Structural and Functional Properties of Platelet-Derived Growth Factor and Stem Cell Factor Receptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Drosophila SH2-SH3 Adaptor Protein Implicated in Coupling the Sevenless Tyrosine Kinase to an Activator of Ras Guanine Nucleotide Exchange, Sos
Published in Cell, Vol. 73, 179-191. April 9, 1993 A Drosophila SH2-SH3 Adaptor Protein Implicated in Coupling the Sevenless Tyrosine Kinase to an Activator of Ras Guanine Nucleotide Exchange, Sos Jean Paul Olivier,*† Thomas Raabe,‡ tyrosine kinases, which contribute to the development oi Mark Henkerneyer,* Barry Dickson,‡ specific cancers (Konopka et al., 1984; Hunter and Cooper, Geraldine Mbamalu,* Ben Margolis,§ 1985). A principal intracellular signaling pathway by which Joseph Schlessinger, § Ernst Hafen,‡ tyrosine kinases stimulate cell growth and differentiation and Tony Pawson*† involves the activation of Ras guanine nucleotide-binding *Division of Molecular and Developmental Biology proteins, by conversion of Ras from a GDP- to a GTP-bound Samuel Lunenfeld Research Institute state. The notion that Ras might be important in propagating signals downstream of tyrosine kinases was originally Mount Sinai Hospital suggested by the effects of microinjecting anti-Ras antibody Toronto, Ontario M5G 1x5 into mammalian fibroblasts. Neutralizing antibody to Ras Canada blocks the ability of both normal growth factor receptors and †Department of Molecular and Medical Genetics oncogenic tyrosine kinases to induce DNA synthesis (Mulcahy University of Toronto et al., 1985; Smith et al., 1986). Similarly, anti-Ras antibody Toronto. Ontario M5S 1A8 and the S17N dominant inhibitory Ras protein Inhibit the Canada capacity of nerve growth factor, acting through the Trk ‡Zoologisches lnstitut tyrosine kinase, to induce neurite extension in PC12 neuronal Universitat Zurich cells (Szeberenyi et al., 1990; Hagag et al., 1986). Expression Winterhurerstrasse 190 of S17N inhibitory Ras protein in PC12 cells or in fibroblasts CH-8057 Zurich also blocks the activation of serinel threonine kinases, such Switzerland as Raf and MAP kinase, in response to nerve growth factor, §Department of Pharmacology platelet-derived growth factor, or insulin (Thomas et al., 1352; Kaplan Cancer Center Wood et al., 1992; de Vries-Smits et al., 1992). -
Open Full Page
Published OnlineFirst October 12, 2017; DOI: 10.1158/2159-8290.CD-17-0593 RESEARCH ARTICLE Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer Scott Gettinger 1 , 2 , Jungmin Choi 3 , Katherine Hastings 2 , Anna Truini 2 , Ila Datar 4 , Ryan Sowell 5 , Anna Wurtz2 , Weilai Dong 3 , Guoping Cai 4 , Mary Ann Melnick 2 , Victor Y. Du 5 , Joseph Schlessinger 2 , 6 , Sarah B. Goldberg1 , 2 , Anne Chiang 1 , 2 , Miguel F. Sanmamed 5 , Ignacio Melero 7 , 8 , Jackeline Agorreta 7 , 8 , Luis M. Montuenga7 , 8 , Richard Lifton 3 , Soldano Ferrone 9 , Paula Kavathas 2 , 5 , 10 , David L. Rimm 2 , 4 , Susan M. Kaech2 , 5 , Kurt Schalper 1 , 2 , 4 , Roy S. Herbst 1 , 2 , 6 , and Katerina Politi 1 , 2 , 4 ABSTRACT Mechanisms of acquired resistance to immune checkpoint inhibitors (ICI) are poorly understood. We leveraged a collection of 14 ICI-resistant lung cancer samples to investigate whether alterations in genes encoding HLA Class I antigen processing and presentation machinery (APM) components or interferon signaling play a role in acquired resistance to PD-1 or PD-L1 antagonistic antibodies. Recurrent mutations or copy-number changes were not detected in our cohort. In one case, we found acquired homozygous loss of B2M that caused lack of cell-surface HLA Class I expression in the tumor and a matched patient-derived xenograft (PDX). Downregulation of B2M was also found in two additional PDXs established from ICI-resistant tumors. CRISPR-mediated knock- out of B2m in an immunocompetent lung cancer mouse model conferred resistance to PD-1 blockade in vivo , proving its role in resistance to ICIs. -
The BBVA Foundation Frontiers of Knowledge Award in Biomedicine Goes to Tony Hunter, Joseph Schlessinger and Charles Sawyers
The BBVA Foundation Frontiers of Knowledge Award in Biomedicine goes to Tony Hunter, Joseph Schlessinger and Charles Sawyers for opening the door to the personalized treatment of cancer The winners represent the three steps in research leading to this advance: Tony Hunter discovered tyrosine kinases, Joseph Schlessinger identified the principle through which they function, and Charles Sawyers brought this knowledge to the clinic and the development of novel cancer therapies Their contributions served initially to treat a variety of leukemia, transforming it from a fatal into a chronic disorder, but have since given rise to effective therapies for lung and breast cancer, melanoma and lymphomas, among other conditions José Baselga, Physician-in-Chief at the Memorial Sloan Kettering Cancer Center in New York and nominator of Charles Sawyers, described the contributions of the three laureates as marking “the birth of personalized anti-cancer medicine” Madrid, January 27, 2015.- The BBVA Foundation Frontiers of Knowledge Award in the Biomedicine category is shared in this seventh edition by Tony Hunter, professor and Director of the Salk Institute Cancer Center in La Jolla, California; Joseph Schlessinger, Chairman of the Department of Pharmacology at Yale University School of Medicine, New Haven, and Charles Sawyers, Human Oncology and Pathogenesis Program Chair at the Memorial Sloan Kettering Cancer Center in New York, for “carving out the path that led to the development of a new class of successful cancer drugs.” For José Baselga, Physician-in-Chief -
Type of the Paper (Article
Table S1. Gene expression of pro-angiogenic factors in tumor lymph nodes of Ibtk+/+Eµ-myc and Ibtk+/-Eµ-myc mice. Fold p- Symbol Gene change value 0,007 Akt1 Thymoma viral proto-oncogene 1 1,8967 061 0,929 Ang Angiogenin, ribonuclease, RNase A family, 5 1,1159 481 0,000 Angpt1 Angiopoietin 1 4,3916 117 0,461 Angpt2 Angiopoietin 2 0,7478 625 0,258 Anpep Alanyl (membrane) aminopeptidase 1,1015 737 0,000 Bai1 Brain-specific angiogenesis inhibitor 1 4,0927 202 0,001 Ccl11 Chemokine (C-C motif) ligand 11 3,1381 149 0,000 Ccl2 Chemokine (C-C motif) ligand 2 2,8407 298 0,000 Cdh5 Cadherin 5 2,5849 744 0,000 Col18a1 Collagen, type XVIII, alpha 1 3,8568 388 0,003 Col4a3 Collagen, type IV, alpha 3 2,9031 327 0,000 Csf3 Colony stimulating factor 3 (granulocyte) 4,3332 258 0,693 Ctgf Connective tissue growth factor 1,0195 88 0,000 Cxcl1 Chemokine (C-X-C motif) ligand 1 2,67 21 0,067 Cxcl2 Chemokine (C-X-C motif) ligand 2 0,7507 631 0,000 Cxcl5 Chemokine (C-X-C motif) ligand 5 3,921 328 0,000 Edn1 Endothelin 1 3,9931 042 0,001 Efna1 Ephrin A1 1,6449 601 0,002 Efnb2 Ephrin B2 2,8858 042 0,000 Egf Epidermal growth factor 1,726 51 0,000 Eng Endoglin 0,2309 467 0,000 Epas1 Endothelial PAS domain protein 1 2,8421 764 0,000 Ephb4 Eph receptor B4 3,6334 035 V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 0,000 Erbb2 3,9377 neuro/glioblastoma derived oncogene homolog (avian) 024 0,000 F2 Coagulation factor II 3,8295 239 1 0,000 F3 Coagulation factor III 4,4195 293 0,002 Fgf1 Fibroblast growth factor 1 2,8198 748 0,000 Fgf2 Fibroblast growth factor -
Single-Cell Transcriptome Sequencing of 18,787 Human Induced Pluripotent Stem Cells Identifies Differentially Primed Subpopulations
Single-cell transcriptome sequencing of 18,787 human induced pluripotent stem cells identifies differentially primed subpopulations Quan H. Nguyen1*, Samuel W. Lukowski1*, Han Sheng Chiu1, Anne Senabouth1, Timothy J. C. Bruxner1, Angelika N. Christ1, Nathan J. Palpant1*, Joseph E. Powell1,2* 1 Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 2 Queensland Brain Institute, University of Queensland, Brisbane, Australia * These authors contributed equally Supplementary Figures and Tables Table S1. Summary statistics for sequencing and mapping data of five samples Mean Median Total Median Percent Remaining Number Total number reads per genes genes UMIs per mapped cells post of cells of reads cell per cell detected cell reads filtering Sample 1 2,779 71,256 3,662 20,356 17,769 198,022,303 62.6 2,426 Sample 2 545 318,909 4,547 18,557 27,341 173,805,798 63.4 424 Sample 3 3,103 56,459 2,944 19,261 11,214 175,193,813 71.8 2,906 Sample 4 9,192 38,637 2,016 21,491 5,963 355,158,219 68.9 8,294 Sample 5 4,863 26,471 2,804 20,235 10,150 128,728,889 67.2 4,737 1 Table S2. Summary of the cell and gene filtering process Procedure Count Cells removed by library size (outside 3 x MAD range)a 0 Cells removed by number detected genes (outside 3 x MAD range) 77 Cells removed by reads mapped to mitochondrial genes (outside 3 x MAD range) 1,559 Cells removed by reads mapped to ribosomal genes (outside 3 x MAD range) 102 Cells removed by reads mapped to mitochondrial genes (> 20 % total reads)b 0 Cells removed by reads mapped to ribosomal genes (> 50 % total reads) 0 Genes removed by number of expressed cells (< 1 % total cells)c 16,674 Remaining cells post filtering 18,787 Remaining genes post filtering 16,064 aMAD stands for median absolute deviation. -
PDGFRA in Vascular Adventitial Mscs Promotes Neointima Formation in Arteriovenous Fistula in Chronic Kidney Disease
RESEARCH ARTICLE PDGFRA in vascular adventitial MSCs promotes neointima formation in arteriovenous fistula in chronic kidney disease Ke Song,1,2 Ying Qing,2 Qunying Guo,2 Eric K. Peden,3 Changyi Chen,4 William E. Mitch,2 Luan Truong,5 and Jizhong Cheng2 1Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 2Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA. 3Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, Texas, USA. 4Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. 5Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA. Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVFs) and promotes the differentiation of vascular adventitial GLI1-positive mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remain unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from patients with end-stage kidney disease and CKD mice. PDGFRA was translocated and accumulated in early endosome when sonic hedgehog was overexpressed. In endosome, PDGFRA-mediated activation of TGFB1/SMAD signaling promoted the differentiation of GMCs into myofibroblasts, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. KO of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD. -
Ep 3217179 A1
(19) TZZ¥ ___T (11) EP 3 217 179 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.09.2017 Bulletin 2017/37 G01N 33/68 (2006.01) (21) Application number: 17167637.2 (22) Date of filing: 02.10.2013 (84) Designated Contracting States: • LIU, Xinjun AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, CA 92130 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • HAUENSTEIN, Scott PL PT RO RS SE SI SK SM TR San Diego, CA 92130 (US) • KIRKLAND, Richard (30) Priority: 05.10.2012 US 201261710491 P San Diego, CA 92111 (US) 17.05.2013 US 201361824959 P (74) Representative: Krishnan, Sri (62) Document number(s) of the earlier application(s) in Nestec S.A. accordance with Art. 76 EPC: Centre de Recherche Nestlé 13779638.9 / 2 904 405 Vers-chez-les-Blanc Case Postale 44 (71) Applicant: Nestec S.A. 1000 Lausanne 26 (CH) 1800 Vevey (CH) Remarks: (72) Inventors: This application was filed on 21-04-2017 as a • SINGH, Sharat divisional application to the application mentioned Rancho Santa Fe, CA 92127 (US) under INID code 62. (54) METHODS FOR PREDICTING AND MONITORING MUCOSAL HEALING (57) The present invention provides methods for pre- an individual with a disease such as IBD. Information on dicting the likelihood of mucosal healing in an individual mucosal healing status derived from the use of the with a disease such as inflammatory bowel disease present invention can also aid in optimizing therapy (IBD). -
The Tethered Configuration of the EGF Receptor Extracellular Domain Exerts Only a Limited Control of Receptor Function
The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function Dawn Mattoon*, Peter Klein*†, Mark A. Lemmon‡, Irit Lax*, and Joseph Schlessinger*§ *Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520; †Fox Run Management, LLC, 35 Fox Run Lane, Greenwich, CT 06831; and ‡Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Contributed by Joseph Schlessinger, November 26, 2003 Quantitative epidermal growth factor (EGF)-binding experiments receptor molecule, and interactions with heterologous mem- have shown that the EGF-receptor (EGFR) is displayed on the brane or cytoplasmic proteins or other molecules (1, 4). surface of intact cells in two forms, a minority of high-affinity and The intrinsic protein tyrosine kinase activity of the EGFR is a majority of low-affinity EGFRs. On the basis of the three- activated by EGF-stimulation of receptor dimerization, resulting dimensional structure of the extracellular ligand binding domain of in autophosphorylation of the cytoplasmic domain of EGFR on the EGFR, it was proposed that the intramolecularly tethered and multiple tyrosine residues. The autophosphorylation sites serve autoinhibited configuration corresponds to the low-affinity recep- as binding sites for the Src homology 2 (SH2) and phosphoty- tor, whereas the extended configuration accounts for the high- rosine-binding (PTB) domains of signaling proteins that are affinity EGFRs on intact cells. Here we test this model by analyzing recruited to the receptor after ligand-stimulation, enabling the properties of EGFRs mutated in the specific regions responsible signal transmission to a variety of intracellular compartments to for receptor autoinhibition and dimerization, respectively. -
WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/054013 Al 10 April 2014 (10.04.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every G01N 33/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/IB2013/059077 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 2 October 2013 (02. 10.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/710,491 5 October 2012 (05. 10.2012) 61/824,959 17 May 2013 (17.05.2013) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: NESTEC S.A. [CH/CH]; Ave. Nestle 55, CH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 1800 Vevey (CH). -
Fgf10 Dosage Is Critical for the Amplification of Epithelial Cell Progenitors and for the Formation of Multiple Mesenchymal Lineages During Lung Development
Developmental Biology 307 (2007) 237–247 www.elsevier.com/locate/ydbio Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development Suresh K. Ramasamy a,1, Arnaud A. Mailleux b,1, Varsha V. Gupte a, Francisca Mata a, Frédéric G. Sala a, Jacqueline M. Veltmaat c, Pierre M. Del Moral a, Stijn De Langhe a, Sara Parsa a, Lisa K. Kelly d, Robert Kelly e, Wei Shia a, Eli Keshet f, Parviz Minoo g, ⁎ David Warburton a, Savério Bellusci a, a Developmental Biology Program, Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA b Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA c Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore d Division of Pediatrics, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA e Developmental Biology Institute of Marseille Luminy-UMR6216-CNRS-Université de la Méditerranée, France f Department of Molecular Biology, The Hebrew University–Hadassah Medical School, Jerusalem, Israel g Department of Pediatrics, Women's and Children's Hospital, USC Keck School of Medicine, Los Angeles, CA 90033, USA Received for publication 23 October 2006; revised 24 April 2007; accepted 26 April 2007 Available online 3 May 2007 Abstract The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. -
Control Mechanisms of Lung Alveolar Development and Their Disorders in Bronchopulmonary Dysplasia
0031-3998/05/5705-0038R PEDIATRIC RESEARCH Vol. 57, No. 5, Pt 2, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. Control Mechanisms of Lung Alveolar Development and Their Disorders in Bronchopulmonary Dysplasia JACQUES BOURBON, OLIVIER BOUCHERAT, BERNADETTE CHAILLEY-HEU, AND CHRISTOPHE DELACOURT Inserm U651-Université Paris XII, Faculté de Médecine, F-94010 Créteil, France ABSTRACT Bronchopulmonary dysplasia (BPD) is a chronic lung disease premature baboon or lamb, neonatal exposure to hyperoxia in that occurs in very premature infants and is characterized by rodents, and maternal-fetal infection. These findings open ther- impaired alveologenesis. This ultimate phase of lung develop- apeutic perspectives to correct imbalanced signaling. Unraveling ment is mostly postnatal and allows growth of gas-exchange the intimate molecular mechanisms of alveolar building appears surface area to meet the needs of the organism. Alveologenesis is as a prerequisite to define new strategies for the prevention and a highly integrated process that implies cooperative interactions care of BPD. (Pediatr Res 57: 38R–46R, 2005) between interstitial, epithelial, and vascular compartments of the lung. Understanding of its underlying mechanisms has consider- Abbreviations ably progressed recently with identification of structural, signal- BPD, bronchopulmonary dysplasia ing, or remodeling molecules that are crucial in the process. ECM, extracellular matrix Thus, the pivotal role of elastin deposition in lung walls has been EMAP II, endothelial-monocyte activating polypeptide II demonstrated, and many key control-molecules have been iden- FGF, fibroblast growth factor tified, including various transcription factors, growth factors such GC, glucocorticoids as platelet-derived growth factor, fibroblast growth factors, and MMP, matrix metalloproteinase vascular endothelial growth factor, matrix-remodeling enzymes, PDGF, platelet-derived growth factor and retinoids. -
KIT Kinase Mutants Show Unique Mechanisms of Drug Resistance to Imatinib and Sunitinib in Gastrointestinal Stromal Tumor Patients
KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients Ketan S. Gajiwalaa,1, Joe C. Wub,1, James Christensenc, Gayatri D. Deshmukhb, Wade Diehla, Jonathan P. DiNittob, Jessie M. Englishb,2, Michael J. Greiga, You-Ai Hea, Suzanne L. Jacquesb, Elizabeth A. Lunneya,3, Michele McTiguea, David Molinaa,4, Terri Quenzera, Peter A. Wellsd, Xiu Yua, Yan Zhangb, Aihua Zoud, Mark R. Emmette,f, Alan G. Marshalle,f, Hui-Min Zhange,g, and George D. Demetrih,3 aDepartments of Structural and Computational Biology, cCancer Biology, and dBiochemical Pharmacology, Pfizer Global Research and Development, 10777 Science Center Drive, La Jolla, CA 92121; bDepartment of Enzymology and Biochemistry, Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139; eNational High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310; fDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306; gInstitute of Molecular Biophysics, Florida State University, Kasha Laboratory, MC4380, Tallahassee, FL 32306; and hLudwig Center at Dana–Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115 Communicated by Joseph Schlessinger, Yale University School of Medicine, New Haven, CT, December 8, 2008 (received for review September 24, 2008) Most gastrointestinal stromal tumors (GISTs) exhibit aberrant ac- T670I. However, certain imatinib-resistant mutants are also resis- tivation of the receptor tyrosine kinase (RTK) KIT. The efficacy of tant to sunitinib, including D816H/V (6), which are located in the the inhibitors imatinib mesylate and sunitinib malate in GIST activation loop (A-loop) of the KIT catalytic domain (Fig.