Age, Growth and Body Condition of Big-Scale Sand Smelt Atherina Boyeri Risso, 1810 Inhabiting a Freshwater Environment: Lake Trasimeno (Italy)

Total Page:16

File Type:pdf, Size:1020Kb

Age, Growth and Body Condition of Big-Scale Sand Smelt Atherina Boyeri Risso, 1810 Inhabiting a Freshwater Environment: Lake Trasimeno (Italy) Knowledge and Management of Aquatic Ecosystems (2015) 416, 09 http://www.kmae-journal.org c ONEMA, 2015 DOI: 10.1051/kmae/2015005 Age, growth and body condition of big-scale sand smelt Atherina boyeri Risso, 1810 inhabiting a freshwater environment: Lake Trasimeno (Italy) M. Lorenzoni(1), D. Giannetto(2),,A.Carosi(1), R. Dolciami(3), L. Ghetti(4), L. Pompei(1) Received September 24, 2014 Revised January 29, 2015 Accepted January 29, 2015 ABSTRACT Key-words: The age, growth and body condition of the big-scale sand smelt (Athe- Population rina boyeri) population of Lake Trasimeno were investigated. In total, dynamics, 3998 specimens were collected during the study and five age classes Lee’s (from 0+ to 4+) were identified. From a subsample of 1017 specimens, phenomenon, there were 583 females, 411 males and 23 juveniles. The equations = − fishery between total length (TL) and weight (W) were: log10 W 2.326 + = − management, 3.139 log10 TL for males and log10 W 2.366 + 3.168 log10 TL for fe- introduced males. There were highly significant differences between the sexes and species, for both sexes the value of b (slope of the log (TL-W regression) was Lake Trasimeno greater than 3 (3.139 for males and 3.168 for females), indicating positive allometric growth. The parameters of the theoretical growth curve were: −1 TLt = 10.03 cm; k = 0.18 yr , t0 = −0.443 yr and Φ = 1.65. Monthly trends of overall condition and the gonadosomatic index (GSI) indicated that the reproductive period occurred from March to September. Analy- sis of back-calculated lengths indicated the occurrence of a reverse Lee’s phenomenon. This could be a symptom of predation or competition, with consequences for young specimens with slower growth and smaller size. RÉSUMÉ Âge, croissance et condition physique des athérines Atherina boyeri Risso, 1810 d’un milieu d’eau douce : le lac Trasimène (Italie) Mots-clés : L’âge, la croissance et la condition physiquedelapopulationd’athérine(Athe- dynamique rina boyeri) du lac Trasimène ont été étudiés. Au total, 3998 échantillons ont été de population, prélevés au cours de l’étude et cinq classes d’âge (de 0+ à 4+) ont été iden- phénomène tifiées. D’un sous-échantillon de 1017 spécimens le sexe a été déterminé, soit de Lee, 583 femelles, 411 mâles et 23 juvéniles. Les équations entre la longueur totale = − gestion ((TL)etlepoids(W)sont:log10 W 2,326 + 3,139 log10 TL pour les mâles et log W = −2,366 + 3,168 log TL pour les femelles. Il y a une différence très de la pêche, 10 10 significative entre les sexes et pour les deux sexes la valeur de b (pente de la régression) est supérieure à 3 (3,139 pour les mâles et 3,168 pour les femelles), (1) Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto, 06123 Perugia, Italy (2) Department of Biology, Faculty of Sciences, Mug˘ la Sitki Koçman University, 48000 Mug˘ la, Turkey (3) Provincia di Perugia, Centro Ittiogenico del Trasimeno, Via della Palazzetta, 06063 S. Arcangelo, Italy (4) Regione dell’Umbria, Sezione Tutela del Patrimonio Ittico e Pesca Sportiva, Piazza del Bacio, 06123 Perugia, Italy Corresponding author: [email protected] Article published by EDP Sciences M. Lorenzoni et al.: Knowl. Manag. Aquat. Ecosyst. (2015) 416, 09 espèce ce qui indique une croissance allométrique positive. Les paramètres de la courbe −1 introduite, de croissance théorique sont : TLt = 10,03 cm ; k = 0,18 yr , t0 = −0,443 yr et Φ = lac Trasimène 1,65. Les tendances mensuelles de l’état général et de l’indice gonado-somatique (GSI) indiquent que la période de reproduction a eu lieu de mars à septembre. L’analyse des longueurs rétro-calculées indique la présence d’un phénomène de Lee inversé. Ce pourrait être un symptôme de la prédation ou de la concurrence ayant des conséquences sur les jeunes spécimens à croissance plus lente et de plus petite taille. INTRODUCTION The big-scale sand smelt, Atherina boyeri Risso 1810, is a small inshore species common in the Mediterranean (along the Mediterranean coasts, and Black, Azov and Caspian Sea basins) and in the north-east Atlantic (from the Azores to the north-west coast of Scotland) (Quignard and Pras, 1986; Whitehead et al., 1986;Biancoet al., 2013). This species mainly inhabits coastal and estuarine waters and lagoons, over a wide range of salinities (from freshwater to hypersaline) and, more rarely, freshwaters (Freyhof and Kottelat, 2008). A few permanent freshwater resident populations have also been reported from Santo André lagoon (Iberian Peninsula) and Trichonis Lake (Greece) (Freyhof and Kottelat, 2008). Moreover, this euryhaline species was successfully introduced into many lakes for stock enhancement purposes or due to accidental transfer (Economidis et al., 2000;Leonardos,2001;Biancoet al., 2013). In Italy, the species is native but its original range has been expanded by introductions in many lakes (Bianco et al., 2013). In Lake Trasimeno the big-scale sand smelt was introduced, probably accidentally, in 1920 (Moretti et al., 1959) together with juveniles of other species of commercial interest. Since 1928, when the species started to be caught by commercial fishermen (Moretti et al., 1959), the big-scale sand smelt gained increasing commercial value. Almost irrelevant in the total catch until 1980 (Mearelli et al., 1990), in the following years the big-scale sand smelt has become a primary source for commercial catches of local fishermen, representing 29% of the total catch in 1995−2004 (Lorenzoni and Ghetti, 2012). Nowadays, the big-scale sand smelt is the dominant species in the fish community of Lake Trasimeno, where it represents more than 50% of the total catch (Pompei et al., 2012a)andthemain source of fishing revenues. Although several studies on the age and growth of big-scale sand smelt have been reported in the literature, only a few have focused on populations inhabiting lakes (Mantilacci et al., 1990;Leonardos,2001,Özeren,2009). The aim of this study was therefore to evaluate the age, growth and body condition of the big-scale sand smelt in Lake Trasimeno. MATERIALS AND METHODS Lake Trasimeno is located within the Tiber River basin in Central Italy (Figure 1)(43◦911 N and 12◦15 E). It is the fourth largest lake in Italy (124.3 km2) and the largest Italian laminar lake due to its shallowness (average depth: 4.72 m; max. depth: 6.3 m) (Mearelli et al., 1990). Lake Trasimeno is listed as a Site of Community Interest (SCI) and Special Protection Area (SPA) within the Natura 2000 European network and it was assessed as a Regional Park. The lake is characterised by a Mediterranean climate and its seasonal level is quite variable (in 2012 from −92 cm to −154 cm during summer relative to the reference level) because water is supplied by short intermittent streams that tend to dry up during the summer season (Pompei et al., 2012b). The water temperature is almost the same as the air temperature, and in summer it can exceed 30 ◦C; thermal stratification is usually absent (Lorenzoni et al., 2002b). Lake Trasimeno is classified as meso-eutrophic (Mearelli et al., 1981;Giovanardiet al., 1995). 09p2 M. Lorenzoni et al.: Knowl. Manag. Aquat. Ecosyst. (2015) 416, 09 Figure 1 Map of Italy showing the localization of the study area Trasimeno lake (blue dot). With regard to fish fauna, the introduction of exotic species together with the fluctuating hydrological regime of the lake and the impact of fisheries have probably contributed to se- vere alteration of the native fish community (Mearelli et al., 1990;Lorenzoniet al., 2006). Currently, this comprises 19 species, only five of which are native: pike Esox lucius Lin- naeus, 1758; cavedano chub Squalus squalius (Bonaparte, 1837); tench Tinca tinca (Linnaeus, 1758); rudd Scardinius erythrophthalmus (Linnaeus, 1758) and eel Anguilla anguilla (Linnaeus, 1758). Among the introduced species, together with some fishes of commercial interest (i.e. European perch Perca fluviatilis Linnaeus, 1758 and largemouth bass Micropterus salmoides Lacepede, 1802) other species including goldfish Carassius auratus (Linnaeus, 1758) and top- mouth gudgeon Pseudorabora parva (Temminck and Schlegel, 1846) are invasive and con- sidered dangerous for the lake’s ecosystem (Lorenzoni et al., 2007). In fact, the latter species are among the world’s most invasive fish and assessed as potential pests (Froese and Pauly, 2012). Specifically, topmouth gudgeon, which was first recorded in the lake in the late ’90s, can now be considered acclimated and increasing in abundance (Lorenzoni et al., 2010). The goldfish is currently the most caught cyprinid species in the lake and its introduction has probably led to the decline of the native tench population (Lorenzoni and Ghetti, 2012). Early maturity, ability to reproduce by gynogenesis, high fecundity and absence of preda- tors in Lake Trasimeno are the main characteristics thought to have determined its success (Lorenzoni et al., 2007). > COLLECTION OF SPECIMENS Specimens of big-scale sand smelt were randomly taken from professional fishermen’s catches twice a month from January 2012 to January 2013. Samples were collected by means of fyke nets, cat nets and gill nets (mesh sizes 5, 6.25 and 8 mm) placed in different locations across the lake. For all specimens, total length (TL) and standard length (SL) were measured to the nearest 0.1 cm, and weight to the nearest 0.1 g (Anderson and Neumann, 1996)andasampleof 09p3 M. Lorenzoni et al.: Knowl. Manag. Aquat. Ecosyst. (2015) 416, 09 scales was collected from each specimen for age determination. All scales were stored in ethanol (33%) and later observed under a stereo microscope using the image-analysis sys- tem IAS 2000. Age was determined by the scalimetric method (Bagenal, 1978) and further validated through analysis of the length-frequency distribution (Britton et al., 2004).
Recommended publications
  • Atheriniformes : Atherinidae
    Atheriniformes: Atherinidae 2111 Atheriniformes: Atherinidae Order ATHERINIFORMES ATHERINIDAE Silversides by L. Tito de Morais, IRD/LEMAR, University of Brest, Plouzané, France; M. Sylla, Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT), Senegal and W. Ivantsoff (retired), Biology Science, Macquarie University NSW 2109, North Ryde, Australia iagnostic characters: Small, elongate fish, rarely exceeding 15 cm in length. Body elongate and Dsomewhat compressed. Short head, generally flattened dorsally, large eyes, sharp nose, mouth small, oblique and in terminal position, jaws subequal, reaching or slightly exceeding the anterior margin of the eye; premaxilla with ascending process of variable length, with lateral process present or absent; ramus of dentary bone elevated posteriorly or indistinct from anterior part of lower jaw; fine, small and sharp teeth on the jaws, on the roof of mouth (vomer, palatine, pterygoid) or on outside of mouth; 10 to 26 gill rakers long and slender on lower arm of first gill arch. Two well-separated dorsal fins, the first with 6 to 10 thin, flexible spines, located approximately in the middle of the body; the second dorsal and anal fins with a single small weak spine, 1 unbranched soft ray and a variable number of soft rays. Anal fin always originating slightly in advance of second dorsal fin; pectoral fins inserted high on the flanks, directly behind posterior rim of gill cover, with spine greatly reduced and first ray much thicker than those following. Abdomninal pelvic fins with 1 spine and 5 soft rays; forked caudal fin; anus away from the origin of the anal fin. Relatively large scales, cycloid (smooth).
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • Atherina Presbyter Cuvier of Langstone Harbour, Hampshire
    THE BIOLOGY OF THE BRITISH ATHERINIDAE, WITH PARTICULAR REFERENCE TO ATHERINA PRESBYTER CUVIER OF LANGSTONE HARBOUR, HAMPSHIRE CHRISTOPHER JAMES PALMER, B.Sc. (C.N.A.A.) A thesis presented in candidature for the degree of Doctor of Philosophy of the Council for National Academic Awards DEPARTMENT OF BIOLOGICAL SCIENCES PORTSMOUTH POLYTECHNIC 8004420 SEPTEMBER 1979. CONTENTS Page Abstract ii Acknowledgements J SECTION I GENERAL INTRODUCTION SECTION II STUDY AREAS AND GENERAL METHODS 6 2.1. Study areas and methods of sample capture 6 2.1.1. Langstone Harbour, Hampshire 6 2.1.2. Fawley, Hampshire t1 2.1.3. Medina Estuary, Isle of Wight 11 2.1.4. Oldbury-upon-Severn, Gloucestershire 14 2,1.5. Pembroke Power Station 15 2.1.6. Chapman's Pool, Dorset JS 2.1.7. Lowestoft, Suffolk .15 2.1.8. Jersey, Channel Islands _15 2.2. Preservation of material 15 2.3. Age convention J7 2.4. Body length and weight _17 2.5. Statistical treatments 18 SECTION III TAXONOMY OF THE BRITISH ATHERINIDAE 20 3. 1. Introduction 20 3.2. British literature 21 3.2.1. Comparison with Kiener and Spillmann's 25 key 3.2.2. Other meristics and morphometrics 25 3.3. Methods and materials 25 3.4. Results and discussion 27 3.4.1. Specific identity 27 3.4.2. Geographical variation in A. presbyter 33 around the British Isles 3.4.3. Sexual dimorphism and the effects of age 33 and length on morphometrics 3.4.4. Key modifications 40 Page 3.4.5. Species descriptions 40 3.5.
    [Show full text]
  • Ponticola Bathybius (A Goby, No Common Name) Ecological Risk Screening Summary
    Ponticola bathybius (a goby, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2012 Revised, August 2018 Web Version, 10/28/2019 Photo: K. Abbasi. Licensed under CC BY-SA 3.0. Available: http://eol.org/pages/215017/overview. (August 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “Former USSR and Asia: Caspian Sea. Restricted to brackish water habitats [Patzner et al. 2011]” According to Naseka and Bogutskaya (2009), P. bathybius is endemic to the whole Caspian Sea. Status in the United States This species has not been reported as introduced or established in the United States. This species was not found in the aquarium trade. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. Remarks According to Eschmeyer et al. (2018), historical synonyms for P. bathybius include Gobius bathybius, Chasar bathybius, and Neogobius bathybius. All synonyms were used to search for information for this report. 1 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Froese and Pauly (2018b): “Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > Actinopterygii (Class) > Perciformes (Order) > Gobioidei (Suborder) > Gobiidae (Family) > Gobiinae (Subfamily) > Ponticola (Genus) > Ponticola bathybius (Species)” From Eschmeyer et al. (2018): “bathybius, Gobius […] Current status: Valid as Ponticola bathybius (Kessler 1877).” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 29.3 cm TL male/unsexed; [Abdoli et al. 2009]” Environment From Froese and Pauly (2018a): “Brackish; demersal; depth range ? - 198 m [Eschmeyer 1998].” From Bani et al.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Short Communication Length-Weight Relationships of Atherina
    Indian Journal of Geo Marine Sciences Vol. 49 (06), June 2020, pp. 1099-1104 Short Communication Length-weight relationships of Atherina boyeri was introduced into many lakes for stock 2-4 boyeri Risso, 1810 and A. hepsetus Linnaeus, enhancement purposes or due to accidental transfer . 1758 (Teleostei: Atherinidae) from some Adaptability to variable environmental conditions allows the A. boyeri to become established in many inland, brackish water and marine systems of aquatic habitats outside their native range. Abundance Turkey of this small pelagic fish has significantly increased in some altered and natural lake systems of Turkey more ,a b D İnnal* & S Engin recently (personal obs, Deniz Innal). aBurdur Mehmet Akif Ersoy University, Department of Biology, The importance of growth parameters and length Burdur – 15100, Turkey weight relationships has been emphasised by various bİzmir Katip Çelebi University, Fisheries Faculty, İzmir – 35620, Turkey researchers. For the successful management of *[E-mail: [email protected]] populations of Atherina species, it is important to understand the relationship between length and Received 17 May 2019; revised 18 June 2019 weight of these fishes in their natural environment. In Turkey, sand smelts have been poorly studied and Members of Genus Atherina inhabit inshore marine 3-9 environments as well as brackish and freshwater habitats. Growth very little biological information is available . This properties of Atherina species remain poorly understood, despite study presents the existence and length-weight their wide distribution. This study aims to present the length–weight relationship for Mediterranean sand smelt and Big- relationships of Mediterranean sand smelt, Atherina hepsetus scale sand smelt, from some inland, brackish water Linnaeus, 1758 and Big-scale sand smelt, Atherina boyeri from some inland, brackish water and marine systems of Turkey.
    [Show full text]
  • Atlas of Marine Bony Fish Otoliths (Sagittae) of Southeastern-Southern
    Original Article / Artigo Original Conversani et al.: Sagittae from the SouthwestBJOCE Atlantic Ocean Atlas of marine bony fish otoliths (sagittae) of Southeastern-Southern Brazil Part VII: Atheriniformes, Beloniformes, Beryciformes, Zeiformes, Syngnathiformes, Scorpaeniformes and Tetraodontiformes Valéria Regina Martins Conversani1, Marina Rito Brenha-Nunes1, César Santificetur1, Marcella Bockis Giaretta1, Carolina Correia Siliprandi1, Carmen Lucia Del Bianco Rossi-Wongtschowski1* 1 Instituto Oceanográfico da Universidade de São Paulo (Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil) *Corresponding author: [email protected] ABSTRACT RESUMO In addition to the series of documents that we have Em adição à série de documentos que estamos been publishing on the "Atlas of Teleostei Otoliths publicando sobre o "Atlas de Otólitos para os peixes for the Southeastern-Southern Brazilian region", in Teleósteos da região Sudeste-Sul do Brasil", neste this volume we present the results of species of the volume apresentamos os resultados obtidos para espécies orders Atheriniformes (1 species), Beloniformes (5), das ordens Atheriniformes (1 espécie), Beloniformes Beryciformes (2), Zeiformes (2), Syngnathiformes (5), Beryciformes (2), Zeiformes (2), Syngnathiformes (2), Scorpaeniformes (9) and Tetraodontiformes (6). (2), Scorpaeniformes (9) e Tetraodontiformes (6). Foram Features, measurements and indices were analyzed analisadas as feições, medidas e índices usualmente according to methodology used in anterior series. empregados conforme metodologia
    [Show full text]
  • (Qeshm Island) Using Ecopath with Ecosim
    Modelling trophic structure and energy flows in the coastal ecosystem of the Persian Gulf using Ecopath with Ecosim Item Type thesis Authors Hakimelahi, Maryam Publisher Khorramshahr University of Marine Science and Technology, Faculty of Marine Science and Oceanography, Department of Marine Biology Download date 30/09/2021 15:54:43 Link to Item http://hdl.handle.net/1834/35825 Khorramshahr University of Marine Science and Technology Faculty of Marine Science and Oceanography Department of Marine Biology Ph.D. Thesis Modelling trophic structure and energy flows in the coastal ecosystem of the Persian Gulf (Qeshm Island) using Ecopath with Ecosim Supervisors: Dr. Ahmad Savari Dr. Babak Doustshenas Advisors: Dr. Mehdi Ghodrati Shojaei Dr. Kristy A.Lewis By: Maryam Hakimelahi June 2018 167 Abstract In the present study, the trophic structure for some species of the coastal ecosystem of south of the Qeshm Island was developed using the mass balance modeling software Ecopath (Version 6.5.1). In this model, 33 functional groups including fish, benthos, phytoplankton, zooplankton, seaweed and detritus were simulated. In total, 3757 samples of stomach contents were analyzed based on the weight and numerical methods. Bony fish and crustacean were found to be the main prey in most of the stomach contents. The mean trophic level in the study area was calculated to be 3.08. The lowest trophic level was belonged to Liza klunzingeri, (2.50) and the highest belong to Trichiurus lepturus (4.45). The range of total mortality varied from 1.11 per year for T. Lepturus to 3.55 per year for Sillago sihama.
    [Show full text]
  • Thirsty Eel Oct. 11-Corrections
    1 THE THIRSTY EEL: SUMMER AND WINTER FLOW THRESHOLDS THAT TILT THE EEL 2 RIVER OF NORTHWESTERN CALIFORNIA FROM SALMON-SUPPORTING TO 3 CYANOBACTERIALLY-DEGRADED STATES 4 5 In press, Special Volume, Copeia: Fish out of Water Symposium 6 Mary E. Power1, 7 Keith Bouma-Gregson 2,3 8 Patrick Higgins3, 9 Stephanie M. Carlson4 10 11 12 13 14 1. Department of Integrative Biology, Univ. California, Berkeley, Berkeley, CA 94720; Email: 15 [email protected] 16 17 2. Department of Integrative Biology, Univ. California, Berkeley, Berkeley, CA 94720; Email: 18 [email protected]> 19 20 3. Eel River Recovery Project, Garberville CA 95542 www.eelriverrecovery.org; Email: 21 [email protected] 22 23 4. Environmental Sciences, Policy and Management, University of California, Berkeley, Berkeley, CA 24 94720; Email: [email protected] 25 26 27 Running head: Discharge-mediated food web states 28 29 Key words: cyanobacteria, discharge extremes, drought, food webs, salmonids, tipping points 30 31 Although it flows through regions of Northwestern California that are thought to be relatively well- 32 watered, the Eel River is increasingly stressed by drought and water withdrawals. We discuss how critical 33 threshold changes in summer discharge can potentially tilt the Eel from a recovering salmon-supporting 34 ecosystem toward a cyanobacterially-degraded one. To maintain food webs and habitats that support 35 salmonids and suppress harmful cyanobacteria, summer discharge must be sufficient to connect mainstem 36 pools hydrologically with gently moving, cool base flow. Rearing salmon and steelhead can survive even 37 in pools that become isolated during summer low flows if hyporheic exchange is sufficient.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Achimer Habitat Discrimination of Big-Scale Sand Smelt Atherina
    1 Italian Journal of Zoology Achimer May 2015, Vol. 82, Issue 3, Pages 446-453 http://dx.doi.org/10.1080/11250003.2015.1051139 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00270/38079/ © 2015 Unione Zoologica Italiana Habitat discrimination of big-scale sand smelt Atherina boyeri Risso, 1810 (Atheriniformes: Atherinidae) in eastern Algeria using somatic morphology and otolith shape Boudinar Sofiane 1, Chaoui Lamya 1, Mahe Kelig 2, Cachera Marie 2, Kara Hichem 1, * 1 Marine Bioresources Laboratory, Annaba University Badji Mokhtar, Algeria 2 IFREMER, Sclerochronology Centre, Fisheries Laboratory, Boulogne-sur-Mer, France * Corresponding author : Hichem Kara, Tel: +213 770312458 ; Fax: +213 38868510 ; email: [email protected] Abstract : Somatic morphology and otolith shape were used to discriminate four samples of Atherina boyeri from three different habitats: Mellah lagoon (n = 269), Annaba Gulf (144 punctuated and 194 unpunctuated individuals) and Ziama inlet (n = 147) in eastern Algeria. For each individual, somatic morphology was described with 13 metrics and eight meristic measurements, while the otolith contour shape of 452 individuals from the three habitats was analysed using Fourier analysis. Then, two discriminant analyses, one using the 13 metric measurements and the other using Fourier descriptors, were used in order to discriminate populations of A. boyeri. The results of the discriminant analyses based on the two methods were similar, and showed that this species could be discriminated into three distinct groups: (1) marine punctuated, (2) lagoon and marine unpunctuated and (3) estuarine. These results are consolidated by the comparison of the Mayr, Linsley and Usinger coefficient of difference for the meristic parameters according to the location origin, where the difference reached a racial or even sub- specific level for some characters, depending on which pairs of populations were compared.
    [Show full text]
  • Multi-Locus Fossil-Calibrated Phylogeny of Atheriniformes (Teleostei, Ovalentaria)
    Molecular Phylogenetics and Evolution 86 (2015) 8–23 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Daniela Campanella a, Lily C. Hughes a, Peter J. Unmack b, Devin D. Bloom c, Kyle R. Piller d, ⇑ Guillermo Ortí a, a Department of Biological Sciences, The George Washington University, Washington, DC, USA b Institute for Applied Ecology, University of Canberra, Australia c Department of Biology, Willamette University, Salem, OR, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA article info abstract Article history: Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve Received 29 December 2014 on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a Revised 21 February 2015 small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence Accepted 2 March 2015 data collected for eight molecular markers for a representative sample of 103 atheriniform species, cover- Available online 10 March 2015 ing 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to pro- vide an explicit timeframe for the diversification of this group. Our results support the subdivision of Keywords: Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae Silverside fishes within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic Marine to freshwater transitions Marine dispersal changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further Molecular markers study is necessary to support a revised taxonomy of Atherinoidei.
    [Show full text]