BULLETIN of CARNEGIE MUSEUM of NATURAL HISTORY

Total Page:16

File Type:pdf, Size:1020Kb

BULLETIN of CARNEGIE MUSEUM of NATURAL HISTORY BULLETINISSN 0145-9058 OF CARNEGIE MUSEUM OF NATURAL HISTORY PHYLOGENETIC SYSTEMATICS OF CROTAPHYTID LIZARDS (REPTILIA: IGUANIA: CROTAPHYTIDAE) JIMMY A. McGUIRE NUMBER 32 PITTSBURGH, 1996 BULLETIN of CARNEGIE MUSEUM OF NATURAL HISTORY PHYLOGENETIC SYSTEMATICS OF CROTAPHYTID LIZARDS (REPTILIA: IGUANIA: CROTAPHYTIDAE) JIMMY A. McGUIRE Department of Biology, San Diego State University, San Diego, California 92182-0057 Current address: Department of Zoology and Texas Memorial Museum, The University of Texas at Austin, Austin, Texas 78712-1064. NUMBER 32 PITTSBURGH, 1996 BULLETIN OF CARNEGIE MUSEUM OF NATURAL HISTORY Number 32, pages 1-143, 52 figures Issued 25 June 1 996 James E. King, Director Editorial Staff: John L. Carter, Editor-, Bradley C. Livezey, Editor-, David R. Watters, Editor Mary Ann Schmidt, ELS, Assistant Editor Cover illustration: An adult male Crotaphytus dickersonae photographed approximately 2 km north of Bahia Kino Nuevo, Sonora, Mexico (see Fig. 3 IB). BULLETINS OF CARNEGIE MUSEUM OF NATURAL HISTORY are published at irregular intervals by Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213-4080, by the authority of the Board of Trustees of Carnegie Institute. © 1996 by Carnegie Institute, all rights reserved. ISSN 0145-9058 THE CARNEGIE MUSEUM OF NATURAL HISTORY Contents Abstract Introduction Historical Review Materials and Methods 6 Frequency Coding Allozyme Data Set 8 Ingroup Monophyly 8 Choice of Terminal Taxa 9 Outgroup Taxa 9 Morphology and Character Descriptions 11 Skull Roof 11 Palate 18 Braincase 20 Mandible 20 Miscellaneous Features of the Head Skeleton 24 Axial Skeleton 27 Pectoral Girdle 30 Pelvic Girdle 31 Limbs 32 Squamation 32 Pockets and Folds 36 Additional Morphological Characters 40 Coloration t 42 Behavioral Characters 52 Character List 54 Results 57 Discussion 63 Comparison with Previous Hypotheses 63 Character Evolution 65 Taxonomic Accounts 67 Crotaphytidae 67 Crotaphytus 68 C. antiquus 69 C. bidnetores 72 C. collaris 75 C. dickersonae 80 C. grismeri 83 C. insularis 84 C. nebrius 88 C. oligocenicus't 92 C. reticulatus 92 C. vestigium 94 Gambelia 97 G. copei 98 G. corona t 102 G. silus 102 G. wislizenii 106 Key to the Species of Crotaphytus and Gambelia Ill Acknowledgments 112 Literature Cited 113 iii Appendices 120 1. Specimens Examined 120 2. Data Matrix 126 3. Outgroup Data Matrix 128 4. Step Matrices for Manhattan Distance Frequency Approach 132 5. Character Transformations for Each Stem of the Single Most Parsimonious Tree 134 6. List of Character State Changes by Character 139 7. Scleral Ossicle Data 143 IV ABSTRACT A revision of the alpha taxonomy of Crotaphytidae revealed uous synapomorphies). The hypothesis of relationships estimated that there are at least 12 and probably 13 species. A data set here was used to address life history and morphological evolution including 88 characters drawn from osteology, squamation, soft within the group including the relationship between head mor- tissues, color pattern, life history, and behavior was collected. In phology and diet, the evolution of display-oriented morphology addition, an allozyme data set composed of ten phylogenetically in males, the evolution of bipedal locomotion, and a functional informative characters was obtained from the literature. Analysis consideration of gravid coloration. A taxonomic account is pro- of these data resulted in the following hypothesis of relationships: vided for Crotaphytidae, Crotaphytus, Gambelia, and each spe- - (( . cies. Gambelia silus (G. corona\ ( G copei + G. wislizenii))) + ( Cro Each species account includes a synonymy, an etymology, taphytus reticulatus (C. collaris (C. antiquus (C. nebrius (C. dick- a diagnosis for the species, a detailed description of scalation and ersonae (C. grismeri ( C. bicinctores (C. insularis + C. vestig- coloration, a section describing maximum adult size as well as ium))))))))). Although little character evidence in support of size dimorphism, a description of the species geographic distri- crotaphytid monophyly has been presented in the literature (Eth- bution with a dot distribution map, an account of the known eridge and de Queiroz, 1988; Frost and Etheridge, 1989), cro- fossil record, a summary of available natural history information, taphytid monophyly was found to be strongly supported with and a listing of references that provide illustrations of the species. five fixed, unambiguous synapomorphies. Strong support was Separate dichotomous keys are provided for males, females, and also discovered for monophyly of Crotaphytus (12 fixed, un- juveniles of Crotaphytus and Gambelia. ambiguous synapomorphies) and Gambelia (six fixed, unambig- 1 ? BULLETIN CARNEGIE MUSEUM OF NATURAL HISTORY NO. 32 INTRODUCTION Lizards of the family Crotaphytidae (collared and 1975), phylogenetic relationships within Crotaphy- leopard lizards) are among the most familiar squa- tidae remain largely unresolved. Although the mates of western North America. This familiarity monophyly of the group has never been questioned, probably stems from their relatively large size (com- few derived characters have yet been offered to sup- pared to other North American lizards), often vi- port this contention (Etheridge and de Queiroz, 1988; brant coloration, predatory lifestyle, and pugnacious Frost and Etheridge, 1989). The same can be said habits. Crotaphytidae, one of nine iguanian families for the monophyly of the genera. The phylogenetic proposed by Frost and Etheridge (1989), is currently relationships of the group have been addressed using comprised of two genera, Crotaphytus (seven or eight cladistic methodology only once (Montanucci et ah, species) and Gambelia (three species), that range 1975), and that study predated important meth- from southern Idaho in the northwestern United odological advances in cladistics, such as outgroup States, southward into southern Baja California and analysis (Watrous and Wheeler, 1981; Maddison et northern Mexico, and eastward into the states of ah, 1984). Missouri, Arkansas, and Louisiana. They have been There are three primary goals of the present study. the subject of numerous studies of ecology, physi- The first goal is to revise the alpha taxonomy of ology, reproduction, hybridization, and historical Crotaphytidae in order to provide a better under- biogeography, and many of these studies have ad- standing of species diversity within the group as well dressed questions of a historical nature (e.g., Savage, as an appropriate selection of terminal taxa for phy- 1960; Montanucci, 1970; Ingram andTanner, 1971; logenetic analysis. The second goal is to provide an Axtell, 1972; Smith and Tanner, 1974; Montanucci estimate of the phylogenetic relationships of Cro- etal., 1975; Tanner and Banta, 1977; Tanner, 1978; taphytidae. The third goal is to use this phylogeny Sanborn and Loomis, 1979; Tollestrup, 1979, 1983; to investigate morphological and life history evo- Murphy, 1983; Welsh, 1988). However, despite sev- lution among crotaphytids and provide a taxonomy eral important systematic analyses of the group that is logically consistent with the evolutionary his- (Smith and Tanner, 1972, 1974; Montanucci et ah, tory of the group. HISTORICAL REVIEW The earliest accounts of crotaphytid lizards were tions, crotaphytid lizards have been thought to form closely associated with the joint military-scientific a natural group, despite the difficulty that more re- exploratory expeditions of the American frontier. In cent students have had in discovering synapomor- fact, it was only shortly after the epic Lewis and phies. Clark expedition of 1803-1806 that the first cro- In August of the same year, Baird and Girard taphytid species was described. As a member of a (18526) described two additional species of Crota- party headed by Major Stephen H. Long that was phytus'. C. dorsalis from the desert of Colorado, and exploring the Great Plains, Thomas Say collected C. gambelii, for which locality data was lacking, and later described Agama collaris (James, 1823). although it was thought to have been collected in Agama collaris was later placed as the sole member California. In December, Hallowed (1852) de- of the newly erected genus Crotaphytus by Holbrook scribed a fourth species, C. fasciatus (a junior syn- (1842) in his classic account of the North American onym of G. wislizenii), from the sand hills at the herpetofauna. lower end of Jornada del Muerte, New Mexico. Hal- A second crotaphytid species, Crotaphytus wisli- lowed's specimens were part of Samuel Wood- zenii, was obtained at Santa Fe (New Mexico) by house’s collections made during the early 1850s, Dr. Wislizenus, an army surgeon, who made the again emphasizing the important role that the early collection during the Mexican-American War of expeditions of the American West played in crota- by Baird phytid taxonomy. In 1854, Hallowed proposed the 1 846-1848. This species was first described description genus Dipsosaurus for C. dorsalis. and Girard ( 1 852 a), and a more detailed was given by the authors (1852c) shortly thereafter Dumeril (1856) transferred Crotaphytus collaris the Leiosaurus, a decision that was very in Stansbury (1852). From their first formal descrip- to genus 1996 McGUIRE — SYSTEMATICS OF CROTAPHYTID LIZARDS 3 likely influenced by the similarity in head mor- recognition of Crotaphytus baileyi at either the spe- phology and squamation in these genera. Further- cific or subspecific rank. Over the next 50 years, more, Dumeril (1856) suggested that C.
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Appendix B References
    Final Tier 1 Environmental Impact Statement and Preliminary Section 4(f) Evaluation Appendix B, References July 2021 Federal Aid No. 999-M(161)S ADOT Project No. 999 SW 0 M5180 01P I-11 Corridor Final Tier 1 EIS Appendix B, References 1 This page intentionally left blank. July 2021 Project No. M5180 01P / Federal Aid No. 999-M(161)S I-11 Corridor Final Tier 1 EIS Appendix B, References 1 ADEQ. 2002. Groundwater Protection in Arizona: An Assessment of Groundwater Quality and 2 the Effectiveness of Groundwater Programs A.R.S. §49-249. Arizona Department of 3 Environmental Quality. 4 ADEQ. 2008. Ambient Groundwater Quality of the Pinal Active Management Area: A 2005-2006 5 Baseline Study. Open File Report 08-01. Arizona Department of Environmental Quality Water 6 Quality Division, Phoenix, Arizona. June 2008. 7 https://legacy.azdeq.gov/environ/water/assessment/download/pinal_ofr.pdf. 8 ADEQ. 2011. Arizona State Implementation Plan: Regional Haze Under Section 308 of the 9 Federal Regional Haze Rule. Air Quality Division, Arizona Department of Environmental Quality, 10 Phoenix, Arizona. January 2011. https://www.resolutionmineeis.us/documents/adeq-sip- 11 regional-haze-2011. 12 ADEQ. 2013a. Ambient Groundwater Quality of the Upper Hassayampa Basin: A 2003-2009 13 Baseline Study. Open File Report 13-03, Phoenix: Water Quality Division. 14 https://legacy.azdeq.gov/environ/water/assessment/download/upper_hassayampa.pdf. 15 ADEQ. 2013b. Arizona Pollutant Discharge Elimination System Fact Sheet: Construction 16 General Permit for Stormwater Discharges Associated with Construction Activity. Arizona 17 Department of Environmental Quality. June 3, 2013. 18 https://static.azdeq.gov/permits/azpdes/cgp_fact_sheet_2013.pdf.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Phenotypic Variation and the Behavioral Ecology of Lizards
    Phenotypic Variation and the Behavioral Ecology of Lizards The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046431 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phenotypic Variation and the Behavioral Ecology of Lizards A dissertation presented by Ambika Kamath to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts March 2017 © 2017 Ambika Kamath All rights reserved. Dissertation Advisor: Professor Jonathan Losos Ambika Kamath Phenotypic Variation and the Behavioral Ecology of Lizards Abstract Behavioral ecology is the study of how animal behavior evolves in the context of ecology, thus melding, by definition, investigations of how social, ecological, and evolutionary forces shape phenotypic variation within and across species. Framed thus, it is apparent that behavioral ecology also aims to cut across temporal scales and levels of biological organization, seeking to explain the long-term evolutionary trajectory of populations and species by understanding short-term interactions at the within-population level. In this dissertation, I make the case that paying attention to individuals’ natural history— where and how individual organisms live and whom and what they interact with, in natural conditions—can open avenues into studying the behavioral ecology of previously understudied organisms, and more importantly, recast our understanding of taxa we think we know well.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Conservation and Sustainability of Biodiversity in Cuba Through the Integrated Watershed and Coastal Area Management Approach
    APPENDIX 32 Integrating Water, Land and Ecosystems Management in Caribbean Small Island Developing States (IWEco) Cuba Sub-project 1.2 IWEco National Sub-Project 1.2 Conservation and sustainability of biodiversity in Cuba through the integrated watershed and coastal area management approach REPUBLIC of CUBA Appendix 25 COVER SHEET • Name of small-scale intervention: Conservation and sustainability of biodiversity in Cuba through the integrated watershed and coastal area management approach • Name of Lead Partner Organization: a) Centro de Estudios Ambientales de Cienfuegos (CEAC) • Contact person: a) Clara Elisa Miranda Vera, Centro de Estudios Ambientales de Cienfuegos (CEAC) • IWEco Project focus: Biodiversity • Total area covered: Targeted interventions for enhancement and maintenance of biodiversity resources over 13,670 hectares within four watershed areas of the country and strengthening associated integrated natural resource management governance frameworks. • Duration of sub-project: 48 months • Amount of GEF grant: $2,169,685 USD • Amount of Co-financing: $2,886,140 USD • Total funding: $5,055,825 USD 1 APPENDIX 32 Integrating Water, Land and Ecosystems Management in Caribbean Small Island Developing States (IWEco) Cuba Sub-project 1.2 CONTENTS 1 SUB-PROJECT IDENTIFICATION .................................................................................... 3 1.1 Sub-project Summary ....................................................................................... 3 2. SUB-PROJECT DESIGN.................................................................................................
    [Show full text]
  • Visual Communication from a Functional and Evolutionary Perspective: What Does the Anolis Dewlap Say?
    Faculteit Wetenschappen Departement Biologie Visual communication from a functional and evolutionary perspective: what does the Anolis dewlap say? - Visuele communicatie bekeken vanuit een functioneel en evolutionair perspectief: wat vertelt de Anolis keelvlag ons? Proefschrift voorgelegd tot het behalen van de graad Doctor in de Wetenschappen aan de Universiteit Antwerpen te verdedigen door Tess Driessens Promotor: Prof. dr. Raoul Van Damme Co-promotors: dr. Bieke Vanhooydonck, dr. Katleen Huyghe Antwerpen, 2016 Doctoral Jury Promotor: Prof. dr. Raoul Van Damme (University of Antwerp) dr. Bieke Vanhooydonck (University of Antwerp) Chairman: Prof. dr. Erik Matthysen (University of Antwerp) Other Members of the jury: Prof. dr. Marcel Eens (University of Antwerp) Prof. dr. Duncan Irschick (University of Massachusetts, Amherst) Prof. dr. Anthony Herrel (CNRS, Muséum National d'Histoire Naturelle, Paris) PhD defense: 1st of December 2016 – 19h Building O, Aula O0.5 – Campus Drie Eiken, University of Antwerp Driessens T (2016). Visual communication from a functional and evolutionary perspective: what does the Anolis dewlap say? Doctoral thesis, Functional Morphology Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium, pp 230 This research was financially supported by the Research Foundation Flanders (FWO). Additional grants for field work were provided by Antwerp University (DOCOP) and Leopold III Fund. Photos of Anolis sagrei lizards on the cover and on the back were taken by Steven De Decker Anolis sagrei on Cuba, photo
    [Show full text]
  • THE RIO CONCHOS PROJECT Restoring a Desert Lifeline N O N a C - F W W / R E K R a P D R a W D E ©
    THE RIOCONCHOSPROJECT Restoring adesertlifeline January 2009 WWF Mexico © Edward PARKER / WWF-Canon CONTENTS Introduction – a tale of two rivers 1 Life in the desert – the biodiversity of the Chihuahuan Desert and Big Bend National Park 3 Man’s desert footprint – the pressures of modern economy 5 Rivers of change – key threats to the Rio Grande and Rio Conchos 6 Restoring a desert lifeline – WWF’s work to protect the Rio Conchos 8 Going forward – the next phase of our work 12 Appendix 1 Water conservation in the Delicias Irrigation District New hope for the Conchos trout Appendix 2 Outline of key project requirements A TALE OF TWO RIVERS The Chihuahuan Desert region is approximately 800 miles long and 250 miles wide. It stretches from the Rio Grande Valley in southern New Mexico to the north of Mexico City and is surrounded by Mexico’s two great mountain ranges – the Sierra Madre Oriental and the Sierra Madre Occidental. Two rivers, the Rio Grande and its major tributary the Rio Conchos, provide the main source of freshwater for millions of people, and a multitude of wildlife species that make the Chihuahuan Desert the third richest desert in biodiversity, and one of the 20 most important ecoregions in the world. The rivers are the lifeblood of the desert. The balance of life here depends on them. Rio Grande – a river running dry The Rio Grande (known as the Rio Bravo in Mexico) runs for 1,865 miles. Its entire basin covers 170,000 square miles – an area the size of Italy. The river rises in the San Juan Mountains of Colorado, flows south through the San Luis Valley into New Mexico, then into Texas, where it becomes an international border with Mexico.
    [Show full text]
  • Red Gap Ranch Biological Resource Evaluation
    RED GAP RANCH BIOLOGICAL RESOURCE EVALUATION Prepared for: Southwest Ground-water Consultants, Inc. Prepared by: WestLand Resources, Inc. Date: February 14, 2014 Project No.: 1822.01 TABLE OF CONTENTS 1. BACKGROUND AND OBJECTIVES ................................................................................................ 1 2. EXISTING ENVIRONMENT AND BIOLOGICAL RESOURCES ................................................... 2 2.1. Approach ...................................................................................................................................... 2 2.2. Physical Environment ................................................................................................................... 2 2.3. Biological Environment and Resources ....................................................................................... 3 3. SCREENING ANALYSIS FOR SPECIES OF CONCERN ................................................................ 5 3.1. Approach ...................................................................................................................................... 5 3.2. Screening Analysis Results .......................................................................................................... 7 3.2.1. USFWS-listed Species ...................................................................................................... 7 3.2.2. USFS Coconino National Forest Sensitive Species ........................................................ 15 3.2.3. USFS Management Indicator Species ............................................................................
    [Show full text]
  • Geological Survey of Austria ©Geol
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 Berichte der Geologischen Bundesanstalt, Benjamin Sames (Ed.) th 10 International Symposium on the Cretaceous: ABSTRACTS Berichte der Geologischen Bundesanstalt, 120 www.geologie.ac.at Geological Survey of Austria ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880) Band 120 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 — ABSTRACTS BENJAMIN SAMES (Ed.) ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 ISSN 1017-8880 Wien, im Juli 2017 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 – ABSTRACTS Benjamin Sames, Editor Dr. Benjamin Sames, Universität Wien, Department for Geodynamics and Sedimentology, Center for Earth Sciences, Althanstraße 14, 1090 Vienna, Austria. Recommended citation / Zitiervorschlag Volume / Gesamtwerk Sames, B. (Ed.) (2017): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 351 pp., Vienna. Abstract (example / Beispiel) Granier, B., Gèze, R., Azar, D. & Maksoud, S. (2017): Regional stages: What is the use of them – A case study in Lebanon. – In: Sames, B. (Ed.): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 102, Vienna. Cover design: Monika Brüggemann-Ledolter (Geologische Bundesanstalt). Cover picture: Postalm section, upper Campanian red pelagic limestone-marl cycles (CORBs) of the Nierental Formation, Gosau Group, Northern Calcareous Alps (Photograph: M. Wagreich). 10th ISC Logo: Benjamin Sames The 10th ISC Logo is composed of selected elements of the Viennese skyline with, from left to right, the Stephansdom (St.
    [Show full text]
  • Juan Manuel Rivera Acosta Phd Thesis
    LEAVE US ALONE, WE DO NOT WANT YOUR HELP. LET US LIVE OUR LIVES; INDIGENOUS RESISTANCE AND ETHNOGENESIS IN NUEVA VIZCAYA (COLONIAL MEXICO) Juan Manuel Rivera Acosta A Thesis Submitted for the Degree of PhD at the University of St Andrews 2017 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/11060 This item is protected by original copyright Leave us alone, we do not want your help. Let us live our lives; Indigenous resistance and ethnogenesis in Nueva Vizcaya (colonial Mexico) Juan Manuel Rivera Acosta This thesis is submitted in partial FulFilment For the degree of PhD at the University of St Andrews October 2015 1. Candidate’s declarations: I, Juan Manuel Rivera Acosta, hereby certify that this thesis, which is approximately 75,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of PhD in Social Anthropology and Amerindian Studies in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2015. Date 29-10-2015 signature of candidate ……… 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in Social Anthropology and Amerindian Studies in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]