Role of Angiogenesis-Related Genes in Cleft Lip/Palate: Review of the Literature

Total Page:16

File Type:pdf, Size:1020Kb

Role of Angiogenesis-Related Genes in Cleft Lip/Palate: Review of the Literature International Journal of Pediatric Otorhinolaryngology 78 (2014) 1579–1585 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology journal homepage: www.elsevier.com/locate/ijporl Review Article Role of angiogenesis-related genes in cleft lip/palate: Review of the literature C. Franc¸ois-Fiquet a,b,c,*, M.L. Poli-Merol a, P. Nguyen b, E. Landais d, D. Gaillard d, M. Doco-Fenzy b,d a Department of Pediatric Surgery, American Memorial Hospital, CHU Reims, France b EA 3801 Laboratory Champagne Ardenne University, SFR CAP sante´ Reims-Amiens, Reims, France c Department of Plastic and Reconstructive Surgery, Hopital Maison Blanche, CHU Reims, France d Genetics Department, Hoˆpital Maison Blanche, CHU Reims, France ARTICLE INFO ABSTRACT Article history: Objectives: Cleft lip and cleft palate (CLP) are the most common congenital craniofacial anomalies. They Received 24 May 2014 have a multifactorial etiology and result from an incomplete fusion of the facial buds. Two main Received in revised form 30 July 2014 mechanisms,acting alone orinteracting with each other, were evidenced inthisfusion defect responsible for Accepted 1 August 2014 CLP: defective tissue development and/or defective apoptosis in normal or defective tissues. The objective of Available online 12 August 2014 this work was to study the implication and role of angiogenesis-related genes in the etiology of CL/P. Methods: Our methodological approach included a systematic and thorough analysis of the genes Keywords: involved in CL/P (syndromic and non-syndromic forms) including previously identified genes but also Cleft lip genes that could potentially be angiogenesis-related (OMIM, Pub Med).We studied the interactions of Cleft palate Gene these different genes and their relationships with potential environmental factors. Genetic Results: TGFb, FGA, PDGFc, PDGFRa, FGF, FGFR1, FGFR2 growth factors as well as MMP and TIMP2 Angiogenesis proteolytic enzymes are involved in the genesis of CLP (P>L). Furthermore, 18 genes involved in CLP also Etiologic interact with angiogenesis-related genes. Discussion: Even if the main angiogenesis-related genes involved in CLP formation are genes participating in several biological activities and their implication might not be always related to angiogenesis defects, they nevertheless remain an undeniably important research pathway. Furthermore, their interactions with environmental factors make them good candidates in the field of CLP prevention. ß 2014 Elsevier Ireland Ltd. All rights reserved. Contents 1. Introduction . 1580 2. Materials and methods . 1580 3. Results (Tables 1 and 2).......................................................................................... 1581 4. Discussion . 1581 4.1. TGF pathways . 1581 4.1.1. TGFA. 1581 4.1.2. TGFb ............................................................................................ 1582 4.2. PDGFC and PDGFRa. 1583 4.3. FGF and FGFR . 1583 4.4. VEGF.................................................................................................... 1583 4.5. Proteolytic enzymes: MMP and TIMP2 . 1584 5. Conclusion . 1584 Acknowledgements . 1584 References . 1584 * Corresponding author at: Department of Pediatric surgery, American Memorial Hospital, 47 rue Cognacq Jay, 51092 Reims, France. Tel.: +33 682873893; fax: +33 326784318; mobile: +33 06 82 87 38 93. E-mail addresses: [email protected], carolinefi[email protected] (C. Franc¸ois-Fiquet). http://dx.doi.org/10.1016/j.ijporl.2014.08.001 0165-5876/ß 2014 Elsevier Ireland Ltd. All rights reserved. 1580 C. Franc¸ois-Fiquet et al. / International Journal of Pediatric Otorhinolaryngology 78 (2014) 1579–1585 1. Introduction - Significant increase of this gene abnormality compared to the general population Clefts of the lip-palate (CLP) are age-old and multi-ethnic - Existence of functional studies on these genes pertaining to CL/P pathologies. They are the most common congenital craniofacial (gene expression studies or animal models studies) deformities, resulting from incomplete fusion of the facial buds at The search yielded 1118 relevant articles [17/07/2013]. the beginning of pregnancy. In spite of their frequency and age-old For each gene: nature, the etiology of this pathology has only been partially We collected the following general data: explained to this day. However, it has been recognized that several factors are involved. Genetic and environmental factors as well as OMIM reference their interactions have been implied in CLP etiology. Mechanisms Gene localization that could potentially explain this incomplete fusion of the facial buds Its size are quite complex. Two main mechanisms, acting independently or in Its role, its function (when it was clearly identified) association, have been identified: tissue development defect and/or apoptosis defect that can act on normal or defective tissues. Then we analyzed the implication of these genes in CL/P based The term angiogenesis was used for the first time in 1935 by on: Hertig to describe the growth of blood vessels within the placenta. Folkman used the term again in 1972 to describe a neovascular- Analysis of the type of cleft (CL, CP, CL/P) correlated to this gene ization associated with solid tumor growth. Nowadays, angiogen- Analysis of the syndromic or non-syndromic type esis has been correlated to several mechanisms during Analysis of the type of genetic abnormalities highlighted (e.g. embryogenesis and postnatal periods. mutation, deletion, polymorphism) and/or genetic techniques The objective of this work was to investigate the role of used angiogenesis-related genes in the study of CLP etiology. A search for potential interactions with other genes or signaling pathways 2. Materials and methods A search for an interaction with the environment, as well as the agent responsible (e.g. tobacco, alcohol, toxic agent, vitamin Our research was conducted on several databases and the two deficit) main ones were: A search for family studies or maternal studies described A search for animal models described - OMIM (Online Mendelian Inheritance in Man): with the Analysis of the implication of this gene in CL/P, while following keywords ‘‘Cleft, Cleft lip, Cleft palate, Cleft lip palate, underlining the possibility that the implication of this gene might lip, palate’’. We unveiled 331 OMIM references for the item ‘‘cleft be uncertain or its role indirect. lip, cleft palate’’, including 314 corresponding really to CL/P. And finally, we collected references on the gene in relation with - PubMed: with the following keywords ‘‘Cleft, Cleft lip, Cleft CL/P. palate, Cleft lip palate, gene, genetics, mutation’’. A first selection based on the abstracts led to discarding articles Thanks to the data collected on the genes function, we selected that did not focus on cleft lip or cleft palate, when an article did in from all the genes (potentials or involved) those who had an fact underline genetics and cleft lip/palate it was selected and read impact on the angiogenic mechanisms. in its entirety. The genes we considered relevant had to meet one or We also focused on the interactions and signaling pathways. more of the following criteria: Thus, we looked for the following interactions: - Description in the article of a deleterious genetic abnormality - Between the angiogenic genes. Meaning, angiogenic genes (underlining a mutation or deleterious gene rearrangement in a involved in CL/P and other angiogenic genes not known for patient). their involvement in CL/P. - Recurrence in several articles of the same observation or the - Between an angiogenic gene linked to CL/P and other genes not same subject related to the angiogenesis but linked to CL/P. Table 1 Overview of relevant genes in CL/P genesis. Gene Phenotype Genetic Gene or pathway Environmental Familial or Animal interaction interaction maternal study study Cleft Non-syndromic Syndromic FGF8 CL/P Cleft and Polymorphism variants, SHH Mouse hypogonadotropic mutation (de novo hypogonadism missense mutation) FGF 9 CP (animal), CLP Gene–gene interaction test FGF18 X FGFR1 x Kallmann Mutation, Deletion X FGFR2 CL/P Apert, crouzon Deletion X MMP3 CL+/-P X Polymorphism variants, TIMP2? gene–gene interaction test PDGF-C CP, CL+/-P x Linkage X Mouse PDGFRa CP x Mutation PAX1 X X Mouse, zebrafish TGFA CL Æ P x Polymorphism, linkage, X X Mouse mutation TGFB3 CP X Polymorphism X X Dog, mouse TIMP2 CL Æ P x Polymorphism MMP3 VEGF CP Di george TBX1 Rats, rabbits C. Franc¸ois-Fiquet et al. / International Journal of Pediatric Otorhinolaryngology 78 (2014) 1579–1585 1581 Table 2 Role and function of relevant genes in CL/P genesis. Gene Name Localization OMIM Size (bp) Role/function FGF8 FIBROBLAST GROWTH FACTOR 8; FGF8 10q24.32 600483 5.941 Fibroblast growth factors are secreted proteins that ANDROGEN-INDUCED GROWTH FACTOR; interact with FGF tyrosine kinase receptors to AIGF mediate growth and development. The temporal and spatial patterns of FGF8 gene expression suggest that FGF8 is involved in gastrulation, regionalization of the brain, and organogenesis of the limb and face as an embryonic epithelial factor FGF 9 FIBROBLAST GROWTH FACTOR 9 13q12.11 600921 33.426 Peptide regulatory factors that act through distinct tyrosine kinase receptors and are involved in various biologic processes during embryogenesis and adult life, including implantation, morphogenesis, angiogenesis, and possibly tumorigenesis FGFR1 FIBROBLAST GROWTH FACTOR RECEPTOR 1; 8p11.23-p11.22 136350 57.697 Role in regulating cellular responses elicited
Recommended publications
  • Role and Regulation of Pdgfra Signaling in Liver Development and Regeneration
    The American Journal of Pathology, Vol. 182, No. 5, May 2013 ajp.amjpathol.org GROWTH FACTORS, CYTOKINES, AND CELL CYCLE MOLECULES Role and Regulation of PDGFRa Signaling in Liver Development and Regeneration Prince K. Awuah,* Kari N. Nejak-Bowen,* and Satdarshan P.S. Monga*y From the Division of Experimental Pathology,* Department of Pathology, and the Department of Medicine,y University of Pittsburgh, Pittsburgh, Pennsylvania Accepted for publication January 22, 2013. Aberrant platelet-derived growth factor receptor-a (PDGFRa) signaling is evident in a subset of hepato- cellular cancers (HCCs). However, its role and regulation in hepatic physiology remains elusive. In the Address correspondence to a fi Satdarshan P.S. Monga, M.D., current study, we examined PDGFR signaling in liver development and regeneration. We identi ed a a Divisions of Experimental notable PDGFR activation in hepatic morphogenesis that, when interrupted by PDGFR -blocking anti- Pathology, Pathology and body, led to decreased hepatoblast proliferation and survival in embryonic liver cultures. We also identified Medicine, University of Pitts- temporal PDGFRa overexpression, which is regulated by epidermal growth factor (EGF) and tumor necrosis burgh School of Medicine, 200 factor a, and its activation at 3 to 24 hours after partial hepatectomy. Through generation of hepatocyte- Lothrop St., S-422 BST, Pitts- specific PDGFRA knockout (KO) mice that lack an overt phenotype, we show that absent PDGFRa burgh, PA 15261. E-mail: compromises extracelluar signal-regulated kinases and AKT activation 3 hours after partial hepatectomy, [email protected]. which, however, is alleviated by temporal compensatory increases in the EGF receptor (EGFR) and the hepatocyte growth factor receptor (Met) expression and activation along with rebound activation of extracellular signal-regulated kinases and AKT at 24 hours.
    [Show full text]
  • Supplementary Table 1
    Supplementary table 1 List of the 92 proteins analyzed in the multiplex proximity extension assay (PEA) Long name (short name) UniProt No. LOD (pg/mL) Adenosine Deaminase (ADA) P00813 0.48 Artemin (ARTN) Q5T4W7 0.24 Axin-1 (AXIN1) O15169 61,0 Beta-nerve growth factor (Beta-NGF) P01138 0.48 Brain-derived neutrophic factor (BDNF) P23560 Caspase 8 (CASP-8) Q14790 0.48 C-C motif chemokine 4 (CCL4) P13236 1.9 C-C motif chemokine 19 (CCL19) Q99731 15,0 C-C motif chemokine 20 (CCL20) P78556 7.6 C-C motif chemokine 23 (CCL23) P55773 31,0 C-C motif chemokine 25 (CCL25) O15444 3.8 C-C motif chemokine 28 (CCL28) Q9NRJ3 61,0 CD40L receptor (CD40) P25942 0.01 CUB domain-containing protein 1 (CDCP1) Q9H5V8 0.12 C-X-C motif chemokine 1 (CXCL1) P09341 3.8 C-X-C motif chemokine 5 (CXCL5) P42830 0.95 C-X-C motif chemokine 6 (CXCL6) P80162 7.6 C-X-C motif chemokine 9 (CXCL9) Q07325 0.95 C-X-C motif chemokine 10 (CXCL10) P02778 7.6 C-X-C motif chemokine 11 (CXCL11) O14625 7.6 Cystatin D (CST5) P28325 1.9 Delta and Notch-like epidermal growth factor related receptor (DNER) Q8NFT8 0.95 Eotaxin-1 (CCL11) P51671 3.8 Eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) Q13541 Fibroblast growth factor 5 (FGF-5) Q8NF90 1.9 Fibroblast growth factor 19 (FGF-19) O95750 7.6 Fibroblast growth factor 21 (FGF-21) Q9NSA1 31,0 Fibroblast growth factor 23 (FGF-23) Q9GZV9 122,0 Fms-related tyrosine kinase 3 ligand (FIt3L) P49771 0.01 Fractalkine (CX3CL1) P78423 15.3 Glial cell line-derived neutrophic factor (hGDNF) P39905 0.01 Hepatocyte growth factor (HGF)
    [Show full text]
  • Artificial Liver Support Potential to Retard Regeneration?
    REVIEW ARTICLE Artificial Liver Support Potential to Retard Regeneration? Emma J. Mullin, MBChB; Matthew S. Metcalfe, FRCS; Guy J. Maddern, MD Hypothesis: The concept of an “artificial liver” has been growth-promoting factors from these cultured hepato- in development for over 40 years. Such devices aim to cytes? temporarily assume metabolic and excretory functions of the liver, with removal of potentially hepatotoxic sub- Data Sources, Extraction, and Study Selection: stances, thereby clinically stabilizing patients and pre- Data were obtained using PubMed search for reports in- venting deterioration while awaiting transplantation. If volving liver support, extracorporeal circuits, dialysis, sufficient numbers of viable hepatocytes remain, regen- growth factors, and cytokines. Those reports specifi- eration and subsequent recovery of innate liver func- cally looking at the effect of artificial liver support on cy- tion may occur. However, these devices have not yet be- tokines and growth factors are discussed. come part of routine clinical use. Much less is known regarding the effect such devices have, if any, on circu- Conclusions: There is a paucity of information on the lating cytokines and growth factors and the subsequent key events and substances involved in hepatic regenera- effects on the regenerating liver. If these devices remove tion. In addition, there is a potential impact of liver sup- or reduce factors known to promote regeneration, is the port devices on the regeneration of substances associ- rate of regeneration retarded? Conversely, does the in- ated with hepatic regeneration. Further study is needed. corporation of hepatocytes into bioartificial support sys- tems confer an advantage through the production of Arch Surg.
    [Show full text]
  • Human TGF Alpha ELISA Kit Basic Information: Catalog No.: UE1330 Size: 96T for Research Use Only
    Efficient Professional Protein and Antibody Platforms Human TGF alpha ELISA Kit Basic information: Catalog No.: UE1330 Size: 96T For research use only. Not for diagnostic or therapeutic procedures. I. INTRODUCTION Transforming growth factor alpha (TGF-α) is upregulated in some human cancers. It is produced in macrophages, brain cells, and keratinocytes, and induces epithelial development. It is closely related to EGF, and can also bind to the EGF receptor with similar effects . TGFα stimulates neural cell proliferation in the adult injured brain. Transforming growth factor alpha gene (TGFA) maps to human chromosome 2 close to the breakpoint of the t (2;8) variant translocation in Burkitt lymphoma. Synthetic TGF-alpha was as active as murine epidermal growth factor in binding to the epidermal growth factor receptor and in stimulation of anchorage-dependent and of anchorage-independent growth of normal indicator cells in culture. Synthetic TGF-alpha stimulated plasminogen activator production in A 431 and HeLa cells; the stimulation was similar to that induced by epidermal growth factor. Furthermore, synthetic human TGF-alpha showed similar immunoreactivity when compared with rat TGF-alpha. Thus, the 50-amino acid TGF-alpha is likely to be the bioactive principle produced and secreted by tumor cell lines. II. ASSAY PRINCIPLES The Gene Universal Human TGF alpha ELISA (Enzyme-Linked Immunosorbent Assay) kit is an in vitro enzyme-linked immunosorbent assay for the quantitative measurement of Human TGF alpha in Cell Culture Supernatants, Serum, Plasma. This assay employs an antibody specific for Human TGF alpha coated on a 96-well plate. Standards and samples are pipetted into the wells and TGF alpha present in a sample is bound to the wells by the immobilized antibody.
    [Show full text]
  • Proseek Multiplex Oncology I V296×96
    Proseek Multiplex Oncology I v296×96 Adrenomedullin (AM) P35318 Fms-related tyrosine kinase 3 ligand (Flt3L) P49771 Amphiregulin (AR) P15514 Folate receptor alpha (FR-alpha) P15328 Angiopoietin-1 receptor (TIE2) Q02763 Follistatin (FS) P19883 B-cell activating factor (BAFF) Q9Y275 Furin (FUR) P09958 Cadherin-3 (CDH3) P22223 Growth hormone (GH) P01241 Carbonic anhydrase IX (CAIX) Q16790 Growth/differentiation factor 15 (GDF-15) Q99988 Carcinoembryonic antigen (CEA) P06731 Heparin-binding EGF-like growth factor (HB-EGF) Q99075 Caspase-3 (CASP-3) P42574 Hepatocyte growth factor (HGF) P14210 C-C motif chemokine 19 (CCL19) Q99731 ICOS ligand (ICOSLG) O75144 CD40 ligand (CD40-L) P29965 Immunoglobulin-like transcript 3 (ILT-3) Q8NHJ6 C-X-C motif chemokine 5 (CXCL5 ) P42830 Integrin alpha-1 (ITGA1) P56199 C-X-C motif chemokine 9 (CXCL9 ) Q07325 Interferon gamma (IFN-gamma) P01579 C-X-C motif chemokine 10 (CXCL10 ) P02778 Interleukin-1 receptor antagonist protein (IL-1ra) P18510 C-X-C motif chemokine 11 (CXCL11 ) O14625 Interleukin-2 (IL-2) P60568 C-X-C motif chemokine 13 (CXCL13 ) O43927 Interleukin-6 (IL-6) P05231 Cyclin-dependent kinase inhibitor 1 (CDKN1A) P38936 Interleukin-6 receptor subunit alpha (IL-6RA) P08887 Cystatin-B (CSTB) P04080 Interleukin-7 (IL-7) P13232 Early activation antigen CD69 (CD69 ) Q07108 Interleukin-8 (IL-8) P10145 Epidermal growth factor receptor (EGFR ) P00533 Interleukin-12 (IL-12) P29460; P29459 Epididymal secretory protein E4 (HE4 ) Q14508 Interleukin-17 receptor B (IL-17RB ) Q9NRM6 Epithelial cell adhesion molecule
    [Show full text]
  • PDGF-C and PDGF-D Signaling in Vascular Diseases and Animal Models
    Molecular Aspects of Medicine 62 (2018) 1e11 Contents lists available at ScienceDirect Molecular Aspects of Medicine journal homepage: www.elsevier.com/locate/mam PDGF-C and PDGF-D signaling in vascular diseases and animal models * Erika Folestad a, Anne Kunath b, Dick Wågsater€ b, a Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden b Division of Drug Research, Department of Medical and Health Sciences, Linkoping€ University, Linkoping,€ Sweden article info abstract Article history: Members of the platelet-derived growth factor (PDGF) family are well known to be involved in different Received 31 August 2017 pathological conditions. The cellular and molecular mechanisms induced by the PDGF signaling have Received in revised form been well studied. Nevertheless, there is much more to discover about their functions and some 14 November 2017 important questions to be answered. This review summarizes the known roles of two of the PDGFs, Accepted 22 January 2018 PDGF-C and PDGF-D, in vascular diseases. There are clear implications for these growth factors in several Available online 14 February 2018 vascular diseases, such as atherosclerosis and stroke. The PDGF receptors are broadly expressed in the cardiovascular system in cells such as fibroblasts, smooth muscle cells and pericytes. Altered expression Keywords: Aneurysm of the receptors and the ligands have been found in various cardiovascular diseases and current studies fi Atherosclerosis have shown important implications of PDGF-C and PDGF-D signaling in brosis, neovascularization, Growth factor atherosclerosis and restenosis. Myocardial infarction © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Smooth muscle cells license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Ep 3217179 A1
    (19) TZZ¥ ___T (11) EP 3 217 179 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.09.2017 Bulletin 2017/37 G01N 33/68 (2006.01) (21) Application number: 17167637.2 (22) Date of filing: 02.10.2013 (84) Designated Contracting States: • LIU, Xinjun AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, CA 92130 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • HAUENSTEIN, Scott PL PT RO RS SE SI SK SM TR San Diego, CA 92130 (US) • KIRKLAND, Richard (30) Priority: 05.10.2012 US 201261710491 P San Diego, CA 92111 (US) 17.05.2013 US 201361824959 P (74) Representative: Krishnan, Sri (62) Document number(s) of the earlier application(s) in Nestec S.A. accordance with Art. 76 EPC: Centre de Recherche Nestlé 13779638.9 / 2 904 405 Vers-chez-les-Blanc Case Postale 44 (71) Applicant: Nestec S.A. 1000 Lausanne 26 (CH) 1800 Vevey (CH) Remarks: (72) Inventors: This application was filed on 21-04-2017 as a • SINGH, Sharat divisional application to the application mentioned Rancho Santa Fe, CA 92127 (US) under INID code 62. (54) METHODS FOR PREDICTING AND MONITORING MUCOSAL HEALING (57) The present invention provides methods for pre- an individual with a disease such as IBD. Information on dicting the likelihood of mucosal healing in an individual mucosal healing status derived from the use of the with a disease such as inflammatory bowel disease present invention can also aid in optimizing therapy (IBD).
    [Show full text]
  • Canine TGF-Alpha ELISA Kit
    Canine TGF-alpha ELISA Kit Catalog #: AYQ-E10339 (96 wells) User Manual This kit is designed to quantitatively detect the levels of Canine TGF-alpha in cell lysates, serum/ plasma and other suitable sample solution. Manufactured and Distributed by: AssaySolution 310 W Cummings Park, Woburn, MA, 01801, USA Phone: (617) 238-1396, Fax: (617) 380-0053 Email: [email protected] FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC PURPOSES Important notes Before using this product, please read this manual carefully; after reading the subsequent contents of this manual, please note the following specially: • The operation should be carried out in strict accordance with the provided instructions. • Store the unused strips in a sealed foil bag at 2-8°C. • Always avoid foaming when mixing or reconstituting protein solutions. • Pipette reagents and samples into the center of each well, avoid bubbles. • The samples should be transferred into the assay wells within 15 minutes of dilution. • We recommend that all standards, testing samples are tested in duplicate. • Using serial diluted sample is recommended for first test to get the best dilution factor. • If the blue color develops too light after 15 minutes incubation with the substrate, it may be appropriate to extend the incubation time (Do not over-develop). • Avoid cross-contamination by changing tips, using separate reservoirs for each reagent. • Avoid using the suction head without extensive wash. • Do not mix the reagents from different batches. • Stop Solution should be added in the same order of the Substrate Solution. • TMB developing agent is light-sensitive. Avoid prolonged exposure to the light.
    [Show full text]
  • Regulation of PDGFC Signalling and Extracellular Matrix Composition by FREM1 in Mice
    RESEARCH ARTICLE Disease Models & Mechanisms 6, 1426-1433 (2013) doi:10.1242/dmm.013748 Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice Fenny Wiradjaja1, Denny L. Cottle1, Lynelle Jones1 and Ian Smyth1,2,* SUMMARY Fras1-related extracellular matrix protein 1 (FREM1) is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane. DMM INTRODUCTION The FRAS/FREM family of proteins share characteristic The FRAS/FREM extracellular matrix (ECM) proteins (FRAS1, chondroitin sulphate proteoglycan (CSPG) core repeats similar FREM1 and FREM2) mediate adhesion between the epidermal to those found in the NG2 proteoglycan (Stallcup, 2002). In this basement membrane and the underlying dermis during embryonic protein, they directly bind platelet-derived growth factor A development (reviewed in Short et al., 2007; Petrou et al., 2008).
    [Show full text]
  • PDGFC (Human) Recombinant Protein
    PDGFC (Human) Recombinant pH 3.0. protein Storage Instruction: Store at -20°C. Reconstitute in water to a concentration of 0.1-1.0 Catalog Number: P6130 mg/mL. Do not vortex. Regulation Status: For research use only (RUO) For extended storage, it is recommended to further dilute in a buffer containing a carrier protein (example 0.1% Product Description: Human PDGFC (Q9NRA1) partial BSA) and store in working aliquots at -20°C to -80°C. recombinant protein expressed in Escherichia coli. Entrez GeneID: 56034 Sequence: MVVDLNLLTEEVRLYSCTPRNFSVSIREELKRTDTIFW Gene Symbol: PDGFC PGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHE Gene Alias: FALLOTEIN, SCDGF VLQLRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTG G Gene Summary: The protein encoded by this gene is a member of the platelet-derived growth factor family. The Host: Escherichia coli four members of this family are mitogenic factors for Theoretical MW (kDa): 25.0 cells of mesenchymal origin and are characterized by a core motif of eight cysteines. This gene product appears Reactivity: Human to form only homodimers. It differs from the platelet-derived growth factor alpha and beta Applications: Func, SDS-PAGE polypeptides in having an unusual N-terminal domain, (See our web site product page for detailed applications the CUB domain. [provided by RefSeq] information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Form: Lyophilized Preparation Method: Escherichia coli expression system Purity: 98% Endotoxin Level: Endotoxin level is <0.1 ng/ug of protein (<1 EU/ug). Activity: Determined by the dose-dependent stimulation of the proliferation of Balb/c 3T3 cells. The expected The ED50 for this effect is 15-20 ng/mL.
    [Show full text]
  • WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every G01N 33/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/IB2013/059077 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 2 October 2013 (02. 10.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/710,491 5 October 2012 (05. 10.2012) 61/824,959 17 May 2013 (17.05.2013) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: NESTEC S.A. [CH/CH]; Ave. Nestle 55, CH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 1800 Vevey (CH).
    [Show full text]
  • Identification of Shared and Unique Gene Families Associated with Oral
    International Journal of Oral Science (2017) 9, 104–109 OPEN www.nature.com/ijos ORIGINAL ARTICLE Identification of shared and unique gene families associated with oral clefts Noriko Funato and Masataka Nakamura Oral clefts, the most frequent congenital birth defects in humans, are multifactorial disorders caused by genetic and environmental factors. Epidemiological studies point to different etiologies underlying the oral cleft phenotypes, cleft lip (CL), CL and/or palate (CL/P) and cleft palate (CP). More than 350 genes have syndromic and/or nonsyndromic oral cleft associations in humans. Although genes related to genetic disorders associated with oral cleft phenotypes are known, a gap between detecting these associations and interpretation of their biological importance has remained. Here, using a gene ontology analysis approach, we grouped these candidate genes on the basis of different functional categories to gain insight into the genetic etiology of oral clefts. We identified different genetic profiles and found correlations between the functions of gene products and oral cleft phenotypes. Our results indicate inherent differences in the genetic etiologies that underlie oral cleft phenotypes and support epidemiological evidence that genes associated with CL/P are both developmentally and genetically different from CP only, incomplete CP, and submucous CP. The epidemiological differences among cleft phenotypes may reflect differences in the underlying genetic causes. Understanding the different causative etiologies of oral clefts is
    [Show full text]