Evolution of Galapagos Island Lava Lizards (Iguania: Tropiduridae: Microlophus)

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Galapagos Island Lava Lizards (Iguania: Tropiduridae: Microlophus) MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 32 (2004) 761–769 www.elsevier.com/locate/ympev Evolution of Galapagos Island Lava Lizards (Iguania: Tropiduridae: Microlophus) David Kizirian,a,b,* Adrienne Trager,c Maureen A. Donnelly,b and John W. Wrightd a Department of Organismic Biology, Ecology and Evolution, University of California–Los Angeles, Los Angeles, CA 90095-1606, USA b Department of Biological Sciences, Florida International University, Miami, FL 33199, USA c Moorpark College, 7075 Campus Road, Moorpark, CA 93021, USA d Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA Received 18 June 2003; revised 24 March 2004 Available online 2 June 2004 Abstract Nucleotide sequences of mitochondrial genes (ND1, ND2, COI, and tRNAs) were determined for 38 samples representing 15 taxa of tropidurid lizards from the Galapagos Islands and mainland South America. Phylogenetically informative characters (759 of 1956) were analyzed under Bayesian, maximum likelihood, and parsimony frameworks. This study supports the hypothesis that tropidurid lizards dispersed to the Galapagos on at least two separate occasions. One dispersal event involved an eastern Galapagos clade (Microlophus habelii and M. bivittatus, on Marchena and San Cristobal islands, respectively) the sister taxon of which is M. occipitalis from coastal Ecuador and Peru; the closest mainland relative of the western Galapagos clade was not unambiguously identified. The wide-ranging M. albemarlensis is revealed to be a complex of weakly divergent lineages that is paraphyletic with respect to the insular species M. duncanensis, M. grayii, and M. pacificus. Ó 2004 Elsevier Inc. All rights reserved. Keywords: Biogeography; Galapagos; Microlophus; Phylogeography; Tropiduridae; Tropidurus 1. Introduction named and unnamed lineages but has not been widely accepted. Central to the disagreement about Lava Liz- Despite more than a century of intensive study there ard diversity is the status of the populations of M. al- are still many unanswered questions regarding the evo- bemarlensis, which occur on four major and at least six lutionary history of organisms inhabiting the Galapagos satellite islands. In addition to addressing species di- Islands (e.g., Grehan, 2001). A fundamental issue ad- versity we also address the biogeographic history of dressed herein is the number of species of the conspic- Lava Lizards. Previous biogeographic hypotheses in- uous and abundant Lava Lizards (Microlophus; auct. ferred from the electrophoretic migration rates of allo- Tropidurus) occurring on the islands. Based on an zymes (Wright, 1983, 1984) and micro-complement analysis of morphological variation, Van Denburgh and fixation of albumins (Lopez et al., 1992) indicated that Slevin (1913) recognized seven species of Lava Lizards at least two independent dispersal events from the in the archipelago, an arrangement that has been fol- mainland to the archipelago were required to explain lowed by most (e.g., Lopez et al., 1992; Wright, 1983). Lava Lizards diversity. Herein, we revisit hypotheses An alternative arrangement (Lanza, 1974, 1980; Talurri about the diversity and biogeography of Galapagoan et al., 1982) based on geographic distribution and be- Microlophus in light of nucleotide sequence data ana- havioral data (Carpenter, 1966, 1970) recognized 17 lyzed in a phylogenetic context and broader taxonomic sampling than previous studies. At the same time, we evaluate hypotheses of monophyly for the M. occipitalis * Corresponding author. and M. peruvianus groups (Dixon and Wright, 1975) and E-mail address: [email protected] (D. Kizirian). the genus Microlophus (Frost et al., 2001; Harvey and 1055-7903/$ - see front matter Ó 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2004.04.004 762 D. Kizirian et al. / Molecular Phylogenetics and Evolution 32 (2004) 761–769 Gutberlet, 2000). Lastly, we employ the principles of NADH 1 and CO1, and the intervening tRNAs were phylogenetic classification (de Queiroz and Gauthier, amplified using the primers in Macey et al. (1997a,b) and 1990) to represent nested diversity at the species level. Jackman et al. (1999) as well as [50] taarataagtcattttggg [30], which was designed for use with some light strand primers from those studies. 2. Materials and methods Some fragments were amplified using a capillary thermal-cycler (Rapidcycler) and DNA amplification 2.1. Taxon sampling and data kits available from Idaho Technology (Salt Lake City, Utah). PCR cocktails comprised water (25 ll), 10 X Exemplars for this study include some of the tissue buffer (20, 30, or 40 mM MgCl2, 5.0 ll), dNTPs (2 mM samples used by Wright (1983) and Lopez et al. (1992) each; 5.0 ll), bovine serum albumin (2.5 mg/ml; 5.0 ll), as well as additional samples of mainland species not light and heavy strand primers (10 mM; 2.5 ll each), Taq previously examined (Table 1). Genomic DNA was ex- polymerase (ProMega; 0.3 ll), and template DNA (0.7– tracted from frozen tissues (1–25 mg) using the DNEasy 1.0 ll). Reactions were subjected to an initial heating Tissue Kits (Qiagen-Operon Catalog # 69504, 69506). (15 s, 94 °C), then 40–42 cycles of denaturation (15 s, Nucleotide sequence data were collected using poly- 94 °C), annealing (15 s, 53 °C), and extension (35 s, merase chain reaction (PCR) and automated DNA se- 71 °C), and then a final extension (60 s, 71 °C). quencing technology. Approximately 2 kb of the Most fragments were amplified using a block ther- mitochondrial genome, including NADH 2, portions of mal-cycler (Perkin–Elmer 9700) and AmpliTaq Gold Table 1 Samples of Microlophus and Tropidurus used in this study Species Voucher # (Tissue #) Locality M. albemarlensis LACM 106273 (G302) Galapagos: Baltra M. albemarlensis LACM 106267 (G216) Galapagos: Bartolome M. albemarlensis LACM 106268 (G217) Galapagos: Bartolome M. albemarlensis LACM 106288 (G327) Galapagos: Daphne M. albemarlensis LACM 106282 (G321) Galapagos: Daphne M. albemarlensis LACM 106254 (G150B) Galapagos: Fernandina: Punta Espinosa M. albemarlensis LACM 106244 (G142) Galapagos: Fernandina: Punta Espinosa M. albemarlensis LACM 106193 (G170) Galapagos: Isabela: Black Cove M. albemarlensis LACM 106185 (G162) Galapagos: Isabela: Black Cove M. albemarlensis LACM 106205 (G280B) Galapagos: Isabela: Cartago Bay M. albemarlensis LACM 106217 (G341) Galapagos: Santiago: James Bay M. albemarlensis LACM 106207 (G232) Galapagos: Santiago: Sullivan Bay M. albemarlensis LACM 106206 (G231) Galapagos: Santiago: Sullivan Bay M. albemarlensis LACM 106181 (G290) Galapagos: Santa Cruz: Conway Bay M. albemarlensis LACM 106162 (G11) Galapagos: Santa Cruz: Academy Bay M. albemarlensis LACM 106168 (G17) Galapagos: Santa Cruz: Academy Bay M. bivitattus LACM 106298 (G43) Galapagos: San Cristobal: Wreck Bay M. bivitattus LACM 106303 (G49) Galapagos: San Cristobal: Wreck Bay M. delanonis LACM 106327 (G104) Galapagos: Espanola: Gardner Bay M. delanonis LACM 106314 (G92) Galapagos: Gardner: near Espanola M. delanonis LACM 106315 (G93) Galapagos: Gardner: near Espanola M. duncanensis LACM 106340 (G261) Galapagos: Duncan (Pinzon): east side M. grayii LACM 106363 (G132) Galapagos: Floreana: Black Beach M. habelii LACM 106384 (G205) Galapagos: Marchena: south side M. habelii LACM 106389 (G210) Galapagos: Marchena: south side M. koepckeorum LACM 122590 (P6-193) Peru: Lambayeque: Cerro de la Vieja: ca. 7 km S (by rd) Motupe M. occipitalis LACM 154351 (G4-78) Ecuador: Ancon at Basurera M. pacificus LACM 106398 (G192) Galapagos: Pinta: southwest side M. pacificus LACM 106399 (G193) Galapagos: Pinta: southwest side M. peruvianus LACM 122684 (P6-381) Peru: Lima: El Paraiso Peninsula: ca 6.2 km W (by rd) jct Pan Am Hwy M. peruvianus LACM 154394 (G4-91) Ecuador: Santa Elena Peninsula, Punto Carnero M. stolzmanni LACM 122648 (P6-290) Peru: Cajamarca: ca 13 km SSE (by rd) Hacienda Molino Viejo (Ochentiuno) M. stolzmanni LACM 122667 (P6-258) Peru: Cajamarca: Bellavista M. theresiae LACM 122695 (P6-389) Peru: Lima: El Paraiso Peninsula: ca 6.2 km W (by rd) jct Pan Am Hwy M. tigris LACM 122720 (P6-84) Peru: Lima: ca 3 km SE Asia Vieja T. etheridgei [at LACM] (TC-921) Bolivia: 0.5 km SW Parotania RR station T. hispidus [at LACM] (4-94) Venezuela: Isla Margarita T. hispidus [at LACM] (4-76) Venezuela: Playa Guiria D. Kizirian et al. / Molecular Phylogenetics and Evolution 32 (2004) 761–769 763 DNA polymerase (Perkin–Elmer) kits. PCR cocktails Decay indices (Bremer, 1988) were calculated using comprised water (17–35 ll), 10 X buffer (5.0 ll), MgCl2 TreeRot (version 2.0) with the number of heuristic (4.0–7.0 ll), dNTPs (5.0 ll), heavy and light strand searches increased to 1000 to increase accuracy of indi- primers (10 mM; 1.0 or 2.5 ll), Taq polymerase (0.3 ll), ces (Sorenson, 1999). Bootstrap statistics were calcu- and template DNA (0.7–1.0 ll). Reactions were sub- lated using PAUP* (fast-heuristic search, nreps ¼ 1002) jected to a variety of thermal-cycling profiles including and assumed model parameters calculated with Model an initial heating (1–5 min, 95 °C) then 32–43 cycles of test (i.e., GTR + I + C). denaturation (35 s, 94 °C), annealing (35–45 s, 48–58 °C), MrBayes (version 3.0; Huelsenbeck and Ronquist, extension (60 s; or 150 s plus 4 s added to each sub- 2001) was used to estimate posterior probabilities of sequent cycle; 70 °C, or 72 °C), and a final extension clades under a likelihood model. Substitution rates were (7 min, 72 °C). allowed to be different, subject to the constraints of time- To reduce the risk of contamination, all reagents, reversibility (GTR; n ¼ 6). Among-site rate variation was primer stocks, DNA extractions, and PCR cocktails drawn from a gamma distribution with some proportion were prepared in a facility that was physically isolated being invariant (rates ¼ invgamma). Model parameters from areas where post-PCR procedures were performed. for structural and protein-coding partitions were treated Kim Wipes were used to shield aerosol created when as unlinked [unlink revmat ¼ (all) shape ¼ (all) pinvar ¼ tubes were opened.
Recommended publications
  • Checklist of Helminths from Lizards and Amphisbaenians (Reptilia, Squamata) of South America Ticle R A
    The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2010 | volume 16 | issue 4 | pages 543-572 Checklist of helminths from lizards and amphisbaenians (Reptilia, Squamata) of South America TICLE R A Ávila RW (1), Silva RJ (1) EVIEW R (1) Department of Parasitology, Botucatu Biosciences Institute, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo State, Brazil. Abstract: A comprehensive and up to date summary of the literature on the helminth parasites of lizards and amphisbaenians from South America is herein presented. One-hundred eighteen lizard species from twelve countries were reported in the literature harboring a total of 155 helminth species, being none acanthocephalans, 15 cestodes, 20 trematodes and 111 nematodes. Of these, one record was from Chile and French Guiana, three from Colombia, three from Uruguay, eight from Bolivia, nine from Surinam, 13 from Paraguay, 12 from Venezuela, 27 from Ecuador, 17 from Argentina, 39 from Peru and 103 from Brazil. The present list provides host, geographical distribution (with the respective biome, when possible), site of infection and references from the parasites. A systematic parasite-host list is also provided. Key words: Cestoda, Nematoda, Trematoda, Squamata, neotropical. INTRODUCTION The present checklist summarizes the diversity of helminths from lizards and amphisbaenians Parasitological studies on helminths that of South America, providing a host-parasite list infect squamates (particularly lizards) in South with localities and biomes. America had recent increased in the past few years, with many new records of hosts and/or STUDIED REGIONS localities and description of several new species (1-3).
    [Show full text]
  • Microhabitat Selection of the Poorly Known Lizard Tropidurus Lagunablanca (Squamata: Tropiduridae) in the Pantanal, Brazil
    ARTICLE Microhabitat selection of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) in the Pantanal, Brazil Ronildo Alves Benício¹; Daniel Cunha Passos²; Abraham Mencía³ & Zaida Ortega⁴ ¹ Universidade Regional do Cariri (URCA), Centro de Ciências Biológicas e da Saúde (CCBS), Departamento de Ciências Biológicas (DCB), Laboratório de Herpetologia, Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais (PPGDR). Crato, CE, Brasil. ORCID: http://orcid.org/0000-0002-7928-2172. E-mail: [email protected] (corresponding author) ² Universidade Federal Rural do Semi-Árido (UFERSA), Centro de Ciências Biológicas e da Saúde (CCBS), Departamento de Biociências (DBIO), Laboratório de Ecologia e Comportamento Animal (LECA), Programa de Pós-Graduação em Ecologia e Conservação (PPGEC). Mossoró, RN, Brasil. ORCID: http://orcid.org/0000-0002-4378-4496. E-mail: [email protected] ³ Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Biociências (INBIO), Programa de Pós-Graduação em Biologia Animal (PPGBA). Campo Grande, MS, Brasil. ORCID: http://orcid.org/0000-0001-5579-2031. E-mail: [email protected] ⁴ Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Biociências (INBIO), Programa de Pós-Graduação em Ecologia e Conservação (PPGEC). Campo Grande, MS, Brasil. ORCID: http://orcid.org/0000-0002-8167-1652. E-mail: [email protected] Abstract. Understanding how different environmental factors influence species occurrence is a key issue to address the study of natural populations. However, there is a lack of knowledge on how local traits influence the microhabitat use of tropical arboreal lizards. Here, we investigated the microhabitat selection of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) and evaluated how environmental microhabitat features influence animal’s presence.
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • Limb and Tail Lengths in Relation to Substrate Usage in Tropidurus Lizards
    JOURNAL OF MORPHOLOGY 248:151–164 (2001) Limb and Tail Lengths in Relation to Substrate Usage in Tropidurus Lizards Tiana Kohlsdorf,1 Theodore Garland Jr.,2 and Carlos A. Navas1* 1Departamento de Fisiologia, IB, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil 2Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin ABSTRACT A close relationship between morphology divergence in relative tail and hind limb length has been and habitat is well documented for anoline lizards. To test rapid since they split from their sister clade. Being re- the generality of this relationship in lizards, snout-vent, stricted to a single subclade, the difference in body pro- tail, and limb lengths of 18 species of Tropidurus (Tropi- portions could logically be interpreted as either an adap- duridae) were measured and comparisons made between tation to the clade’s lifestyle or simply a nonadaptive body proportions and substrate usage. Phylogenetic anal- synapomorphy for this lineage. Nevertheless, previous ysis of covariance by computer simulation suggests that comparative studies of another clade of lizards (Anolis)as the three species inhabiting sandy soils have relatively well as experimental studies of Sceloporus lizards sprint- longer feet than do other species. Phylogenetic ANCOVA ing on rods of different diameters support the adaptive also demonstrates that the three species inhabiting tree interpretation. J. Morphol. 248:151–164, 2001. canopies and locomoting on small branches have short © 2001 Wiley-Liss, Inc. tails and hind limbs.
    [Show full text]
  • Microlophus Theresioides (Donoso-Barros, 1966) Científico* Autores Donoso-Barros, 1966 Especie*
    Área temática Nombre campo Información ingresada para dicho campo de la información Nomenclatura Reino* Animalia Phyllum o Chordata División* Clase* Reptilia Orden* Squamata Familia* Tropiduridae Género* Microlophus Nombre Microlophus theresioides (Donoso-Barros, 1966) científico* Autores Donoso-Barros, 1966 especie* Referencia DONOSO-BARROS R (1966) Reptiles de Chile. Ediciones de la Universidad de Chile, descripción Santiago 458 + cxlvi pp. especie* Nota Donoso-Barros (1960) menciona este taxón como la subespecie Tropidurus thoracicus taxonómica* theresioides. El mismo autor, años más tarde lo considera como nomen nudum (Donoso- Barros 1966) y lo describe como Tropidurus theresioides, designándose como terra typica el Oasis de Pica, Región de Tarapacá. Posteriormente Ortiz (1980) hace una revisión del género y su presencia en Chile, incluyendo dentro de este taxón las poblaciones de Mamiña, las cuales fueron inicialmente descritas como una subespecie de Tropidurus peruvianus (maminensis). Frost (1992) realiza un análisis filogenético del género Tropidurus, reviviendo el género Microlophus y asignándolo a las especies de Tropidurus de la vertiente occidental de la cordillera de los Andes. Demangel (2016) incluye dentro de Microlophus theresioides a las poblaciones del interior de la Región de Arica y Parinacota, las cuales fueron descritas inicialmente como Tropidurus (Microlophus) yanezi, dado que los rangos de los caracteres diagnósticos de esta especie se superponen con los de M. theresioides, y en concordancia con los resultados
    [Show full text]
  • = Uracentron) Azureus Werneri (Tropiduridae
    Journal of Herpctology, Vol. 35, No. 3, pp. 395402, 2001 Copyright 2001 Society for the Study of Amphibians and Reptiles Habitat Use and Activity Patterns of the Neotropical Arboreal Lizard Tropidurus ( = Uracentron) azureus werneri (Tropiduridae) NORBERTELLINGER,~ GERHARD SCHLATTE, NICOLE JEROME, AND WALTERHÖDL Drpavtment of Evolutionary Biology, Institute of Zoology, Uniwusity of Vienna, Althanstvasse 14, A-1090 Vienna, Austria ABSTRACT.-We studied habitat use, activity patterns, foraging mode, and prey spectrum of Tropidurus azureus werneri using a tower crane located in an Amazonian lowland rain forest in southern Venezuela. The lizards were strictly arboreal with a preference for the branches and twigs of the canopy. The horizontal distribution of lizards within the 1.4-ha study area was clustered and remained remarkably stable during two consecutive years. The lizards favored high and well-structured crowns with tree holes that served as shelters during the night. Activity was highest at air temperatures above 28°C measured at a height of 21 m. Activity patterns were influenced by cloud Cover and insolation. Tvopidums azureus werneri showed notable agility and tended toward more active foraging patterns than found in other tropidurid lizards. The prey spectrum was dominated by ants. Basic ecological data on reptiles living high in during four years of fieldwork in Ecuador (for the trees of tropical rain forests are sparse, pri- the still disputed synonymization of the tropi- marily because of the difficulties of observing durid genera Plica and Umcentron with Tropidu- reptiles more than a few meters above ground rus, See Frost, 1992; Avila-Pires, 1995; Harvey level and the challenges of conducting studies and Gutberlet, 1998).
    [Show full text]
  • Thermal Ecology of Microlophus Occipitalis (Sauria: Tropiduridae) in the Plain Dry Forest of Tumbes, Peru
    Rev. peru. biol. 19(1): 097 - 099 (Abril 2012) © Facultad de Ciencias Biológicas UNMSM Thermal ecology of MICROLOPHUSISSN 1561-0837 OCCIPITALIS NOTA CIENTÍFICA Thermal ecology of Microlophus occipitalis (Sauria: Tropiduridae) in the Plain Dry Forest of Tumbes, Peru Ecología térmica de Microlophus occipitalis (Sauria: Tropiduridae) en el Bosque Seco de Llanura de Tumbes, Perú Juan C. Jordán A.1,2 and José Pérez Z. 1,2 1 Departamento de Herpetología. Museo de Historia Natural. Univer- Resumen sidad Nacional de Mayor de San Marcos. Perú. Se estudió la ecología termal de Microlophus occipitalis Peters 1871 en el Bosque Seco de Llanura de Tum- bes (noroeste del Perú). La temperatura corporal promedio fue de 36,1 ± 1,8 ºC, similar a las temperaturas 2 Laboratorio de Estudios en Bio- diversidad (LEB). Departamento de exhibidas por Microlophus peruvianus en el norte del Perú. No se identificaron diferencias entre la temperatura Ciencias Biológicas y Fisiológicas. corporal y el grado de termorregulación de hembras y machos, posiblemente asociado a su estructura social Facultad de Ciencias y Filosofía. y uso de microhábitat. La temperatura del aire y del sustrato afectaron la temperatura corporal de Microlophus Universidad Peruana Cayetano Heredia (UPCH). Perú. occipitalis, aunque la temperatura del aire afecta en mayor grado la variación de la temperatura corporal. Se E-mail: [email protected] sugiere realizar estudios más detallados en esta especie, especialmente bajo escenarios de cambio climático en el noroeste del Perú. Palabras clave: lagartijas, ecología termal, Parque Nacional Cerros de Amotape, Tumbes. Abstract The thermal ecology of Microlophus occipitalis Peters 1871 in the plain dry forests of Tumbes (northewestern Peru) was studied.
    [Show full text]
  • Population Dynamics of Tropidurus Torquatus
    Population Dynamics of Tropidurus torquatus (Wied, 1820) (Squamata, Tropiduridae) in Southern Brazil Author(s): Renata Cardoso Vieira, Jéssica Francine Felappi, Rodrigo Caruccio and Laura Verrastro Source: South American Journal of Herpetology, 6(3):215-222. Published By: Brazilian Society of Herpetology DOI: http://dx.doi.org/10.2994/057.006.0308 URL: http://www.bioone.org/doi/full/10.2994/057.006.0308 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. South American Journal of Herpetology, 6(3), 2011, 215-222 © 2011 Brazilian Society of Herpetology POPULATION DYNAMICS OF TROPIDURUS TORQUATUS (WIED, 1820) (SQUAMATA, TROPIDURIDAE) IN SOUTHERN BRAZIL RENATA CARDOSO VIEIRA1,2,6; JÉSSICA FRANCINE FELAPPI1,3; RODRIGO CARUCCIO1,4, AND LAURA VERRASTRO1,5 1. Departamento de Zoologia, Universidade Federal do Rio Grande do Sul. Porto Alegre, Brasil. 2. E-mail: [email protected] 3.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • TROPIDURUS SPINULOSUS Lizards Were Studied During the Spring-Summer (SQUAMATA: TROPIDURIDAE) Months Between October 1995 and January 1997
    SHORT NOTES 107 SHORT NOTES perature also varies seasonally, but in a less-pro­ nounced cycle than rainfall, which is typical for HERPETOLOGICAL JOURNAL, Vol. 8, pp. 107- 1 10 (1998) temperate-subtropical climates (Bucher, 1980). The NATURAL HISTORY OF type of habitat corresponds to what Cabrera & Willink ( 1980) called the chacoan occidental district. TROPIDURUS SPINULOSUS Lizards were studied during the spring-summer (SQUAMATA: TROPIDURIDAE) months between October 1995 and January 1997. FROM THE DRY CHACO OF SALTA, Trop idurus spinulosus is active mainly during the ARGENTINA warmer months, that is, from September through to March. FELIX B . CRUZ Sampling was performed in two plots of approxi­ mately I ha each, which lay within a total 10 OOO Instituio de Herpetologia, Catedra de Ecologia, hectares of the "Los Colorados" ranch. Lizards were CONICET, Fundaci6n Miguel Lillo, FCN e !ML, Miguel Lillo 251, 4000 Tucaman, Argentina collected by shooting with an air rifle, as the heights at which they were observed made other collection meth­ The genus Tr op idurus is very complex and diverse, ods, such as noosing or ptifall trapping, difficult. After at least 44 recognized species are distributed in tropical killing, specimens were fi xed in 10% formaldehyde and central South America (Rodrigues, 1987; Frost, and then transferred to 75% ethanol. The sampling ar­ 1992; Cei, 1993). Tropidurus sp inulosus is a medium­ eas were therefore very small in relation to the total sized lizard, inhabiting all of north-central Argentina areas available to the lizards, and the trees from which and central Brazil. In Cordoba, Argentina, this lizard is samples were taken were observed to be recolonized by observed on granitic boulders (Martori & Aun, 1994), lizards within a few weeks.
    [Show full text]