterior rim of gill cover, with spine greatly reduced and first ray much thicker than those following. Abdomninal pelvic fins with 1 spine and 5 soft rays; forked caudal fin; anus away from the origin of the anal fin. Relatively large scales, cycloid (smooth).
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Age, Growth and Body Condition of Big-Scale Sand Smelt Atherina Boyeri Risso, 1810 Inhabiting a Freshwater Environment: Lake Trasimeno (Italy)
    Knowledge and Management of Aquatic Ecosystems (2015) 416, 09 http://www.kmae-journal.org c ONEMA, 2015 DOI: 10.1051/kmae/2015005 Age, growth and body condition of big-scale sand smelt Atherina boyeri Risso, 1810 inhabiting a freshwater environment: Lake Trasimeno (Italy) M. Lorenzoni(1), D. Giannetto(2),,A.Carosi(1), R. Dolciami(3), L. Ghetti(4), L. Pompei(1) Received September 24, 2014 Revised January 29, 2015 Accepted January 29, 2015 ABSTRACT Key-words: The age, growth and body condition of the big-scale sand smelt (Athe- Population rina boyeri) population of Lake Trasimeno were investigated. In total, dynamics, 3998 specimens were collected during the study and five age classes Lee’s (from 0+ to 4+) were identified. From a subsample of 1017 specimens, phenomenon, there were 583 females, 411 males and 23 juveniles. The equations = − fishery between total length (TL) and weight (W) were: log10 W 2.326 + = − management, 3.139 log10 TL for males and log10 W 2.366 + 3.168 log10 TL for fe- introduced males. There were highly significant differences between the sexes and species, for both sexes the value of b (slope of the log (TL-W regression) was Lake Trasimeno greater than 3 (3.139 for males and 3.168 for females), indicating positive allometric growth. The parameters of the theoretical growth curve were: −1 TLt = 10.03 cm; k = 0.18 yr , t0 = −0.443 yr and Φ = 1.65. Monthly trends of overall condition and the gonadosomatic index (GSI) indicated that the reproductive period occurred from March to September. Analy- sis of back-calculated lengths indicated the occurrence of a reverse Lee’s phenomenon.
    [Show full text]
  • Amblyopsidae, Amblyopsis)
    A peer-reviewed open-access journal ZooKeys 412:The 41–57 Hoosier(2014) cavefish, a new and endangered species( Amblyopsidae, Amblyopsis)... 41 doi: 10.3897/zookeys.412.7245 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana Prosanta Chakrabarty1,†, Jacques A. Prejean1,‡, Matthew L. Niemiller1,2,§ 1 Museum of Natural Science, Ichthyology Section, 119 Foster Hall, Department of Biological Sciences, Loui- siana State University, Baton Rouge, Louisiana 70803, USA 2 University of Kentucky, Department of Biology, 200 Thomas Hunt Morgan Building, Lexington, KY 40506, USA † http://zoobank.org/0983DBAB-2F7E-477E-9138-63CED74455D3 ‡ http://zoobank.org/C71C7313-142D-4A34-AA9F-16F6757F15D1 § http://zoobank.org/8A0C3B1F-7D0A-4801-8299-D03B6C22AD34 Corresponding author: Prosanta Chakrabarty ([email protected]) Academic editor: C. Baldwin | Received 12 February 2014 | Accepted 13 May 2014 | Published 29 May 2014 http://zoobank.org/C618D622-395E-4FB7-B2DE-16C65053762F Citation: Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412: 41–57. doi: 10.3897/zookeys.412.7245 Abstract We describe a new species of amblyopsid cavefish (Percopsiformes: Amblyopsidae) in the genus Amblyopsis from subterranean habitats of southern Indiana, USA. The Hoosier Cavefish, Amblyopsis hoosieri sp. n., is distinguished from A. spelaea, its only congener, based on genetic, geographic, and morphological evi- dence. Several morphological features distinguish the new species, including a much plumper, Bibendum- like wrinkled body with rounded fins, and the absence of a premature stop codon in the gene rhodopsin.
    [Show full text]
  • Global Patterns of Ranavirus Detections
    NOTE Global patterns of ranavirus detections Jesse L. Brunnera*, Deanna H. Olsonb, Matthew J. Grayc, Debra L. Millerd, and Amanda L.J. Duffuse aSchool of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; bUSDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331-8550, USA; cDepartment of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; dCollege of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; eDepartment of Natural Sciences, Gordon State College, Barnesville, GA 30204, USA *[email protected] Abstract Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiol- ogy, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diag- nostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the OPEN ACCESS reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this For personal use only.
    [Show full text]
  • Appendix 1. (Online Supplementary Material) Species, Gliding Strategies
    Appendix 1. (Online Supplementary Material) Species, gliding strategies, species distributions, geographic range sizes, habitat, and egg buoyancy characteristics used for concentrated changes tests. Species Gliding strategy Species distribution (reference #) Geographic range size Habitat (reference #) Egg buoyancy (reference #) Cheilopogon abei (Parin, 1996) 4 wings Indian, Indo-Pacific (1) 2 or more ocean basins meroepipelagic (1) Buoyant (2) Cheilopogon atrisignis (Jenkins, 1903) 4 wings Indian, Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon cyanopterus (Valenciennes, 1847) 4 wings Atlantic, Indo-Pacific (2) 2 or more ocean basins meroepipelgic (3) Non-Buoyant (5) Cheilopogon dorsomacula (Fowler, 1944) 4 wings Pacific (1) within 1 ocean basin holoepipelagic (1) Buoyant (2) Cheilopogon exsiliens (Linnaeus, 1771) 4 wings Atlantic (2) within 1 ocean basin holoepipelagic (3) Buoyant (2,5) Cheilopogon furcatus (Mitchill, 1815) 4 wings Atlantic, Indian, Pacific (6) 2 or more ocean basins holoepipelagic (3) Non-Buoyant (5) Cheilopogon melanurus (Valenciennes, 1847) 4 wings Atlantic (7) within 1 ocean basin meroepipelagic (7) Non-Buoyant (5,8) Cheilopogon pinnatibarbatus (californicus) (Cooper, 1863) 4 wings eastern tropical Pacific (9) within 1 ocean basin meroepipelgic (3) Non-Buoyant (10) Cheilopogon spilonotopterus (Bleeker, 1865) 4 wings Indian and Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon xenopterus (Gilbert, 1890) 4 wings eastern tropical Pacific (11) within 1 ocean basin
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • Vertebrate Proteins Predicted from Genomic Sequences
    Vertebrate proteins predicted from genomic sequences VWD C8 TIL PTS Mucin2_WxxW F5_F8_type_C FCGBP_N VWC Lethenteron_camtschaticum Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Lethenteron Lethenteron_camtschaticum.0.pep1 Petromyzon_marinus Cyclostomata; Hyperoartia; Petromyzontiformes; Petromyzontidae; Petromyzon Petromyzon_marinus.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep1 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep2 Callorhinchus_milii Gnathostomata; Chondrichthyes; Holocephali; Chimaeriformes; Callorhinchidae; Callorhinchus Callorhinchus_milii.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep1 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep2 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.0.pep3 Lepisosteus_oculatus Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Holostei; Semionotiformes; Lepisosteus_oculatus.1.pep1 TILa Cynoglossus_semilaevis Gnathostomata; Teleostomi; Euteleostomi; Actinopterygii; Actinopteri; Neopterygii; Teleostei; Cynoglossus_semilaevis.1.pep1
    [Show full text]