Regulation of PDGFC Signalling and Extracellular Matrix Composition by FREM1 in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of PDGFC Signalling and Extracellular Matrix Composition by FREM1 in Mice RESEARCH ARTICLE Disease Models & Mechanisms 6, 1426-1433 (2013) doi:10.1242/dmm.013748 Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice Fenny Wiradjaja1, Denny L. Cottle1, Lynelle Jones1 and Ian Smyth1,2,* SUMMARY Fras1-related extracellular matrix protein 1 (FREM1) is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane. DMM INTRODUCTION The FRAS/FREM family of proteins share characteristic The FRAS/FREM extracellular matrix (ECM) proteins (FRAS1, chondroitin sulphate proteoglycan (CSPG) core repeats similar FREM1 and FREM2) mediate adhesion between the epidermal to those found in the NG2 proteoglycan (Stallcup, 2002). In this basement membrane and the underlying dermis during embryonic protein, they directly bind platelet-derived growth factor A development (reviewed in Short et al., 2007; Petrou et al., 2008). (PDGFA), fibroblast growth factor FGF2, and collagens V and Consequently, their mutation results in the formation of fetal VI (Goretzki et al., 1999). Epidermal blistering defects like those epidermal blisters in a number of human conditions, including observed in FS syndrome and the blebs mice are also observed Fraser syndrome (FS; FREM2 and FRAS1 mutations), Manitoba in mice lacking either the growth factor PDGFC or its receptor, oculotrichoanal syndrome (MOTA) and bifid nose/anorectal and PDGFRα (Soriano, 1997; Tallquist and Soriano, 2003). PDGFC renal anomalies syndrome (BNAR) (both caused by mutations in is expressed in a number of developing epithelia, including the FREM1) (McGregor et al., 2003; Vrontou et al., 2003; Jadeja et al., epidermis, with complementary expression of PDGFRα observed 2005; Alazami et al., 2009; Vissers et al., 2011). These conditions in the associated underlying mesenchyme (Ding et al., 2000; encompass a wide range of developmental defects, of which Aase et al., 2002). PDGFC signalling acts upstream to drive cryptophthalmos, syndactyly, renal agenesis, ambiguous genitalia expression of matrix metalloproteinase-1 (MMP1) and its and respiratory tract defects are prominent. The FS-spectrum inhibitor, tissue metalloproteinase inhibitor 1 (TIMP1), in vitro diseases are phenocopied by the ‘blebs’ family of mouse mutants, and in transgenic overexpression models (Campbell et al., 2005; Disease Models & Mechanisms whose causative mutations lie in the mouse homologues of these Jinnin et al., 2005). FRAS/FREM genes (McGregor et al., 2003; Vrontou et al., 2003; Based on the observation that CSPG domains can interact with Smyth et al., 2004; Jadeja et al., 2005). FRAS1 and FREM2 are PDGF proteins and that epidermal blistering caused by Fras/Frem expressed exclusively by epidermal cells, whereas FREM1 is gene mutations in developing blebs mice is ultrastructurally, expressed in both the dermis and epidermis (Petrou et al., 2007; spatially and temporally similar to that observed in PdgfC Short et al., 2007). FRAS1, FREM1 and FREM2 are then thought mutants, we hypothesised that FREM1 might regulate the to interact in a complex to stabilize and cross-link epidermal capacity of PDGFC to regulate downstream remodelling of the basement membrane attachment to the developing dermis extracellular matrix (ECM). We show that FREM1 binds to (Kiyozumi et al., 2006). PDGFC in vitro and in vivo and demonstrate in mouse embryonic fibroblasts (MEFs) that wild-type (WT) FREM1 maintains the normal duration and amplitude of PI3-kinase (PI3K)/AKT and MAPK activation following PDGFC stimulation. We further 1Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia demonstrate that this interaction regulates expression of 2Department of Anatomy and Developmental Biology, Monash University, metalloproteinase inhibitor Timp1 and collagen I deposition. We Wellington Road, Clayton, Victoria 3800, Australia therefore propose that FREM1 potentiates PDGFC signalling, *Author for correspondence ([email protected]) which in turn shapes ECM processing and composition during Received 25 July 2013; Accepted 14 August 2013 development. These observations provide a mechanistic basis for © 2013. Published by The Company of Biologists Ltd basement membrane fragility that leads to epidermal blistering This is an Open Access article distributed under the terms of the Creative Commons Attribution in FS-spectrum diseases and in the blebs mutant mice that model License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. them. 1426 dmm.biologists.org FREM1 regulates ECM via PDGFC signalling RESEARCH ARTICLE antibody was performed as a control and confirmed the specificity TRANSLATIONAL IMPACT of the rat anti-FREM1 signal (data not shown). Consistent with reported literature, we also observed PDGFC Clinical issue Fraser syndrome (FS), an autosomal recessive developmental disorder, is caused enriched in the epidermis and weakly in the dermis; however, most by mutations in members of the FRAS and FREM family of extracellular matrix significantly, we observed PDGFC on the basement membrane (ECM) proteins. The FRAS and FREM proteins are thought to function (Fig. 1B). Thus, there is substantial overlap in the localisation of collectively and cooperatively to structurally cross-link components of the FREM1 and PDGFC within keratinocytes, on the basement basement membrane in developing epithelia. FRAS and FREM mutations found membrane and within local ECM surrounding dermal fibroblasts. in individuals with FS (or in the blebs family of mouse mutants that phenocopy We did not see a change in the distribution of PDGFC in bat mice the disorder) lead to defects in epidermal adhesion and the formation of large (Fig. 1B). skin blisters in utero. These blisters are thought to contribute to the formation To further explore potential interactions between the proteins, of a number of craniofacial and soft tissue malformations, including the signature feature of FS, cryptophthalmos, in which skin covers the globe of the NIH3T3 cells were transfected with plasmid constructs encoding eye. Based on earlier studies conducted in mice, it was noted that mutation of full-length FREM1-FLAG (Fig. 1A) and PDGFC-V5. Detection of FREM1, one of the key proteins implicated in FS, leads to phenotypes that extracellular deposits of either factor was rare; however, FREM1- paralleled those caused by loss of platelet-derived growth factor receptor alpha FLAG localised with secretory vesicles marked by the ECM (PDGFR) signalling, and might therefore control ECM remodelling. However, component laminin γ1. PDGFC-V5 showed a broad intracellular this hypothesis has not been directly tested. distribution but was also enriched in laminin-γ1-positive vesicles, Results where it colocalised with FREM1-FLAG (Fig. 1C, see white boxes). The authors focussed on PDGFC, a key component of the PDGFR pathway. This indicates that FREM1 and PDGFC can colocalise Using immunoprecipitation, cell culture and transfection experiments in a intracellularly, as well as in ECM components in the absence of a mutant mouse line, they show that FREM1 binds to PDGFC in vitro and in vivo. basement membrane in vitro. They show that FREM1 colocalises with PDGFC in the basement membrane, in To test for a physical interaction between FREM1 and PDGFC, close proximity to PDGFR in dermal fibroblasts. Furthermore, they DMM HEK293 cells were transfected with constructs encoding full-length demonstrate that the interaction between PDGFC and FREM1 potentiates signalling via PDGFRThis signalling cascade controls expression of the matrix FREM1-FLAG and PDGFC-V5, or empty vector controls. metalloproteinase inhibitor TIMP1, which in turns plays an active Immunoprecipitation using a mouse V5 antibody revealed the developmental role in regulating ECM deposition, including that of collagen I, presence of FREM1-FLAG in the PDGFC-V5 immunoprecipitate, part of the foundation of the basement membrane. but not in the V5 control pull-down (Fig. 1D). FREM1-FLAG and Implications and future directions PDGFC-V5 ran as a 260-kDa and 55-kDa species, respectively, as This study provides some of the first evidence that FREM proteins bind to demonstrated in earlier studies (Li et al., 2000; Kiyozumi et al., additional ECM factors in the extracellular milieu. By establishing a link 2006). To determine which domain mediates binding to PDGFC, between FREM1, PDGFC growth factor
Recommended publications
  • Role and Regulation of Pdgfra Signaling in Liver Development and Regeneration
    The American Journal of Pathology, Vol. 182, No. 5, May 2013 ajp.amjpathol.org GROWTH FACTORS, CYTOKINES, AND CELL CYCLE MOLECULES Role and Regulation of PDGFRa Signaling in Liver Development and Regeneration Prince K. Awuah,* Kari N. Nejak-Bowen,* and Satdarshan P.S. Monga*y From the Division of Experimental Pathology,* Department of Pathology, and the Department of Medicine,y University of Pittsburgh, Pittsburgh, Pennsylvania Accepted for publication January 22, 2013. Aberrant platelet-derived growth factor receptor-a (PDGFRa) signaling is evident in a subset of hepato- cellular cancers (HCCs). However, its role and regulation in hepatic physiology remains elusive. In the Address correspondence to a fi Satdarshan P.S. Monga, M.D., current study, we examined PDGFR signaling in liver development and regeneration. We identi ed a a Divisions of Experimental notable PDGFR activation in hepatic morphogenesis that, when interrupted by PDGFR -blocking anti- Pathology, Pathology and body, led to decreased hepatoblast proliferation and survival in embryonic liver cultures. We also identified Medicine, University of Pitts- temporal PDGFRa overexpression, which is regulated by epidermal growth factor (EGF) and tumor necrosis burgh School of Medicine, 200 factor a, and its activation at 3 to 24 hours after partial hepatectomy. Through generation of hepatocyte- Lothrop St., S-422 BST, Pitts- specific PDGFRA knockout (KO) mice that lack an overt phenotype, we show that absent PDGFRa burgh, PA 15261. E-mail: compromises extracelluar signal-regulated kinases and AKT activation 3 hours after partial hepatectomy, [email protected]. which, however, is alleviated by temporal compensatory increases in the EGF receptor (EGFR) and the hepatocyte growth factor receptor (Met) expression and activation along with rebound activation of extracellular signal-regulated kinases and AKT at 24 hours.
    [Show full text]
  • PDGF-C and PDGF-D Signaling in Vascular Diseases and Animal Models
    Molecular Aspects of Medicine 62 (2018) 1e11 Contents lists available at ScienceDirect Molecular Aspects of Medicine journal homepage: www.elsevier.com/locate/mam PDGF-C and PDGF-D signaling in vascular diseases and animal models * Erika Folestad a, Anne Kunath b, Dick Wågsater€ b, a Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden b Division of Drug Research, Department of Medical and Health Sciences, Linkoping€ University, Linkoping,€ Sweden article info abstract Article history: Members of the platelet-derived growth factor (PDGF) family are well known to be involved in different Received 31 August 2017 pathological conditions. The cellular and molecular mechanisms induced by the PDGF signaling have Received in revised form been well studied. Nevertheless, there is much more to discover about their functions and some 14 November 2017 important questions to be answered. This review summarizes the known roles of two of the PDGFs, Accepted 22 January 2018 PDGF-C and PDGF-D, in vascular diseases. There are clear implications for these growth factors in several Available online 14 February 2018 vascular diseases, such as atherosclerosis and stroke. The PDGF receptors are broadly expressed in the cardiovascular system in cells such as fibroblasts, smooth muscle cells and pericytes. Altered expression Keywords: Aneurysm of the receptors and the ligands have been found in various cardiovascular diseases and current studies fi Atherosclerosis have shown important implications of PDGF-C and PDGF-D signaling in brosis, neovascularization, Growth factor atherosclerosis and restenosis. Myocardial infarction © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Smooth muscle cells license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Ep 3217179 A1
    (19) TZZ¥ ___T (11) EP 3 217 179 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.09.2017 Bulletin 2017/37 G01N 33/68 (2006.01) (21) Application number: 17167637.2 (22) Date of filing: 02.10.2013 (84) Designated Contracting States: • LIU, Xinjun AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, CA 92130 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • HAUENSTEIN, Scott PL PT RO RS SE SI SK SM TR San Diego, CA 92130 (US) • KIRKLAND, Richard (30) Priority: 05.10.2012 US 201261710491 P San Diego, CA 92111 (US) 17.05.2013 US 201361824959 P (74) Representative: Krishnan, Sri (62) Document number(s) of the earlier application(s) in Nestec S.A. accordance with Art. 76 EPC: Centre de Recherche Nestlé 13779638.9 / 2 904 405 Vers-chez-les-Blanc Case Postale 44 (71) Applicant: Nestec S.A. 1000 Lausanne 26 (CH) 1800 Vevey (CH) Remarks: (72) Inventors: This application was filed on 21-04-2017 as a • SINGH, Sharat divisional application to the application mentioned Rancho Santa Fe, CA 92127 (US) under INID code 62. (54) METHODS FOR PREDICTING AND MONITORING MUCOSAL HEALING (57) The present invention provides methods for pre- an individual with a disease such as IBD. Information on dicting the likelihood of mucosal healing in an individual mucosal healing status derived from the use of the with a disease such as inflammatory bowel disease present invention can also aid in optimizing therapy (IBD).
    [Show full text]
  • PDGFC (Human) Recombinant Protein
    PDGFC (Human) Recombinant pH 3.0. protein Storage Instruction: Store at -20°C. Reconstitute in water to a concentration of 0.1-1.0 Catalog Number: P6130 mg/mL. Do not vortex. Regulation Status: For research use only (RUO) For extended storage, it is recommended to further dilute in a buffer containing a carrier protein (example 0.1% Product Description: Human PDGFC (Q9NRA1) partial BSA) and store in working aliquots at -20°C to -80°C. recombinant protein expressed in Escherichia coli. Entrez GeneID: 56034 Sequence: MVVDLNLLTEEVRLYSCTPRNFSVSIREELKRTDTIFW Gene Symbol: PDGFC PGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHE Gene Alias: FALLOTEIN, SCDGF VLQLRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTG G Gene Summary: The protein encoded by this gene is a member of the platelet-derived growth factor family. The Host: Escherichia coli four members of this family are mitogenic factors for Theoretical MW (kDa): 25.0 cells of mesenchymal origin and are characterized by a core motif of eight cysteines. This gene product appears Reactivity: Human to form only homodimers. It differs from the platelet-derived growth factor alpha and beta Applications: Func, SDS-PAGE polypeptides in having an unusual N-terminal domain, (See our web site product page for detailed applications the CUB domain. [provided by RefSeq] information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Lyophilized Preparation Method: Escherichia coli expression system Purity: 98% Endotoxin Level: Endotoxin level is <0.1 ng/ug of protein (<1 EU/ug). Activity: Determined by the dose-dependent stimulation of the proliferation of Balb/c 3T3 cells. The expected The ED50 for this effect is 15-20 ng/mL.
    [Show full text]
  • WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every G01N 33/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/IB2013/059077 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 2 October 2013 (02. 10.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/710,491 5 October 2012 (05. 10.2012) 61/824,959 17 May 2013 (17.05.2013) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: NESTEC S.A. [CH/CH]; Ave. Nestle 55, CH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 1800 Vevey (CH).
    [Show full text]
  • Identification of Shared and Unique Gene Families Associated with Oral
    International Journal of Oral Science (2017) 9, 104–109 OPEN www.nature.com/ijos ORIGINAL ARTICLE Identification of shared and unique gene families associated with oral clefts Noriko Funato and Masataka Nakamura Oral clefts, the most frequent congenital birth defects in humans, are multifactorial disorders caused by genetic and environmental factors. Epidemiological studies point to different etiologies underlying the oral cleft phenotypes, cleft lip (CL), CL and/or palate (CL/P) and cleft palate (CP). More than 350 genes have syndromic and/or nonsyndromic oral cleft associations in humans. Although genes related to genetic disorders associated with oral cleft phenotypes are known, a gap between detecting these associations and interpretation of their biological importance has remained. Here, using a gene ontology analysis approach, we grouped these candidate genes on the basis of different functional categories to gain insight into the genetic etiology of oral clefts. We identified different genetic profiles and found correlations between the functions of gene products and oral cleft phenotypes. Our results indicate inherent differences in the genetic etiologies that underlie oral cleft phenotypes and support epidemiological evidence that genes associated with CL/P are both developmentally and genetically different from CP only, incomplete CP, and submucous CP. The epidemiological differences among cleft phenotypes may reflect differences in the underlying genetic causes. Understanding the different causative etiologies of oral clefts is
    [Show full text]
  • PDGFC Antibody Cat
    PDGFC Antibody Cat. No.: 59-045 PDGFC Antibody PDGFC antibody immunohistochemistry analysis in formalin fixed and paraffin embedded human kidney tissue followed by peroxidase conjugation of the secondary antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human HOMOLOGY: Predicted species reactivity based on immunogen sequence: Chicken, Mouse This PDGFC antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 74-103 amino acids from the N-terminal region of human PDGFC. TESTED APPLICATIONS: IHC-P, WB For WB starting dilution is: 1:1000 APPLICATIONS: For IHC-P starting dilution is: 1:10~50 September 28, 2021 1 https://www.prosci-inc.com/pdgfc-antibody-59-045.html PREDICTED MOLECULAR 39 kDa WEIGHT: Properties This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by PURIFICATION: dialysis CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: PDGFC Platelet-derived growth factor C, PDGF-C, Fallotein, Spinal cord-derived growth factor, SCDGF, VEGF-E, Platelet-derived growth factor C, latent form, PDGFC latent form, Platelet- ALTERNATE NAMES: derived growth factor C, receptor-binding form, PDGFC receptor-binding form, PDGFC, SCDGF ACCESSION NO.: Q9NRA1 PROTEIN GI NO.: 205830662 GENE ID: 56034 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • Pdgfrα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts
    PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sriram, Sriniwas, Jennifer A. Tran, Xiaoqing Guo, Audrey E. K. Hutcheon, Hetian Lei, Andrius Kazlauskas, and James D. Zieske. 2017. “PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts.” Investigative Ophthalmology & Visual Science 58 (2): 1179-1186. doi:10.1167/ iovs.16-20016. http://dx.doi.org/10.1167/iovs.16-20016. Published Version doi:10.1167/iovs.16-20016 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32072016 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Cornea PDGFRa Is a Key Regulator of T1 and T3’s Differential Effect on SMA Expression in Human Corneal Fibroblasts Sriniwas Sriram,1 Jennifer A. Tran,1 Xiaoqing Guo,1 Audrey E. K. Hutcheon,1 Hetian Lei,1 Andrius Kazlauskas,2 and James D. Zieske1 1The Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2F. Hoffmann-La Roche AG, Basel, Switzerland Correspondence: Sriniwas Sriram, PURPOSE. The goal of this study was to examine the mechanism behind the unique differential Schepens Eye Research Institute, 20 action of transforming growth factor b3 (TGF-b3) and TGF-b1 on SMA expression.
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]
  • The Role of PDGF-A in Lung Development, Injury and Repair
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1448 The role of PDGF-A in lung development, injury and repair LEONOR GOUVEIA ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0291-1 UPPSALA urn:nbn:se:uu:diva-347032 2018 Dissertation presented at Uppsala University to be publicly examined in Rudbecksalen, Dag Hammarskjöls väg 20, Uppsala, Friday, 18 May 2018 at 09:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Brigid Hogan (Department of Cell Biology, Duke University School of Medicine). Abstract Gouveia, L. 2018. The role of PDGF-A in lung development, injury and repair. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1448. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0291-1. The developmental processes that take place during embryogenesis depend on a great number of proteins that are important for cell-to-cell communication. Platelet-derived growth factors are known to be important for epithelial-mesenchymal interactions during development and organogenesis. However, many details are still lacking regarding organ-specific PDGF expression patterns and detailed cellular functions. This thesis aims to better describe the contribution of PDGF-A signaling to lung developmental and injury processes. To study the cell-specific expression patterns of PDGF-A we generated a reporter mouse that show LacZ expression in all PDGF-A positive cells. This mouse model was used to characterize PDGF-A expression in embryonic and adult mouse tissues (paper I). With the use of three different reporter mice, we described the cell type specific expression patterns of PDGF-A, PDGF-C and PDGFRα in mouse lungs, from embryonic day 10.5 (E10.5) when development is initiated, until adulthood (Postnatal day 60) when the lung is fully mature (paper II).
    [Show full text]
  • Dual Targeting of JAK2 and ERK Interferes with the Myeloproliferative Neoplasm Clone and Enhances Therapeutic Efficacy
    Leukemia www.nature.com/leu ARTICLE OPEN CHRONIC MYELOPROLIFERATIVE NEOPLASMS Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy Sime Brkic 1,9, Simona Stivala 1,9, Alice Santopolo1, Jakub Szybinski1, Sarah Jungius1, Jakob R. Passweg2, Dimitrios Tsakiris2, 3 1 2 4,5 6 7 Stefan Dirnhofer , Gregor Hutter , Katharina✉ Leonards , Heidi E. L. Lischer , Matthias S. Dettmer , Benjamin G. Neel , Ross L. Levine 8 and Sara C. Meyer 1,2 © The Author(s) 2021 Myeloproliferative neoplasms (MPN) show dysregulated JAK2 signaling. JAK2 inhibitors provide clinical benefits, but compensatory activation of MAPK pathway signaling impedes efficacy. We hypothesized that dual targeting of JAK2 and ERK1/2 could enhance clone control and therapeutic efficacy. We employed genetic and pharmacologic targeting of ERK1/2 in Jak2V617F MPN mice, cells and patient clinical isolates. Competitive transplantations of Jak2V617F vs. wild-type bone marrow (BM) showed that ERK1/2 deficiency in hematopoiesis mitigated MPN features and reduced the Jak2V617F clone in blood and hematopoietic progenitor compartments. ERK1/2 ablation combined with JAK2 inhibition suppressed MAPK transcriptional programs, normalized cytoses and promoted clone control suggesting dual JAK2/ERK1/2 targeting as enhanced corrective approach. Combined pharmacologic JAK2/ ERK1/2 inhibition with ruxolitinib and ERK inhibitors reduced proliferation of Jak2V617F cells and corrected erythrocytosis and splenomegaly of Jak2V617F MPN mice. Longer-term treatment was able to induce clone reductions. BM fibrosis was significantly decreased in MPLW515L-driven MPN to an extent not seen with JAK2 inhibitor monotherapy. Colony formation from JAK2V617F patients’ CD34+ blood and BM was dose-dependently inhibited by combined JAK2/ERK1/2 inhibition in PV, ET, and MF subsets.
    [Show full text]
  • Role of Angiogenesis-Related Genes in Cleft Lip/Palate: Review of the Literature
    International Journal of Pediatric Otorhinolaryngology 78 (2014) 1579–1585 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology journal homepage: www.elsevier.com/locate/ijporl Review Article Role of angiogenesis-related genes in cleft lip/palate: Review of the literature C. Franc¸ois-Fiquet a,b,c,*, M.L. Poli-Merol a, P. Nguyen b, E. Landais d, D. Gaillard d, M. Doco-Fenzy b,d a Department of Pediatric Surgery, American Memorial Hospital, CHU Reims, France b EA 3801 Laboratory Champagne Ardenne University, SFR CAP sante´ Reims-Amiens, Reims, France c Department of Plastic and Reconstructive Surgery, Hopital Maison Blanche, CHU Reims, France d Genetics Department, Hoˆpital Maison Blanche, CHU Reims, France ARTICLE INFO ABSTRACT Article history: Objectives: Cleft lip and cleft palate (CLP) are the most common congenital craniofacial anomalies. They Received 24 May 2014 have a multifactorial etiology and result from an incomplete fusion of the facial buds. Two main Received in revised form 30 July 2014 mechanisms,acting alone orinteracting with each other, were evidenced inthisfusion defect responsible for Accepted 1 August 2014 CLP: defective tissue development and/or defective apoptosis in normal or defective tissues. The objective of Available online 12 August 2014 this work was to study the implication and role of angiogenesis-related genes in the etiology of CL/P. Methods: Our methodological approach included a systematic and thorough analysis of the genes Keywords: involved in CL/P (syndromic and non-syndromic forms) including previously identified genes but also Cleft lip genes that could potentially be angiogenesis-related (OMIM, Pub Med).We studied the interactions of Cleft palate Gene these different genes and their relationships with potential environmental factors.
    [Show full text]