Tumor-Driven Paracrine Platelet-Derived Growth Factor Receptor a Signaling Is a Key Determinant of Stromal Cell Recruitment Inamodelofhumanlungcarcinoma Max L

Total Page:16

File Type:pdf, Size:1020Kb

Tumor-Driven Paracrine Platelet-Derived Growth Factor Receptor a Signaling Is a Key Determinant of Stromal Cell Recruitment Inamodelofhumanlungcarcinoma Max L Human Cancer Biology Tumor-Driven Paracrine Platelet-Derived Growth Factor Receptor A Signaling Is a Key Determinant of Stromal Cell Recruitment inaModelofHumanLungCarcinoma Max L. Tejada,1Lanlan Yu,1Jianying Dong,1Kenneth Jung,3 Gloria Meng,4 Franklin V. Peale,2 Gretchen D. Frantz,2 Linda Hall,2 XiaoHuan Liang,1Hans-Peter Gerber,1and Napoleone Ferrara1 Abstract Activated fibroblasts are thought to play important roles in the progression of many solid tumors, but little is known about the mechanisms responsible for the recruitment of fibroblasts in tumors. Using several methods, we identified platelet-derived growth factor A (PDGFA) as the major fibroblast chemoattractant and mitogen from conditioned medium generated by the Calu-6 lung carcinoma cell line. In addition, we showed that Calu-6 tumors express significant levels of PDGFC, and that the levels of expression of these two PDGFRa ligands correlate strongly with the degree of stromal fibroblast infiltration into the tumor mass. The most intense expression of PDGFRa was observed in fibroblasts in the tumor outer rim. We subsequently showed that disrupting PDGFRa-mediated signaling results in significant inhibition of tumor growth in vivo. Furthermore, analysis of a compendium of microarray data revealed significant expression of PDGFA, PDGFC, and PDGFRa in human lung tumors. We propose that therapies targeting this stromal cell type may be effective in treating certain types of solid tumors. It has become apparent that the microenvironment in which markersconsistentwiththosefoundatthesitesofnormal tumor cells develop profoundly influences many steps of tumor wound healing (3). progression. The tumor microenvironment consists of a stroma, In the normal wound repair process, fibroblasts are recruited which is composed of immune and inflammatory cells, from the surrounding tissue. However, cancer cells are capable endothelial cells and fibroblasts, a variety of growth factors of recruiting fibroblasts from the surrounding environment and and cytokines, and an insoluble extracellular matrix. In various inducing their activation to the myofibroblast phenotype experimental tumor models, each of the stromal cell types has directly (3). In addition to their presence in the tumor mass, been shown to influence the efficiency of tumor formation, the myofibroblasts are often found at the invasive fronts of a rate of tumor growth, the extent of invasiveness, and the ability number of solid tumors, where they have been shown to affect of the tumor cells to metastasize (1–3). the growth, invasion, and metastasis of the tumors through Much attention has been focused on the role of their increased synthesis of extracellular matrix components endothelial cells in tumor angiogenesis; however, there is and the increased production of proteases, growth, and accumulating evidence that in many solid tumor types, the angiogenic factors (4). influence of the microenvironment is mediated in large part The growth of solid tumors requires the formation of new by paracrine signaling between the tumor epithelium and blood vessels through angiogenesis, the sprouting of new blood neighboring stromal fibroblasts (4). Fibroblasts are the vessels from preexisting ones, although more recent evidence major constituent of the stroma in many solid tumors, and indicates that recruitment of bone marrow–derived angiogenic in some cases, the fibroblast stroma comprises >90% of the cells contributes to the development of a neovascular supply tumor mass. These tumor-associated fibroblasts often exist in (5, 6). Although a number of angiogenic factors have been a constitutively activated state and often exhibit biological identified, vascular endothelial growth factor A (VEGF-A) is probably the most ubiquitous, and much experimental evidence implicates this factor in the regulation of both physiologic Authors’ Affiliations: Departments of 1Molecular Oncology, 2Pathology, and pathologic angiogenesis (7, 8). Administration of an anti- 3Bioinformatics and Assay, and 4Automation Technology, Genentech, Inc., South VEGF-A humanized monoclonal antibody (mAb; bevacizumab) San Francisco, California in combination with chemotherapy results in increased survival Received 8/12/05; revised 12/22/05; accepted 2/17/06. relative to chemotherapy alone in patients with previously The costs of publication of this article were defrayed in part by the payment of page untreated metastatic colorectal cancer (9). In several experimen- charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. tal systems, inactivation of the VEGF-A gene indicates that Note: Supplementary data for this article are available at Clinical Cancer Research tumor-derived VEGF is important for tumor angiogenesis and Online (http://clincancerres.aacrjournals.org/). growth (10, 11). However, other studies have detected significant Requests for reprints: Napoleone Ferrara, Department of Molecular Oncology, levels of VEGF in the stromal compartment, suggesting a Genentech, Inc., 1DNA Way, South San Francisco, CA 94080. Phone: 650-225- 2968; Fax: 650-225-6443; E-mail: [email protected]. significant role for stromal fibroblast-derived VEGF (12, 13). F 2006 American Association for Cancer Research. Members of the platelet-derived growth factor (PDGF) family doi:10.1158/1078-0432.CCR-05-1770 have been shown to be potent mitogens and chemoattractants Clin Cancer Res 2006;12(9) May 1, 2006 2676 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2006 American Association for Cancer Research. PDGFRa Signaling and Human Lung Carcinoma j for a wide variety of cell types of mesenchymal origin (14). In were incubated at 37 C in an atmosphere of 95% air/5% CO2. The both human and mouse, the PDGF family consists of four human embryonic kidney 293cell line (American Type Culture members (PDGFA, PDGFB, PDGFC, and PDGFD), which exert Collection), used to generate the adenovirus used in these experiments, their biological effects by binding to two receptor tyrosine was typically grown using high-glucose DMEM supplemented with 10% v/v fetal bovine serum, 1% v/v penicillin/streptomycin, 2 mmol/L kinases (PDGFRa and PDGFRh). PDGFAA, PDGFAB, PDGFBB, L-glutamine, and 1 Ag/mL Fungizone (Invitrogen). a and PDGFCC dimers bind to PDGFR with high affinity, Generation and fractionation of conditioned medium. Calu-6 cells h whereas PDGFBB and PDGFDD dimers bind PDGFR prefer- were allowed to grow to confluency in the presence of growth medium entially. PDGF signaling is critical for proper embryonic on gelatin-coated 500-cm2 dishes. The medium was then replaced with development, whereas in the adult, it plays a role in wound serum-free DMEM/Ham’s F12 medium, and the cells were incubated for healing and in the control of interstitial fluid pressure (14). an additional 72 hours, at which time the media (total of 6 liters) was Aberrant PDGF signaling is a hallmark of a number of solid harvested and concentrated 5-fold using a Filtron Ultrasette tangential tumors, and studies of breast, lung, and colon cancers have flow device with 10K membrane (Filtron Technology Corp., North- shown a tight correlation between deregulated paracrine PDGF borough, MA). All fractionation procedures described were done using signaling and cancer progression (15–17). Furthermore, in an AKTA Explorer chromatography system (GE Healthcare Bio-Sciences gliomas, fibrosarcomas, and osteosarcomas, coexpression of the Corp., Piscataway, NJ). Cation-exchange column chromatography. The concentrated medium PDGF ligands and their cognate receptors by the tumor cells was dialyzed against 25 mmol/L sodium phosphate (pH 6) and applied leads to an autocrine mechanism that drives carcinogenesis on a 5-mL HiTrapS Sepharose column (Amersham Pharmacia Biotech), (18–20). Unlike the other members of its family, PDGFAA which had been equilibrated with the same buffer. After a low salt exhibits a weak transforming activity, and thus far, most of the wash, the column was eluted with 1 mol/L NaCl. studies have focused on its role in embryonic development (21). Size exclusion column chromatography. Bioactive 1 mol/L NaCl Many studies have focused upon the role of tumor-derived fractions generated using cation-exchange chromatography were factors, such as PDGFB, basic fibroblast growth factor, and pooled, and 5-mL aliquots were loaded onto a TSK3000 column transforming growth factor h-1 in the induction of the myofibro- (21.5 Â 30 cm; Tosoh Biosep LC, Montgomeryville, PA) that had been blast phenotype and the angiogenic process (22–24). However, equilibrated in 20 mmol/L Tris (pH 7.5), 2 mol/L NaCl, and 0.02% attempts to identify bona fide tumor-derived stromal fibroblast Tween 20. The flow rate was 3mL/min, 3-mLfractions were collected, and aliquots were tested for bioactivity. recruitment factors are rare, despite the fact that intuitively, this Reverse-phase column chromatography. Bioactive fractions generated precedes fibroblast activation (25–27). In addition, using a using size exclusion chromatography were pooled, diluted 5-fold in dominant-negative strategy, Shao et al. showed that the expression water containing 0.1% trifluoroacetic acid and loaded onto a C4 4000A of several PDGF family members was responsible for a desmo- column (4.6 Â 100 mm). The column was eluted using a linear gradient plastic response in mammary gland tumor xenografts (28). of 15% to 50% acetonitrile (120 minutes) in 0.1% (v/v) trifluoroacetic Recently,
Recommended publications
  • Structural and Functional Properties of Platelet-Derived Growth Factor and Stem Cell Factor Receptors
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Structural and Functional Properties of Platelet-Derived Growth Factor and Stem Cell Factor Receptors Carl-Henrik Heldin and Johan Lennartsson Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden Correspondence: [email protected] The receptors for platelet-derived growth factor (PDGF) and stem cell factor (SCF) are members of the type III class of PTK receptors, which are characterized by five Ig-like domains extracellularly and a split kinase domain intracellularly. The receptors are activated by ligand-induced dimerization, leading to autophosphorylation on specific tyrosine resi- dues. Thereby the kinase activities of the receptors are activated and docking sites for down- stream SH2 domain signal transduction molecules are created; activation of these pathways promotes cell growth, survival, and migration. These receptors mediate important signals during the embryonal development, and control tissue homeostasis in the adult. Their over- activity is seen in malignancies and other diseases involving excessive cell proliferation, such as atherosclerosis and fibrotic diseases. In cancer, mutations of PDGF and SCF receptors— including gene fusions, point mutations, and amplifications—drive subpopulations of cer- tain malignancies, such as gastrointestinal stromal tumors, chronic myelomonocytic leuke- mia, hypereosinophilic syndrome, glioblastoma, acute myeloid leukemia, mastocytosis, and melanoma. he type III tyrosine kinase receptor family with kinases, and a less well-conserved carboxy- Tconsists of platelet-derived growth factor terminal tail. The ligands for these receptors are (PDGF) receptor a and b, stem cell factor all dimeric molecules, and on binding they in- (SCF) receptor (Kit), colony-stimulating fac- duce receptor dimerization.
    [Show full text]
  • Role and Regulation of Pdgfra Signaling in Liver Development and Regeneration
    The American Journal of Pathology, Vol. 182, No. 5, May 2013 ajp.amjpathol.org GROWTH FACTORS, CYTOKINES, AND CELL CYCLE MOLECULES Role and Regulation of PDGFRa Signaling in Liver Development and Regeneration Prince K. Awuah,* Kari N. Nejak-Bowen,* and Satdarshan P.S. Monga*y From the Division of Experimental Pathology,* Department of Pathology, and the Department of Medicine,y University of Pittsburgh, Pittsburgh, Pennsylvania Accepted for publication January 22, 2013. Aberrant platelet-derived growth factor receptor-a (PDGFRa) signaling is evident in a subset of hepato- cellular cancers (HCCs). However, its role and regulation in hepatic physiology remains elusive. In the Address correspondence to a fi Satdarshan P.S. Monga, M.D., current study, we examined PDGFR signaling in liver development and regeneration. We identi ed a a Divisions of Experimental notable PDGFR activation in hepatic morphogenesis that, when interrupted by PDGFR -blocking anti- Pathology, Pathology and body, led to decreased hepatoblast proliferation and survival in embryonic liver cultures. We also identified Medicine, University of Pitts- temporal PDGFRa overexpression, which is regulated by epidermal growth factor (EGF) and tumor necrosis burgh School of Medicine, 200 factor a, and its activation at 3 to 24 hours after partial hepatectomy. Through generation of hepatocyte- Lothrop St., S-422 BST, Pitts- specific PDGFRA knockout (KO) mice that lack an overt phenotype, we show that absent PDGFRa burgh, PA 15261. E-mail: compromises extracelluar signal-regulated kinases and AKT activation 3 hours after partial hepatectomy, [email protected]. which, however, is alleviated by temporal compensatory increases in the EGF receptor (EGFR) and the hepatocyte growth factor receptor (Met) expression and activation along with rebound activation of extracellular signal-regulated kinases and AKT at 24 hours.
    [Show full text]
  • Differential Expression of PDGFD in Cancers of the Breast
    Differential expression of platelet-derived growth factor D in cancers of the breast. Shahan Mamoor, MS1 [email protected] East Islip, NY 11730 Breast cancer affects women at relatively high frequency1. We mined published microarray datasets2,3 to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding platelet-derived growth factor D, PDGFD, when comparing primary tumors of the breast to the tissue of origin, the normal breast. PDGFD was also differentially expressed in the tumor cells of patients with triple negative breast cancer. PDGFD mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of PDGFD in primary tumors of the breast was correlated with overall survival in patients with basal and luminal A subtype cancer, demonstrating a relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. PDGFD may be of relevance to initiation, maintenance or progression of cancers of the female breast. Keywords: breast cancer, PDGFD, platelet-derived growth factor D, systems biology of breast cancer, targeted therapeutics in breast cancer. 1 Invasive breast cancer is diagnosed in over a quarter of a million women in the United States each year1 and in 2018, breast cancer was the leading cause of cancer death in women worldwide4. While patients with localized breast cancer are provided a 99% 5-year survival rate, patients with regional breast cancer, cancer that has spread to lymph nodes or nearby structures, are provided an 86% 5-year survival rate5,6.
    [Show full text]
  • Type of the Paper (Article
    Table S1. Gene expression of pro-angiogenic factors in tumor lymph nodes of Ibtk+/+Eµ-myc and Ibtk+/-Eµ-myc mice. Fold p- Symbol Gene change value 0,007 Akt1 Thymoma viral proto-oncogene 1 1,8967 061 0,929 Ang Angiogenin, ribonuclease, RNase A family, 5 1,1159 481 0,000 Angpt1 Angiopoietin 1 4,3916 117 0,461 Angpt2 Angiopoietin 2 0,7478 625 0,258 Anpep Alanyl (membrane) aminopeptidase 1,1015 737 0,000 Bai1 Brain-specific angiogenesis inhibitor 1 4,0927 202 0,001 Ccl11 Chemokine (C-C motif) ligand 11 3,1381 149 0,000 Ccl2 Chemokine (C-C motif) ligand 2 2,8407 298 0,000 Cdh5 Cadherin 5 2,5849 744 0,000 Col18a1 Collagen, type XVIII, alpha 1 3,8568 388 0,003 Col4a3 Collagen, type IV, alpha 3 2,9031 327 0,000 Csf3 Colony stimulating factor 3 (granulocyte) 4,3332 258 0,693 Ctgf Connective tissue growth factor 1,0195 88 0,000 Cxcl1 Chemokine (C-X-C motif) ligand 1 2,67 21 0,067 Cxcl2 Chemokine (C-X-C motif) ligand 2 0,7507 631 0,000 Cxcl5 Chemokine (C-X-C motif) ligand 5 3,921 328 0,000 Edn1 Endothelin 1 3,9931 042 0,001 Efna1 Ephrin A1 1,6449 601 0,002 Efnb2 Ephrin B2 2,8858 042 0,000 Egf Epidermal growth factor 1,726 51 0,000 Eng Endoglin 0,2309 467 0,000 Epas1 Endothelial PAS domain protein 1 2,8421 764 0,000 Ephb4 Eph receptor B4 3,6334 035 V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 0,000 Erbb2 3,9377 neuro/glioblastoma derived oncogene homolog (avian) 024 0,000 F2 Coagulation factor II 3,8295 239 1 0,000 F3 Coagulation factor III 4,4195 293 0,002 Fgf1 Fibroblast growth factor 1 2,8198 748 0,000 Fgf2 Fibroblast growth factor
    [Show full text]
  • Single-Cell Transcriptome Sequencing of 18,787 Human Induced Pluripotent Stem Cells Identifies Differentially Primed Subpopulations
    Single-cell transcriptome sequencing of 18,787 human induced pluripotent stem cells identifies differentially primed subpopulations Quan H. Nguyen1*, Samuel W. Lukowski1*, Han Sheng Chiu1, Anne Senabouth1, Timothy J. C. Bruxner1, Angelika N. Christ1, Nathan J. Palpant1*, Joseph E. Powell1,2* 1 Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 2 Queensland Brain Institute, University of Queensland, Brisbane, Australia * These authors contributed equally Supplementary Figures and Tables Table S1. Summary statistics for sequencing and mapping data of five samples Mean Median Total Median Percent Remaining Number Total number reads per genes genes UMIs per mapped cells post of cells of reads cell per cell detected cell reads filtering Sample 1 2,779 71,256 3,662 20,356 17,769 198,022,303 62.6 2,426 Sample 2 545 318,909 4,547 18,557 27,341 173,805,798 63.4 424 Sample 3 3,103 56,459 2,944 19,261 11,214 175,193,813 71.8 2,906 Sample 4 9,192 38,637 2,016 21,491 5,963 355,158,219 68.9 8,294 Sample 5 4,863 26,471 2,804 20,235 10,150 128,728,889 67.2 4,737 1 Table S2. Summary of the cell and gene filtering process Procedure Count Cells removed by library size (outside 3 x MAD range)a 0 Cells removed by number detected genes (outside 3 x MAD range) 77 Cells removed by reads mapped to mitochondrial genes (outside 3 x MAD range) 1,559 Cells removed by reads mapped to ribosomal genes (outside 3 x MAD range) 102 Cells removed by reads mapped to mitochondrial genes (> 20 % total reads)b 0 Cells removed by reads mapped to ribosomal genes (> 50 % total reads) 0 Genes removed by number of expressed cells (< 1 % total cells)c 16,674 Remaining cells post filtering 18,787 Remaining genes post filtering 16,064 aMAD stands for median absolute deviation.
    [Show full text]
  • PDGF-C and PDGF-D Signaling in Vascular Diseases and Animal Models
    Molecular Aspects of Medicine 62 (2018) 1e11 Contents lists available at ScienceDirect Molecular Aspects of Medicine journal homepage: www.elsevier.com/locate/mam PDGF-C and PDGF-D signaling in vascular diseases and animal models * Erika Folestad a, Anne Kunath b, Dick Wågsater€ b, a Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden b Division of Drug Research, Department of Medical and Health Sciences, Linkoping€ University, Linkoping,€ Sweden article info abstract Article history: Members of the platelet-derived growth factor (PDGF) family are well known to be involved in different Received 31 August 2017 pathological conditions. The cellular and molecular mechanisms induced by the PDGF signaling have Received in revised form been well studied. Nevertheless, there is much more to discover about their functions and some 14 November 2017 important questions to be answered. This review summarizes the known roles of two of the PDGFs, Accepted 22 January 2018 PDGF-C and PDGF-D, in vascular diseases. There are clear implications for these growth factors in several Available online 14 February 2018 vascular diseases, such as atherosclerosis and stroke. The PDGF receptors are broadly expressed in the cardiovascular system in cells such as fibroblasts, smooth muscle cells and pericytes. Altered expression Keywords: Aneurysm of the receptors and the ligands have been found in various cardiovascular diseases and current studies fi Atherosclerosis have shown important implications of PDGF-C and PDGF-D signaling in brosis, neovascularization, Growth factor atherosclerosis and restenosis. Myocardial infarction © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Smooth muscle cells license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • PDGFB Split FISH Probe Storage Instruction: Store at 4°C in the Dark
    PDGFB Split FISH Probe Storage Instruction: Store at 4°C in the dark. Entrez GeneID: 5155 Catalog Number: FS0009 Gene Symbol: PDGFB Regulatory Status: For research use only (RUO) Gene Alias: FLJ12858, PDGF2, SIS, SSV, c-sis Product Description: Labeled FISH probes for identification of gene split using Fluoresecent In Situ Gene Summary: The protein encoded by this gene is a Hybridization Technique. (Technology) member of the platelet-derived growth factor family. The four members of this family are mitogenic factors for Probe 1: cells of mesenchymal origin and are characterized by a Size: motif of eight cysteines. This gene product can exist Fluorophore: either as a homodimer (PDGF-BB) or as a heterodimer Location: PDGFB(Texas Red) with the platelet-derived growth factor alpha polypeptide Approximately 470kb (PDGF-AB), where the dimers are connected by Texas Red disulfide bonds. Mutations in this gene are associated 22q13.1 with meningioma. Reciprocal translocations between Probe 2: chromosomes 22 and 7, at sites where this gene and Size: that for COL1A1 are located, are associated with a Fluorophore: particular type of skin tumor called dermatofibrosarcoma Location: PDGFB(FITC) protuberans resulting from unregulated expression of Approximately 610kb growth factor. Two alternatively spliced transcript FITC variants encoding different isoforms have been identified 22q13.1 for this gene. [provided by RefSeq] Probe Gap: The gap between two probes is approximately 50 kb Source: Genomic DNA Origin: Human Notice: We strongly recommend the customer to use FFPE FISH PreTreatment Kit 1 (Catalog #: KA2375 or KA2691) for the pretreatment of Formalin-Fixed Paraffin-Embedded (FFPE) tissue sections.
    [Show full text]
  • PDGFRA in Vascular Adventitial Mscs Promotes Neointima Formation in Arteriovenous Fistula in Chronic Kidney Disease
    RESEARCH ARTICLE PDGFRA in vascular adventitial MSCs promotes neointima formation in arteriovenous fistula in chronic kidney disease Ke Song,1,2 Ying Qing,2 Qunying Guo,2 Eric K. Peden,3 Changyi Chen,4 William E. Mitch,2 Luan Truong,5 and Jizhong Cheng2 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 2Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA. 3Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, Texas, USA. 4Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. 5Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA. Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVFs) and promotes the differentiation of vascular adventitial GLI1-positive mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remain unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from patients with end-stage kidney disease and CKD mice. PDGFRA was translocated and accumulated in early endosome when sonic hedgehog was overexpressed. In endosome, PDGFRA-mediated activation of TGFB1/SMAD signaling promoted the differentiation of GMCs into myofibroblasts, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. KO of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD.
    [Show full text]
  • PDGFB Regulates the Development of the Labyrinthine Layer of the Mouse Fetal Placenta
    Developmental Biology 212, 124–136 (1999) Article ID dbio.1999.9306, available online at http://www.idealibrary.com on PDGFB Regulates the Development of the Labyrinthine Layer of the Mouse Fetal Placenta Rolf Ohlsson,*,1 Pierre Falck,* Mats Hellstro¨m,† Per Lindahl,† Hans Bostro¨m,† Gary Franklin,* Lars A¨ hrlund-Richter,‡ Jeffrey Pollard,§ Philippe Soriano,¶ and Christer Betsholtz† *Department of Animal Development & Genetics, Uppsala University, Norbyva¨gen 18A, S-752 36 Uppsala, Sweden; †Department of Medical Biochemistry, Gothenburg University, Medicinaregatan 9A, S-413 90 Gothenburg, Sweden; ‡Department of Medical Nutrition, Karolinska Institute, Huddinge, Sweden; §Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461; and ¶Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 PDGFB is a growth factor which is vital for the completion of normal prenatal development. In this study, we report the phenotypic analysis of placentas from mouse conceptuses that lack a functional PDGFB or PDGFRb gene. Placentas of both types of mutant exhibit changes in the labyrinthine layer, including dilated embryonic blood vessels and reduced numbers of both pericytes and trophoblasts. These changes are seen from embryonic day (E) 13.5, which coincides with the upregulation of PDGFB mRNA levels in normal placentas. By E17, modifications in shape, size, and number of the fetal blood vessels in the mutant placentas cause an abnormal ratio of the surface areas between the fetal and the maternal blood vessels in the labyrinthine layer. Our data suggest that PDGFB acts locally to contribute to the development of the labyrinthine layer of the fetal placenta and the formation of a proper nutrient–waste exchange system during fetal development.
    [Show full text]
  • Ep 3217179 A1
    (19) TZZ¥ ___T (11) EP 3 217 179 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.09.2017 Bulletin 2017/37 G01N 33/68 (2006.01) (21) Application number: 17167637.2 (22) Date of filing: 02.10.2013 (84) Designated Contracting States: • LIU, Xinjun AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, CA 92130 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • HAUENSTEIN, Scott PL PT RO RS SE SI SK SM TR San Diego, CA 92130 (US) • KIRKLAND, Richard (30) Priority: 05.10.2012 US 201261710491 P San Diego, CA 92111 (US) 17.05.2013 US 201361824959 P (74) Representative: Krishnan, Sri (62) Document number(s) of the earlier application(s) in Nestec S.A. accordance with Art. 76 EPC: Centre de Recherche Nestlé 13779638.9 / 2 904 405 Vers-chez-les-Blanc Case Postale 44 (71) Applicant: Nestec S.A. 1000 Lausanne 26 (CH) 1800 Vevey (CH) Remarks: (72) Inventors: This application was filed on 21-04-2017 as a • SINGH, Sharat divisional application to the application mentioned Rancho Santa Fe, CA 92127 (US) under INID code 62. (54) METHODS FOR PREDICTING AND MONITORING MUCOSAL HEALING (57) The present invention provides methods for pre- an individual with a disease such as IBD. Information on dicting the likelihood of mucosal healing in an individual mucosal healing status derived from the use of the with a disease such as inflammatory bowel disease present invention can also aid in optimizing therapy (IBD).
    [Show full text]
  • Regulation of PDGFC Signalling and Extracellular Matrix Composition by FREM1 in Mice
    RESEARCH ARTICLE Disease Models & Mechanisms 6, 1426-1433 (2013) doi:10.1242/dmm.013748 Regulation of PDGFC signalling and extracellular matrix composition by FREM1 in mice Fenny Wiradjaja1, Denny L. Cottle1, Lynelle Jones1 and Ian Smyth1,2,* SUMMARY Fras1-related extracellular matrix protein 1 (FREM1) is required for epidermal adhesion during embryogenesis, and mice lacking the gene develop fetal skin blisters and a range of other developmental defects. Mutations in members of the FRAS/FREM gene family cause diseases of the Fraser syndrome spectrum. Embryonic epidermal blistering is also observed in mice lacking PdgfC and its receptor, PDGFRα. In this article, we show that FREM1 binds to PDGFC and that this interaction regulates signalling downstream of PDGFRα. Fibroblasts from Frem1-mutant mice respond to PDGFC stimulation, but with a shorter duration and amplitude than do wild-type cells. Significantly, PDGFC-stimulated expression of the metalloproteinase inhibitor Timp1 is reduced in cells with Frem1 mutations, leading to reduced basement membrane collagen I deposition. These results show that the physical interaction of FREM1 with PDGFC can regulate remodelling of the extracellular matrix downstream of PDGFRα. We propose that loss of FREM1 function promotes epidermal blistering in Fraser syndrome as a consequence of reduced PDGFC activity, in addition to its stabilising role in the basement membrane. DMM INTRODUCTION The FRAS/FREM family of proteins share characteristic The FRAS/FREM extracellular matrix (ECM) proteins (FRAS1, chondroitin sulphate proteoglycan (CSPG) core repeats similar FREM1 and FREM2) mediate adhesion between the epidermal to those found in the NG2 proteoglycan (Stallcup, 2002). In this basement membrane and the underlying dermis during embryonic protein, they directly bind platelet-derived growth factor A development (reviewed in Short et al., 2007; Petrou et al., 2008).
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]