Small Size Does Not Restrain Frugivory and Seed Dispersal Across the Evolutionary Radiation of Gala´ Pagos Lava Lizards

Total Page:16

File Type:pdf, Size:1020Kb

Small Size Does Not Restrain Frugivory and Seed Dispersal Across the Evolutionary Radiation of Gala´ Pagos Lava Lizards Downloaded from https://academic.oup.com/cz/advance-article-abstract/doi/10.1093/cz/zoy066/5069192 by Departamento de Matemática da Fac. Ciências e Tecnologia Universidade Coimbra user on 13 September 2018 Current Zoology, 2018, 1–9 doi: 10.1093/cz/zoy066 Advance Access Publication Date: 10 August 2018 Article Article Small size does not restrain frugivory and seed dispersal across the evolutionary radiation of Gala´ pagos lava lizards a, b a Sandra HERVI´AS-PAREJO *, Ruben HELENO , Beatriz RUMEU , c c d a Beatriz GUZMAN , Pablo VARGAS , Jens M. OLESEN , Anna TRAVESET , e f g Carlos VERA , Edgar BENAVIDES , and Manuel NOGALES aInstitut Mediterrani d’Estudis Avanc¸ats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain, bCentre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal, cReal Jardı´n Bota´nico (CSIC-RJB), Madrid, Spain, dDepartment of Bioscience, Aarhus University, Denmark, eGala´pagos National Park, Puerto Ayora, Santa Cruz, Gala´pagos, Ecuador, fDepartment of Ecology and Evolutionary Biology, Yale University, USA and gInstituto de Productos Naturales y Agrobiologı´a (CSIC-IPNA), Island Ecology and Evolution Research Group, Canary Islands, Spain. *Address correspondence to Sandra Hervı´as-Parejo. E-mail: [email protected] Handling editor: Xiang Ji Received on 25 June 2018; accepted on 6 August 2018 Abstract Frugivory in lizards is often assumed to be constrained by body size; only large individuals are con- sidered capable of consuming fruits, with the potential of acting as seed dispersers. However, only one previous study has tested the correlation of frugivory with body and head size at an archipel- ago scale across closely related species. All nine lava lizards (Microlophus spp.) were studied on the eleven largest Gala´ pagos islands from 2010 to 2016 to investigate whether frugivory is related to body and head size. We also tested whether fruit abundance influences fruit consumption and explored the effect of seed ingestion on seedling emergence time and percentage. Our results showed that across islands, lava lizards varied considerably in size (64–102 mm in mean snout– vent length) and level of frugivory (1–23%, i.e., percentage of droppings with seeds). However, level of frugivory was only weakly affected by size as fruit consumption was also common among small lizards. Lava lizards consumed fruits throughout the year and factors other than fruit abundance may be more important drivers of fruit selection (e.g., fruit size, energy content of pulp). From 2,530 droppings, 1,714 seeds of at least 61 plant species were identified, 76% of the species being native to the Gala´ pagos. Most seeds (91%) showed no external structural damage. Seedling emer- gence time (44 versus 118 days) and percentage (20% versus 12%) were enhanced for lizard- ingested seeds compared to control (uningested) fruits. De-pulping by lizards (i.e., removal of pulp with potential germination inhibitors) might increase the chances that at least some seeds find suit- able recruitment conditions. We concluded that lizards are important seed dispersers throughout the year and across the whole archipelago, regardless of body size. Key words: Microlophus, oceanic islands, plant–animal interactions, seed disperser size, seed dispersal effectiveness, seedling emergence VC The Author(s) (2018). Published by Oxford University Press. 1 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Downloaded from https://academic.oup.com/cz/advance-article-abstract/doi/10.1093/cz/zoy066/5069192 by Departamento de Matemática da Fac. Ciências e Tecnologia Universidade Coimbra user on 13 September 2018 2 Current Zoology, 2018, Vol. 0, No. 0 Lizards of different evolutionary lineages consume fruits on a regu- lar basis (Olesen and Valido 2003; Traveset et al. 2016; Neghme et al. 2017), but the ecological and evolutionary drivers of such habit in these animals remain poorly understood. Body size has been considered a strong correlate of frugivory in lizards (Van Damme 1999; Herrel et al. 2004a). It is often assumed that large body and head size is required for lizards to efficiently process plant material (Pough 1973; Cooper Jr and Vitt 2002). Large lizards have more di- verse prey-size range than smaller ones and are better adapted to coping with more generalist diets including plant material (Meiri 2008). Frugivory by lizards is particularly common on islands. Insular liz- ards are more likely to consume fruits, since population densities tend to be higher whereas interspecific competition and predator pressure tend to be lower than on the mainland (Olesen and Valido 2003; Novosolov et al. 2018). This either allows or forces insular lizards to expand their trophic niche and explore novel food resources such as Figure 1. Distribution of the nine species of lava lizards across the Gala´ pagos fruits (i.e., undergoing an “interaction release”, sensu Traveset et al. archipelago and location of the sites sampled on each island. Fernandina: 1– Cabo Douglas, 2–Cabo Hammond; Isabela: 3–Punta Albemarle, 4–Playa 2015). However, it is not clear whether such interaction release in liz- Tortuga Negra, 5–Bahı´a Elizabeth; Pinta: 6–*Barrancos, 7–Playa del Muerto; ards occurs regardless of their body sizes, especially on tropical islands Marchena: 8–Playa Negra; Santiago: 9–Bahı´a James, 10–Bahı´a Ladilla; where these animals are active year-round and have continuous access Pinzo´ n: 11–Bahı´a de Pinzo´ n; Santa Cruz: 12–Garrapatero, 13–Tortuga Bay; to fruit (Nogales et al. 2016). Specifically, only one study explored Floreana: 14–*Punta Cormorant, 15–Puerto Velazco Ibarra; Santa Fe: 16– variation in lizard frugivory within a clade of closely related species Bahı´a de Santa Fe; San Cristo´ bal: 17–Punta Carola; Espanola:~ 18–Playa showing a strong correlation between body size and frugivory (Anolis Manzanillo, 19–*Punta Cevallos. Sites marked with an asterisk were not included in the analysis of frugivory and body size due to a lack of biometric species in Jamaica; Herrel et al. 2004a). data. The Gala´pagos islands host nine species of lava lizards (Microlophus spp., Tropiduridae). They constitute a remarkable ver- tebrate island radiation with only one species per island including Materials and Methods seven single-island endemics (Benavides et al. 2009). Evolutionary radiations like this are valuable systems in our efforts to understand Study site whether species interactions, including their food preferences, are This study was carried out on all main Gala´pagos islands (n ¼ 11; the cause or the consequence of habitat-dependent shifts of morpho- Figure 1) with lava lizards (Table 1). Sampling was conducted in the logical features (Calsbeek and Irschick 2007). Lava lizards are very arid zone (c. 0–300 m a.s.l.) where lizards are common (Tanner and common in the arid lowland of the Gala´pagos (Tanner and Perry Perry 2007). This zone is the largest (c. 60% of total land area) and 2007), where access to animal prey (arthropods) and water is often most biodiverse of the archipelago (Gue´zou et al. 2010). This habi- limited (Schluter 1984). Lizards on three Gala´pagos islands (Santa tat is dominated by evergreen drought-tolerant shrubs, e.g., Croton Cruz, San Cristo´ bal, Pinta) are known to consume fruits (Schluter scouleri, and fleshy-fruited species such as Opuntia spp., Cordia leu- 1984; Heleno et al. 2013). However, we do not know if this is a gen- cophlyctis, C. lutea, Lantana peduncularis, Tournefortia psilosta- eral pattern across both the entire lizard radiation and the archipel- chya and Scutia spicata. The arid zone becomes increasingly dry ago. Variation in frugivory in relation to lizard size, and if there are during the cold/dry season (June to December), until the first rains. seasonal differences in frugivory also remain unexplored. The latter Rainfall is extremely unpredictable spatially, varying considerably could be expected since fruit availability has seasonal variations, among islands (Trueman and d’Ozouville 2010). Arthropod abun- and it is important to know whether fruit abundance is a driver of dance and activity and fruit production are highest in the hot/wet fruit selection (Pe´rez-Mellado and Corti 1993). season (January–May) (Schluter 1984; Heleno et al. 2013). Many frugivores provide a highly valuable ecosystem service that may impact long-term vegetation dynamics due to their role as Lizard body and head size potential seed dispersers (Howe and Westley 1988; Traveset et al. Between 2014 and 2015, ca. 30 adult individuals (15 males and 15 2013). Frugivores can reduce germination time by both removing females whenever possible), from each island were captured by hand fruit pulp, which often contains chemical inhibitors, and weakening with noose poles. Snout–vent length (hereafter SVL), gape width physical barriers to germination, e.g. scarification (Traveset et al. (horizontal distance between commissural points), and skull length 2008). Nevertheless, the effect of disperser gut passage on germin- (rear of parietal bone to tip of upper jaw) were all measured using a ation varies depending on both animal and plant identity (Wotton digital calliper (precision 0.01 mm). This was normally performed 2002; Nogales et al. 2017). Therefore, germination trials are needed by one observer (MN) in order to minimise potential biases. After to evaluate the viability of seeds after gut passage and the effect on measuring lizards, they were immediately released at the same place germination time, in order to understand the ecological role of liz- where they were captured. ards towards plants. Differences in body size (SVL) and head size (gape width and Our aims were to assess at an archipelago level, whether (1) fru- skull length) among islands were tested using Kruskall-Wallis analy- givory is related to body and head size; and whether (2) lizards con- ses followed by Dunn’s post-hoc tests.
Recommended publications
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Non-Native Small Terrestrial Vertebrates in the Galapagos 2 3 Diego F
    1 Non-Native Small Terrestrial Vertebrates in the Galapagos 2 3 Diego F. Cisneros-Heredia 4 5 Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Zoología 6 Terrestre & Museo de Zoología, Quito 170901, Ecuador 7 8 King’s College London, Department of Geography, London, UK 9 10 Email address: [email protected] 11 12 13 14 Introduction 15 Movement of propagules of a species from its current range to a new area—i.e., extra-range 16 dispersal—is a natural process that has been fundamental to the development of biogeographic 17 patterns throughout Earth’s history (Wilson et al. 2009). Individuals moving to new areas usually 18 confront a different set of biotic and abiotic variables, and most dispersed individuals do not 19 survive. However, if they are capable of surviving and adapting to the new conditions, they may 20 establish self-sufficient populations, colonise the new areas, and even spread into nearby 21 locations (Mack et al. 2000). In doing so, they will produce ecological transformations in the 22 new areas, which may lead to changes in other species’ populations and communities, speciation 23 and the formation of new ecosystems (Wilson et al. 2009). 24 25 Human extra-range dispersals since the Pleistocene have produced important distribution 26 changes across species of all taxonomic groups. Along our prehistory and history, we have aided 27 other species’ extra-range dispersals either by deliberate translocations or by ecological 28 facilitation due to habitat changes or modification of ecological relationships (Boivin et al. 29 2016).
    [Show full text]
  • Microlophus Theresioides (Donoso-Barros, 1966) Científico* Autores Donoso-Barros, 1966 Especie*
    Área temática Nombre campo Información ingresada para dicho campo de la información Nomenclatura Reino* Animalia Phyllum o Chordata División* Clase* Reptilia Orden* Squamata Familia* Tropiduridae Género* Microlophus Nombre Microlophus theresioides (Donoso-Barros, 1966) científico* Autores Donoso-Barros, 1966 especie* Referencia DONOSO-BARROS R (1966) Reptiles de Chile. Ediciones de la Universidad de Chile, descripción Santiago 458 + cxlvi pp. especie* Nota Donoso-Barros (1960) menciona este taxón como la subespecie Tropidurus thoracicus taxonómica* theresioides. El mismo autor, años más tarde lo considera como nomen nudum (Donoso- Barros 1966) y lo describe como Tropidurus theresioides, designándose como terra typica el Oasis de Pica, Región de Tarapacá. Posteriormente Ortiz (1980) hace una revisión del género y su presencia en Chile, incluyendo dentro de este taxón las poblaciones de Mamiña, las cuales fueron inicialmente descritas como una subespecie de Tropidurus peruvianus (maminensis). Frost (1992) realiza un análisis filogenético del género Tropidurus, reviviendo el género Microlophus y asignándolo a las especies de Tropidurus de la vertiente occidental de la cordillera de los Andes. Demangel (2016) incluye dentro de Microlophus theresioides a las poblaciones del interior de la Región de Arica y Parinacota, las cuales fueron descritas inicialmente como Tropidurus (Microlophus) yanezi, dado que los rangos de los caracteres diagnósticos de esta especie se superponen con los de M. theresioides, y en concordancia con los resultados
    [Show full text]
  • Thermal Ecology of Microlophus Occipitalis (Sauria: Tropiduridae) in the Plain Dry Forest of Tumbes, Peru
    Rev. peru. biol. 19(1): 097 - 099 (Abril 2012) © Facultad de Ciencias Biológicas UNMSM Thermal ecology of MICROLOPHUSISSN 1561-0837 OCCIPITALIS NOTA CIENTÍFICA Thermal ecology of Microlophus occipitalis (Sauria: Tropiduridae) in the Plain Dry Forest of Tumbes, Peru Ecología térmica de Microlophus occipitalis (Sauria: Tropiduridae) en el Bosque Seco de Llanura de Tumbes, Perú Juan C. Jordán A.1,2 and José Pérez Z. 1,2 1 Departamento de Herpetología. Museo de Historia Natural. Univer- Resumen sidad Nacional de Mayor de San Marcos. Perú. Se estudió la ecología termal de Microlophus occipitalis Peters 1871 en el Bosque Seco de Llanura de Tum- bes (noroeste del Perú). La temperatura corporal promedio fue de 36,1 ± 1,8 ºC, similar a las temperaturas 2 Laboratorio de Estudios en Bio- diversidad (LEB). Departamento de exhibidas por Microlophus peruvianus en el norte del Perú. No se identificaron diferencias entre la temperatura Ciencias Biológicas y Fisiológicas. corporal y el grado de termorregulación de hembras y machos, posiblemente asociado a su estructura social Facultad de Ciencias y Filosofía. y uso de microhábitat. La temperatura del aire y del sustrato afectaron la temperatura corporal de Microlophus Universidad Peruana Cayetano Heredia (UPCH). Perú. occipitalis, aunque la temperatura del aire afecta en mayor grado la variación de la temperatura corporal. Se E-mail: [email protected] sugiere realizar estudios más detallados en esta especie, especialmente bajo escenarios de cambio climático en el noroeste del Perú. Palabras clave: lagartijas, ecología termal, Parque Nacional Cerros de Amotape, Tumbes. Abstract The thermal ecology of Microlophus occipitalis Peters 1871 in the plain dry forests of Tumbes (northewestern Peru) was studied.
    [Show full text]
  • Intrasexual Selection Predicts the Evolution of Signal Complexity in Lizards Terry J
    doi 10.1098/rspb.2000.1417 Intrasexual selection predicts the evolution of signal complexity in lizards Terry J. Ord1*,DanielT.Blumstein1,2,3 and Christopher S. Evans2 1Department of Biological Sciences, and 2Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia 3Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, CA 90095-1606, USA Sexual selection has often been invoked in explaining extravagant morphological and behavioural adap- tations that function to increase mating success. Much is known about the e¡ects of intersexual selection, which operates through female mate choice, in shaping animal signals. The role of intrasexual selection has been less clear. We report on the ¢rst evidence for the coevolution of signal complexity and sexual size dimorphism (SSD), which is characteristically produced by high levels of male^male competition. We used two complementary comparative methods in order to reveal that the use of complex signals is asso- ciated with SSD in extant species and that historical increases in complexity have occurred in regions of a phylogenetic tree characterized by high levels of pre-existing size dimorphism. We suggest that signal complexity has evolved in order to improve opponent assessment under conditions of high male^male competition. Our ¢ndings suggest that intrasexual selection may play an important and previously under- estimated role in the evolution of communicative systems. Keywords: sexual selection; sexual size dimorphism; visual communication; signal complexity; evolution; the comparative method In many taxa, competition between males over 1. INTRODUCTION resources characteristically produces an asymmetry in The extraordinary diversity of animal signals has body size between the sexes.
    [Show full text]
  • Diet of Six Species of Galapagos Terrestrial Snakes (Pseudalsophis Spp.) Inferred from Faecal Samples
    Herpetology Notes, volume 12: 701-704 (2019) (published online on 02 July 2019) Diet of six species of Galapagos terrestrial snakes (Pseudalsophis spp.) inferred from faecal samples Luis Ortiz-Catedral1,*, Eli Christian1, Michael John Adam Skirrow1, Danny Rueda2, Christian Sevilla2, Kirtana Kumar1, Enzo M. R. Reyes1, and Jennifer C. Daltry3 The Galapagos terrestrial snakes, or ‘Galapagos Dialommus fuscus and Labrisomus denditricus) (Merlen racers’ (Pseudalsophis spp.) are a monophyletic group and Thomas, 2013). There are also unpublished reports of nine species within Dipsadidae, exclusively found of Galapagos racers ingesting large painted locusts in the Galapagos Islands (Zaher et al., 2018). A single (Schistocerca melanocera) (Jackson, 1993), and three continental species, P. elegans, is the closest relative of observers (park rangers from the Galapagos National these island species (Zaher et al., 2018), and is found Park) have witnessed P. dorsalis ingesting eggs of from Ecuador to Chile (Armendáriz, 1991; Carrillo de Galapagos doves (Zenaida galapagoensis) on Santa Espinoza and Icochea, 1995; Thomas, 1977). The group Fe Island (G. Quezada, M. Gavilanes and C. Gaona has been the subject of various taxonomic reviews pers. comm.). There is even an unconfirmed report of a since the early 1900s (Thomas, 1997). Although there terrestrial snake ingesting the fruit pulp of bitter melon have been significant advances in understanding the (Mormodica charantia) on Santa Cruz Island (Olesen evolutionary history of the group and their phylogenetic et al., 2018), but it is unknown whether the snake ate affinities (Grazziotin et al., 2012; Zaher et al., 2018), the bitter melon deliberately or by accident (e.g. while basic aspects of their biology have remained largely preying on a small vertebrate associated with the fruit).
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Sustainability Report V
    2018 SUSTAINABILITY REPORT V CONTENTS 2 SUSTAINABILITY REPORT 2018 V CHAPTER 01 CHAPTER 02 CHAPTER 03 OUR COMPANY IN 2018 ABOUT THIS REPORT SQM PAGE 05 • About this Report • SQM • Stakeholders • Our History • Relations with Organizations • A Half Century of Life – 2018 and Institutions Milestones CHAPTER 04 PAGE 09 • Corporate Governance Policy • Organization OUR PEOPLE CHAPTER 05 • Legal and Ownership Structure • Employee Profile • Corporate Principles OUR NEIGHBORS • Participation and Inclusion of • Ethics and Compliance Women • Our Neighbors • Sustainable Development Policy • Employee Relations • Community Working Groups • SQM Operates in the Heart of and Multi-Sector Coordination • Workplace Safety 2018 the Atacama Desert in Neighboring Towns • Value Chain • Production Processes • Education and Culture • Our Commitments with Our • Our Products People • “Lend a Hand to Your Community” Corporate PAGE 21 PAGE 65 Volunteer Program • Social Development • Historical Heritage • Recognition in 2018 CHAPTER 07 • Our Commitments with Our Neighbors OUR CUSTOMERS CHAPTER 06 PAGE 107 • Sales and Product Markets THE ENVIRONMENT • Our Certifications • Biodiversity • Commercial Events CHAPTER 08 • Species with Conservation • Our Commitments with Our Status Customers ECONOMIC PERFORMANCE • Environmental Monitoring Plan in the Salar de Atacama PAGE 181 • Economic Performance • Market Share • Environmental Monitoring Plan in the Salar de Llamara • Generation and Distribution of Added Value • Energy • Our Commitments with • Water Investors • Emissions
    [Show full text]
  • UNIVERSITE DE PERPIGNAN VIA DOMITIA Etude De La Réponse
    Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale ED 305 Et de l’unité de recherche UMR 5244 Interactions Hôtes Pathogènes Environnements (IHPE) Discipline : BIOLOGIE Spécialité : Evolution Présentée par Manon Fallet Etude de la réponse environnementale et transgénérationnelle chez l’huitre creuse Crassostrea gigas. Focus sur les mécanismes épigénétiques Soutenue le 12 décembre 2019 devant le jury composé de Mme. Frédérique PITEL, DR2, INRA Toulouse Rapporteur Mme. Christine PAILLARD, DR CNRS, Brest Rapporteur M. Benoit PUJOL, CR CNRS, Perpignan Examinateur Mme. Caroline MONTAGNANI, CR, Ifremer, Montpellier Examinateur M. Guillaume MITTA, PR, UPVD, Perpignan Examinateur Mme. Céline COSSEAU, MCF, UPVD, Perpignan Directeur de thèse M. Christoph GRUNAU, PR, UPVD, Perpignan Co-directeur de thèse M. Bruno PETTON, IR, Ifremer, Brest Invité A Yvonne Geoffray, Remerciements Ça y est, je touche au but et j’achève la rédaction de ce manuscrit de thèse ! Ces trois dernières années ont été intenses, passionnantes, souvent dures, mais toujours enrichissantes ! De nombreuses personnes m’ont accompagné durant ces trois ans. Parfois dans le cadre professionnel, m’aidant ainsi à réaliser les travaux présentés dans ce manuscrit et à me familiariser au monde de la recherche, parfois dans le domaine personnel, m’encourageant et me soutenant au quotidien. Certaines personnes ont également joué sur les deux tableaux. L’écriture de ces remerciements me touche énormément car c’est pour moi le moyen de vous montrer toute ma reconnaissance. Tout d’abord, je souhaite remercier Frédérique Pitel et Christine Paillard. Merci d’avoir accepté d’être les rapporteurs de ma thèse et de prendre le temps d’évaluer mon travail.
    [Show full text]
  • De Los Reptiles De Galápagos
    guía dinámica de los reptiles de galápagos omar torres coordinador editorial Lista de especies Número de especies: 41 Squamata: Sauria Sphaerodactylidae Gonatodes caudiscutatus, Salamanquesas diurnas occidentales Gekkonidae Hemidactylus frenatus, Salamanquesas asiáticas Lepidodactylus lugubris, Salamanquesas de luto Phyllodactylidae Phyllodactylus duncanensis, Phyllodactylus gorii, Phyllodactylus galapagensis, Salamanquesas comunes de Galápagos Phyllodactylus reissii, Salamanquesas comunes de la costa Phyllodactylus barringtonensis, Salamanquesas de Santa Fe Phyllodactylus darwini, Salamanquesas de San Cristóbal Phyllodactylus leei, Salamanquesas de San Cristóbal Phyllodactylus baurii, Salamanquesas de Floreana Iguanidae: Iguaninae Amblyrhynchus cristatus, Iguanas marinas Iguanidae: Tropidurinae Microlophus albemarlensis, Lagartijas de lava de Isabela Microlophus barringtonensis, Lagartijas de lava de Santa Fe Microlophus bivittatus, Lagartijas de lava de San Cristóbal Microlophus delanonis, Lagartijas de lava de Española Microlophus duncanensis, Lagartijas de lava de Pinzón Microlophus grayii, Lagartijas de lava de Floreana Microlophus habelii, Lagartijas de lava de Marchena Microlophus indefatigabilis, Lagartijas de lava de Santa Cruz Microlophus jacobi, Lagartijas de lava de Santiago Microlophus pacificus, Lagartijas de lava de Pinta Testudines Cheloniidae Chelonia mydas, Tortugas marinas Testudinidae Chelonoidis donfaustoi, Chelonoidis porteri, Tortugas galápagos de Santa Cruz Chelonoidis vandenburghi, Tortugas galápagos de Alcedo
    [Show full text]
  • Reptiles of Ecuador: a Resource-Rich Online Portal, with Dynamic
    Offcial journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [General Section]: 209–229 (e178). Reptiles of Ecuador: a resource-rich online portal, with dynamic checklists and photographic guides 1Omar Torres-Carvajal, 2Gustavo Pazmiño-Otamendi, and 3David Salazar-Valenzuela 1,2Museo de Zoología, Escuela de Ciencias Biológicas, Pontifcia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Apartado 17- 01-2184, Quito, ECUADOR 3Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla EC170301, Quito, ECUADOR Abstract.—With 477 species of non-avian reptiles within an area of 283,561 km2, Ecuador has the highest density of reptile species richness among megadiverse countries in the world. This richness is represented by 35 species of turtles, fve crocodilians, and 437 squamates including three amphisbaenians, 197 lizards, and 237 snakes. Of these, 45 species are endemic to the Galápagos Islands and 111 are mainland endemics. The high rate of species descriptions during recent decades, along with frequent taxonomic changes, has prevented printed checklists and books from maintaining a reasonably updated record of the species of reptiles from Ecuador. Here we present Reptiles del Ecuador (http://bioweb.bio/faunaweb/reptiliaweb), a free, resource-rich online portal with updated information on Ecuadorian reptiles. This interactive portal includes encyclopedic information on all species, multimedia presentations, distribution maps, habitat suitability models, and dynamic PDF guides. We also include an updated checklist with information on distribution, endemism, and conservation status, as well as a photographic guide to the reptiles from Ecuador.
    [Show full text]