3096647.Pdf (1.038Mb)

Total Page:16

File Type:pdf, Size:1020Kb

3096647.Pdf (1.038Mb) An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1β Secretion The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Moura-Alves, Pedro, Ana Neves-Costa, Helena Raquel, Teresa Raquel Pacheco, Bruno D'Almeida, Raquel Rodrigues, Iris Cadima- Couto, et al. 2011. An shRNA-based screen of splicing regulators identifies SFRS3 as a negative regulator of IL-1β secretion. PLoS ONE 6(5): e19829. Published Version doi:10.1371/journal.pone.0019829 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8296041 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1b Secretion Pedro Moura-Alves1., Ana Neves-Costa1., Helena Raquel1., Teresa Raquel Pacheco1, Bruno D’Almeida1, Raquel Rodrigues1, Iris Cadima-Couto1,Aˆ ngelo Chora1, Mariana Oliveira2, Margarida Gama-Carvalho2,3, Nir Hacohen4,5, Luis F. Moita1* 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal, 2 Centro de Biodiversidade, Geno´mica Funcional e Integrativa (BioFIG), Faculdade de Cieˆncias, Universidade de Lisboa, Lisboa, Portugal, 3 Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal, 4 Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 5 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America Abstract The generation of diversity and plasticity of transcriptional programs are key components of effective vertebrate immune responses. The role of Alternative Splicing has been recognized, but it is underappreciated and poorly understood as a critical mechanism for the regulation and fine-tuning of physiological immune responses. Here we report the generation of loss-of-function phenotypes for a large collection of genes known or predicted to be involved in the splicing reaction and the identification of 19 novel regulators of IL-1b secretion in response to E. coli challenge of THP-1 cells. Twelve of these genes are required for IL-1b secretion, while seven are negative regulators of this process. Silencing of SFRS3 increased IL-1b secretion due to elevation of IL-1b and caspase-1 mRNA in addition to active caspase-1 levels. This study points to the relevance of splicing in the regulation of auto-inflammatory diseases. Citation: Moura-Alves P, Neves-Costa A, Raquel H, Pacheco TR, D’Almeida B, et al. (2011) An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1b Secretion. PLoS ONE 6(5): e19829. doi:10.1371/journal.pone.0019829 Editor: Juan Valcarcel, Centre de Regulacio´ Geno`mica, Spain Received October 27, 2010; Accepted April 18, 2011; Published May 17, 2011 Copyright: ß 2011 Alves et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: L.F.M. is a Young Investigator from the Human Frontier Science Program (www.hfsp.org) and receives support from Fundac¸a˜o Luso-Americana para o Desenvolvimento (http://www.flad.pt/) and Fundac¸a˜o para a Cieˆncia e a Tecnologia (http://alfa.fct.mctes.pt/); (PTDC/SAU-MII/100780/2008 and PIC/IC/82991/ 2007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These authors contributed equally to this work. Introduction functionally significant in the immune and nervous systems [4,10]. The success of the vertebrate immune system relies on a Microorganisms activate the innate immune system using remarkable potential to generate highly diverse detection, germline-encoded pattern-recognition receptors (PRRs). Several transduction and effector mechanisms in addition to the ability classes of PRRs, including Toll-like receptors, recognize distinct of individual cells to rapidly adapt and respond to changing microbial components and directly activate immune cells, environmental conditions [1]. Transcriptional regulation in the including antigen presentation cells such as dendritic cells (DCs). immune system has received the most attention in recent years, Exposure of immune cells to the agonists of these receptors but achieving such diversity and flexibility of function requires the activates the NF-kB pathway, rapidly inducing the expression of operation of additional mechanisms of gene regulation. Alternative cytokines (such as IL-1b), co-stimulatory molecules and other Splicing (AS), which affects most of human genes and is altered in effector molecules that are part of an effective immune response at least 15% of all point mutations causing human genetic disease [1]. This initial response is terminated several hours later through [2,3], is a potential critical mechanism for the regulation and fine- incompletely characterized molecules and pathways [11] but that tuning of physiological immune responses [4,5]. are of critical importance to avoid an excessive NF-kB signaling. Our genome contains much fewer coding genes than anti- The NF-kB transcription factor has been the subject of intense cipated before the completion of the human genome-sequencing study for many years, reflecting its importance in the immune project [6]. Alternative splicing permits the generation of a large response. Interestingly, many components along the pathways array of mRNA transcripts and protein isoforms from a limited leading to NF-kB activation, such as MyD88, IRAK family number of genes [4,5]. By including or deleting functional protein members, TAB1, TAK1, IkB kinase complex factors and NF-kB domains it can change many protein properties including transcription factors (reviewed in [5]) have been shown to undergo protein–protein interactions, subcellular localization, stability, induced alternative splicing in the later phase of the immune DNA binding, and enzymatic properties of the dominant response and to generate shorter isoforms that can act as dominant isoforms [7]. Two recent landmark reports estimate that 92% negative factors able to shut down NF-kB dependent transcription. to 95% of all human primary transcripts can undergo alternative Here we report the use of a subset of the TRC lentiviral human splicing [8,9]. This process seems to be especially prevalent and library [12] to generate loss-of-function phenotypes for a large PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19829 SFRS3 Is a Negative Regulator of IL-1b Secretion collection of genes known or predicted to be involved in the (qRT-PCR), total RNA was extracted using TRIzol reagent splicing reaction (425 genes), with an average 5-fold coverage [13]. (Invitrogen) and cDNA synthesis used Superscript II Reverse By applying this library in human THP-1 monocytic cells, we aim Transcriptase (Invitrogen). qRT-PCR was performed in the to systematically identify components of the splicing machinery presence of Power SYBR green PCR Master Mix (Applied that modulate the secretion of IL-1b. We have identified 19 genes Biosystems) and the amplification protocol was performed that significantly affect the production of IL-1b after a 24 h on a Rotor-Gene 6000 (Corbett). All samples were normalized challenge with PFA-fixed E. coli. Twelve of these genes are to the expression of glyceraldehyde-3-phosphate dehydrogenase required for IL-1b secretion, while seven are negative regulators of (GAPDH) and relative expression was calculated using Pfaffl’s this process. We chose one of the highest scoring negative method [17]. regulators, SFRS3, for further characterization of its role in IL-1b For immunoblotting (IB), cells were collected, washed twice and secretion. lysed for 15 minutes at 4uC using RIPA buffer (50 mM Tris-HCl at pH = 7.4, 1% NP-40, 0.25% Sodium Deoxicholate, 150 mM Methods NaCl, 1 mM EDTA, 1 mM Na3VO4, 1 mM NaF in the presence of proteases inhibitor cocktail (Roche)). Primary antibodies against Cell Culture b-actin, caspase-1, HMGB1, NLRP3 and V5 were from Abcam; THP-1 cells (ATCC TIB-202) were grown in R10- RPMI against ASC and SFRS3 were from Abnova. Secondary antibodies media 1640 supplemented with 10% (v/v) Fetal Bovine Serum, against mouse or rabbit were from Cell Signaling. Caspase-1 1% (v/v) Penicillin-Streptomycin, 1% (v/v) Pyruvate , 1% (v/v) L- activity was measured using the Carboxyfluorescein FLICA Glutamine , 1% (v/v) Non-essential aminoacids , 1% (v/v) Hepes Detection kit for Caspase Assay (Immunochemistry Technologies, buffer and 0.05 M of 2-Mercaptoethanol, HEK 293T cells LLC). Briefly, cells were incubated for 1 hour at 37uC with 306 (ATCC CRL-11268) were grown in Dulbecco’s modified Eagle’s FLICA solution at a 1:30 ratio, washed 3 times, and ressuspended medium (DMEM) supplemented with 10% (v/v) Fetal Bovine in 150 mL of wash buffer. The samples were immediately assayed Serum, 1% (v/v) Penicillin-Streptomycin and 0.05 M of 2- by Flow citometry, using a FACSCalibur system (BD biosciences) Mercaptoethanol. Cells were kept at 37uC under a 5% carbon and the data was analysed using FlowJo software (Tree Star Inc). dioxide (CO2) atmosphere. Purification of bone marrow derived cells (BMDCs) was adapted from previously described [14,15]. SFRS3 Overexpression Briefly, marrow cavities of the tibias and femurs of 8–12 week-old mice were flushed with complete RPMI 1640 (10% FBS) using a Lentiviral vector for SFRS3 protein overexpression was 27-gauge needle (Terumo, Tokyo, Japan). After red cells constructed using the Gateway pENTR11 and pLenti6.2/V5- hypotonic lysis for 5 min (with ammonium chloride solution), DEST Gateway vectors from Invitrogen.
Recommended publications
  • Lupus-Associated Endogenous Retroviral LTR Polymorphism and Epigenetic Imprinting Promote HRES-1/Rab4 Expression and Mtor Activation
    Lupus-associated endogenous retroviral LTR polymorphism and epigenetic imprinting promote HRES-1/Rab4 expression and mTOR activation Aparna Godavarthy, … , Katalin Banki, Andras Perl JCI Insight. 2019. https://doi.org/10.1172/jci.insight.134010. Research In-Press Preview Immunology Graphical abstract Find the latest version: https://jci.me/134010/pdf LUPUS-ASSOCIATED ENDOGENOUS RETROVIRAL LTR POLYMORPHISM AND EPIGENETIC IMPRINTING PROMOTE HRES-1/RAB4 EXPRESSION AND MTOR ACTIVATION Aparna Godavarthy*1, Ryan Kelly*1, John Jimah1, Miguel Beckford1, Tiffany Caza1,2, David Fernandez1,2, Nick Huang1,3, Manuel Duarte1,2, Joshua Lewis1,2, Hind J. Fadel4, Eric M. Poeschla4, Katalin Banki5, and Andras Perl1,2,3 * These authors contributed equally to the study. 1, Division of Rheumatology, Department of Medicine; 2, Department of Microbiology and Immunology; 3, Department of Biochemistry and Molecular Biology, and 5, Department of Pathology, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, New York 13210; 4, Department of Molecular Medicine; Mayo Clinic College of Medicine, 200 First Street SW, Rochester 55905, USA; Correspondence: Andras Perl, M.D., Ph.D. , State University of New York, College of Medicine, 750 East Adams Street, Syracuse, New York 13210; Phone: (315) 464-4194; Fax: (315) 464- 4176; E-mail: [email protected] Key Words: Systemic Lupus Erythematosus, T Cells, HRES-1/Rab4. mTOR, Autoimmunity The authors have declared that no conflict of interest exists. Supplementary Materials include Supplemental Methods and Supplementary Figures S1-S26. 1 ABSTRACT Overexpression and long terminal repeat (LTR) polymorphism of the HRES-1/Rab4 human endogenous retrovirus locus have been associated with T-cell activation and disease manifestations in systemic lupus erythematosus (SLE).
    [Show full text]
  • Topoisomerase 1 Suppresses Replication Stress and Genomic Instability by Preventing Interference Between Replication and Transcription
    Topoisomerase 1 suppresses replication stress and genomic instability by preventing interference between replication and transcription. Sandie Tuduri, Laure Crabbé, Chiara Conti, Hélène Tourrière, Heidi Holtgreve-Grez, Anna Jauch, Véronique Pantesco, John de Vos, Aubin Thomas, Charles Theillet, et al. To cite this version: Sandie Tuduri, Laure Crabbé, Chiara Conti, Hélène Tourrière, Heidi Holtgreve-Grez, et al.. Topoi- somerase 1 suppresses replication stress and genomic instability by preventing interference between replication and transcription.. Nature Cell Biology, Nature Publishing Group, 2009, 11 (11), pp.1315- 1324. 10.1038/ncb1984. hal-00430775 HAL Id: hal-00430775 https://hal.archives-ouvertes.fr/hal-00430775 Submitted on 14 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription Sandie Tuduri 1,2, Laure Crabbé 1, Chiara Conti 3, Hélène Tourrière 1, Heidi Holtgreve-Grez 4, Anna Jauch 4, Véronique Pantesco 5, John De Vos 5, Aubin
    [Show full text]
  • Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin
    Research Article Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin Alison Maloney,1 Paul A. Clarke,1 Soren Naaby-Hansen,3,4 Rob Stein,3,5 Jens-Oliver Koopman,3,4 Akunna Akpan,3,4 Alice Yang,3,4 Marketa Zvelebil,3,4 Rainer Cramer,3,4 Lindsay Stimson,1 Wynne Aherne,1 Udai Banerji,1,2 Ian Judson,1,2 Swee Sharp,1 Marissa Powers,1 Emmanuel deBilly,1 Joanne Salmons,1 Michael Walton,1 Al Burlingame,3,4 Michael Waterfield,3,4 and Paul Workman1 1Haddow Laboratories, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research; 2Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; 3Ludwig Institute for Cancer Research and Departments of 4Biochemistry and Molecular Biology and 5Oncology, University College London, London, United Kingdom Abstract anticancer agents and provide a means of obtaining a detailed The promising antitumor activity of 17-allylamino-17-deme- molecular signature of drug action (1, 2). In addition, these thoxygeldanamycin (17AAG) results from inhibition of the methods may identify pharmacodynamic markers that can be used molecular chaperone heat shock protein 90(HSP90)and to evaluate drugs in clinical trials. Gene expression microarrays are subsequent degradation of multiple oncogenic client proteins. increasingly used to investigate the molecular responses to cancer Gene expression microarray and proteomic analysis were used drugs in tumor cells (1). Although valuable, analysis of gene to profile molecular changes in the A2780human ovarian expression at the mRNA level alone cannot adequately predict cancer cell line treated with 17AAG.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Early Growth Response 1 Regulates Hematopoietic Support and Proliferation in Human Primary Bone Marrow Stromal Cells
    Hematopoiesis SUPPLEMENTARY APPENDIX Early growth response 1 regulates hematopoietic support and proliferation in human primary bone marrow stromal cells Hongzhe Li, 1,2 Hooi-Ching Lim, 1,2 Dimitra Zacharaki, 1,2 Xiaojie Xian, 2,3 Keane J.G. Kenswil, 4 Sandro Bräunig, 1,2 Marc H.G.P. Raaijmakers, 4 Niels-Bjarne Woods, 2,3 Jenny Hansson, 1,2 and Stefan Scheding 1,2,5 1Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, Lund, Sweden; 2Lund Stem Cell Center, Depart - ment of Laboratory Medicine, Lund University, Lund, Sweden; 3Division of Molecular Medicine and Gene Therapy, Department of Labora - tory Medicine, Lund University, Lund, Sweden; 4Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands and 5Department of Hematology, Skåne University Hospital Lund, Skåne, Sweden ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.216648 Received: January 14, 2019. Accepted: July 19, 2019. Pre-published: August 1, 2019. Correspondence: STEFAN SCHEDING - [email protected] Li et al.: Supplemental data 1. Supplemental Materials and Methods BM-MNC isolation Bone marrow mononuclear cells (BM-MNC) from BM aspiration samples were isolated by density gradient centrifugation (LSM 1077 Lymphocyte, PAA, Pasching, Austria) either with or without prior incubation with RosetteSep Human Mesenchymal Stem Cell Enrichment Cocktail (STEMCELL Technologies, Vancouver, Canada) for lineage depletion (CD3, CD14, CD19, CD38, CD66b, glycophorin A). BM-MNCs from fetal long bones and adult hip bones were isolated as reported previously 1 by gently crushing bones (femora, tibiae, fibulae, humeri, radii and ulna) in PBS+0.5% FCS subsequent passing of the cell suspension through a 40-µm filter.
    [Show full text]
  • Regulation of Heterochromatic Gene Silencing in Mouse
    Aus dem Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität München Lehrstuhl: Molekularbiologie Direktor: Prof. Dr. Peter B. Becker Arbeitsgruppe: Prof. Dr. Gunnar Schotta Regulation of heterochromatic gene silencing in mouse Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität München vorgelegt von Dennis Šadić aus Daun München, 2014 2 Gedruckt mit Genehmigung der Medizinischen Fakultät der Ludwig-Maximilians- Universität München Betreuer: Prof. Dr. Gunnar Schotta Zweitgutachter: Prof. Dr. Heiko Hermeking Dekan: Prof. Dr. Dr. h.c. Maximilian Reiser, FACR, FRCR Tag der mündlichen Prüfung: 19.09.2014 3 Eidesstattliche Versicherung Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema “Regulation of heterochromatic gene silencing in mouse” selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. ____________________ ______________________________________ Ort, Datum Unterschrift Dennis Šadić 4 The work of my thesis is under preparation for a publication in a peer-reviewed journal. During my PhD thesis I collaborated with others in the following scientific projects: Dambacher, S., Deng, W., Hahn, M., Sadic, D., Frohlich, J., Nuber, A., Hoischen, C., Diekmann, S., Leonhardt, H., and Schotta, G. (2012). CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3, 101-110. Hahn, M., Dambacher, S., Dulev, S., Kuznetsova, A.Y., Eck, S., Worz, S., Sadic, D., Schulte, M., Mallm, J.P., Maiser, A., et al.
    [Show full text]
  • Transcriptional Recapitulation and Subversion Of
    Open Access Research2007KaiseretVolume al. 8, Issue 7, Article R131 Transcriptional recapitulation and subversion of embryonic colon comment development by mouse colon tumor models and human colon cancer Sergio Kaiser¤*, Young-Kyu Park¤†, Jeffrey L Franklin†, Richard B Halberg‡, Ming Yu§, Walter J Jessen*, Johannes Freudenberg*, Xiaodi Chen‡, Kevin Haigis¶, Anil G Jegga*, Sue Kong*, Bhuvaneswari Sakthivel*, Huan Xu*, Timothy Reichling¥, Mohammad Azhar#, Gregory P Boivin**, reviews Reade B Roberts§, Anika C Bissahoyo§, Fausto Gonzales††, Greg C Bloom††, Steven Eschrich††, Scott L Carter‡‡, Jeremy E Aronow*, John Kleimeyer*, Michael Kleimeyer*, Vivek Ramaswamy*, Stephen H Settle†, Braden Boone†, Shawn Levy†, Jonathan M Graff§§, Thomas Doetschman#, Joanna Groden¥, William F Dove‡, David W Threadgill§, Timothy J Yeatman††, reports Robert J Coffey Jr† and Bruce J Aronow* Addresses: *Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. †Departments of Medicine, and Cell and Developmental Biology, Vanderbilt University and Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA. ‡McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA. §Department of Genetics and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. ¶Molecular Pathology Unit and Center for Cancer Research, Massachusetts deposited research General Hospital, Charlestown, MA 02129, USA. ¥Division of Human Cancer Genetics, The Ohio State University College of Medicine, Columbus, Ohio 43210-2207, USA. #Institute for Collaborative BioResearch, University of Arizona, Tucson, AZ 85721-0036, USA. **University of Cincinnati, Department of Pathology and Laboratory Medicine, Cincinnati, OH 45267, USA. ††H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA. ‡‡Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, Massachusetts 02115, USA.
    [Show full text]
  • Ultraconserved Elements Are Associated with Homeostatic Control of Splicing Regulators by Alternative Splicing and Nonsense-Mediated Decay
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay Julie Z. Ni,1 Leslie Grate,1 John Paul Donohue,1 Christine Preston,2 Naomi Nobida,2 Georgeann O’Brien,2 Lily Shiue,1 Tyson A. Clark,3 John E. Blume,3 and Manuel Ares Jr.1,2,4 1Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA; 2Hughes Undergraduate Research Laboratory, University of California at Santa Cruz, Santa Cruz, California 95064, USA; 3Affymetrix, Inc., Santa Clara, California 95051, USA Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression.
    [Show full text]
  • A Systems Biology View of the Spliceosome Component Phf5a in Relation to Estrogen and Cancer
    ien r Sc ce & te S u y p s t m e o m C s Journal of f B o Vallabhu et al., J Comput Sci Syst Biol 2014, 7:6 i l o a l o n r g u y DOI: 10.4172/jcsb.1000156 o J Computer Science & Systems Biology ISSN: 0974-7230 Research Article Article OpenOpen Access Access A Systems Biology View of the Spliceosome Component Phf5a in Relation to Estrogen and Cancer Rishu Vallabhu, Eva Falck and Angelica Lindlöf* Systems Biology Research Centre, University of Skövde, Box 408, 541 28 Skövde, Sweden Abstract Cancer is a broad term for a wide spectrum of diseases and which involves the alteration in expression levels of several hundreds of genes. As such, the study of the disease from a systems biology point of view becomes rational, as the properties of a system as a whole may be very different from the properties of its individual components. However, understanding a network at the systems level not only requires knowledge about the components of the network, but also the interactions between them. Here, a systems biology view of the rat PHD finger protein 5A (Phf5a) gene was attempted; a gene previously identified as aberrantly expressed in estrogen dependent endometrial adenocarcinoma tumors from both rat and human. Phf5ais a highly conserved cysteine rich (C4HC3) zinc finger and such proteins predominantly have a role in chromatin mediated transcriptional regulation. Moreover, PHF5A is a component of the macromolecular complex spliceosome that takes part in pre-mRNA splicing and spliceosome component coding genes have previously been shown to be implicated in various cancer types and suggested to potentially be novel antitumor drugs.
    [Show full text]
  • 1 Title: Ultra-Conserved Elements in the Human Genome Authors And
    4/22/2004 Title: Ultra-conserved elements in the human genome Authors and affiliations: Gill Bejerano*, Michael Pheasant**, Igor Makunin**, Stuart Stephen**, W. James Kent*, John S. Mattick** and David Haussler*** *Department of Biomolecular Engineering and ***Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA **ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia Corresponding authors: Gill Bejerano ([email protected]) and David Haussler ([email protected]) -------------------------------------------------------------------------------------------------------------------- Supporting on-line material: Separate figures, Like Figure 1 but for each individual chromosome are available in postscript and PDF format, at http://www.cse.ucsc.edu/~jill/ultra.html. Table S1. A table listing all 481 ultra conserved elements and their properties can be found at http://www.cse.ucsc.edu/~jill/ultra.html. The elements were extracted from an alignment of NCBI Build 34 of the human genome (July 2003, UCSC hg16), mouse NCBI Build 30 (February 2003, UCSC mm3), and rat Baylor HGSC v3.1 (June 2003, UCSC rn3). This table does not include an additional, probably ultra conserved element (uc.10) overlapping an alternatively spliced exon of FUSIP1, which is not yet placed in the current assembly of human chromosome 1. Nor does the list contain the ultra conserved elements found in ribosomal RNA sequences, as these are not currently present as part of the draft genome sequences. The small subunit 18S rRNA includes 3 ultra conserved regions of sizes 399, 224, 212bp and the large subunit 28S rRNA contains 3 additional regions of sizes 277, 335, 227bp (the later two are one base apart).
    [Show full text]
  • The RNA-Binding Protein ESRP1 Modulates the Expression of Rac1b in Colorectal Cancer Cells
    cancers Article The RNA-Binding Protein ESRP1 Modulates the Expression of RAC1b in Colorectal Cancer Cells Marta Manco 1,†, Ugo Ala 2,† , Daniela Cantarella 3, Emanuela Tolosano 1 , Enzo Medico 3 , Fiorella Altruda 2,* and Sharmila Fagoonee 4,* 1 Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; [email protected] (M.M.); [email protected] (E.T.) 2 Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; [email protected] 3 Department of Oncology, University of Torino, S.P. 142, km 3.95, Torino, 10060 Candiolo, Italy; [email protected] (D.C.); [email protected] (E.M.) 4 Institute of Biostructure and Bioimaging, National Research Council (CNR) c/o Molecular Biotechnology Center, 10126 Turin, Italy * Correspondence: fi[email protected] (F.A.); [email protected] or [email protected] (S.F.) † These authors contributed equally to this work. Simple Summary: Colorectal cancer (CRC) ranks third for incidence and second for number of deaths among cancer types worldwide. Poor patient survival due to inadequate response to currently available treatment regimens points to the urgent requirement for personalized therapy in CRC patients. Our aim was to provide mechanistic insights into the pro-tumorigenic role of the RNA- binding protein ESRP1, which is highly expressed in a subset of CRC patients. We show that, in CRC cells, ESRP1 binds to and has the same trend in expression as RAC1b, a well-known tumor promoter. Citation: Manco, M.; Ala, U.; Thus, RAC1b may be a potential therapeutic target in ESRP1-overexpressing CRC.
    [Show full text]
  • Identification of a Pre-Mrna Splicing Factor, Arginine/Serine-Rich 3 (Sfrs3
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1762 (2006) 34 – 45 http://www.elsevier.com/locate/bba Identification of a pre-mRNA splicing factor, arginine/serine-rich 3 (Sfrs3), and its co-expression with fibronectin in fetal and postnatal rabbit airway mucosal and skin woundsB,BB,1 Ha-Sheng Li-Korotky a,b,*, Patricia A. Hebda a,b,c, Lori A. Kelly a, Chia-Yee Lo a, Joseph E. Dohar a,b,c a Division of Pediatric Otolaryngology, Children’s Hospital of Pittsburgh, Pittsburgh, PA 15213, USA b Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA c McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA Received 15 July 2004; received in revised form 28 June 2005; accepted 9 August 2005 Available online 26 August 2005 Abstract Fibronectin (FN) is a multi-functional, adhesion protein and involved in multi-steps of the wound healing process. Strong evidence suggests that FN protein diversity is controlled by alternative RNA splicing; a coordinated transcription and RNA processing that is development-, age-, and tissue/cell type-regulated. We previously demonstrated that fetal rabbit airway mucosal healing is regenerative and scarless. Expression, regulation, and biological function of the FN gene and various spliced forms in this model are unknown. Airway and skin incisional wounds were made in fetal (gestation days 21–23), weanling (4–6 weeks) and adult (>6 months) rabbits. Non-wounded and wounded tissues were collected at 12 h (all age groups), 24 h and 48 h (weanling only) post-wounding.
    [Show full text]