HALTING the INVASION: State Tools for Invasive Species Management

Total Page:16

File Type:pdf, Size:1020Kb

HALTING the INVASION: State Tools for Invasive Species Management HALTING THE INVASION State Tools for Invasive Species Management Cover artwork by Metadog Design Group Drawings are of kudzu, purple loos- estrife, zebra mussel and Asian long- horned beetle. HALTING THE INVASION: State Tools for Invasive Species Management THE ENVIRONMENTAL LAW INSTITUTE AUGUST 2002 Environmental Law Institute® Copyright© 2002 Halting the Invasion: State Tools for Invasive Species Management Copyright © 2002 Environmental Law Institute®, Washington, D.C. All rights reserved. ISBN No. 1-58576-C42-0. ELI Project No. 020101, 003108. An electronic retrievable copy (PDF file) of this report may be obtained for no cost from the Environmental Law Institute website <www.eli.org>, click on “Publi- cations” then “2002 Research Reports” to locate the file. [Note: ELI Terms of Use will apply and are available on site.] (Environmental Law Institute®, The Environmental Forum®, and ELR® – The Environmental Law Reporter® are registered trademarks of the Environ- mental Law Institute.) ACKNOWLEDGMENTS This publication is a project of the Environmental Law Institute. Funding was provided by generous grants from the George Gund Foundation and the Doris Duke Charitable Foundation. Authors of the report are Meg Filbey, Christina Kennedy, Jessica Wilkinson, and Jennifer Balch. The primary researchers are Meg Filbey, Michael O’Grady, Bruce Myers, Christina Kennedy, Carl Bruch, Roman Czebiniak, Nadtya Ruiz, Samantha Klein, and Megan Adams. Jim McElfish provided valuable guidance and oversight of the legal research, and Jennifer Balch provided editorial assistance. The Environmental Law Institute is responsible for the views and research contained in this report, including any omissions or inaccuracies that may appear. The information contained in the report was obtained primarily through the research of state statutes and regulations conducted from February 2001 through February 2002. Al- though we believe that the report captures the vast majority of the state invasive species tools and programs autho- rized through state law or promulgated through state rulemaking, we cannot guarantee its complete accuracy. Com- ments or corrections are welcome and should be directed to the authors. We gratefully acknowledge the help of the following people who provided us with valuable feedback on the final draft: Ann Bartuska Don Schmitz Executive Director for Invasive Species Invasive Weed Specialist The Nature Conservancy Florida Department of Environmental Protection Bureau of Invasive Plant Management MichaelBuck Division of Forestry and Wildlife Randy Westbrooks Hawaii Department of Land and Natural Resources Invasive Plant Coordinator Field Office for Invasive Species Bob Devine U.S. Geological Survey Executive Director Biological Resources Division Environmental Working Group on Invasive Species Lori Williams Sharon K. Gross Executive Director Executive Secretary National Invasive Species Council Aquatic Nuisance Species Task Force U.S. Fish and Wildlife Service Phyllis Windle Senior Scientist Eric M. Lane Global Environment Program State Weed Coordinator Union of Concerned Scientists Colorado Department of Agriculture TABLE OF CONTENTS CHAPTER I: Introduction........................................7 CHAPTER VII: Regulation................................49 Defining an Invasive Species......................................8 1. Permits and Licenses ....................................49 Prevention..................................................................8 2. Bonds and Insurance..................................55 Regulation........................................................9 3. Monitoring .................................................56 Control and Management........................................10 4. Transportation and Shipping Requirements.........56 Enforcement and Implementation...........................11 Coordination...........................................................11 Conclusion..............................................................12 CHAPTER VIII: Control and Management...............63 1. General Control and Management Authority...63 CHAPTER II: Biological Invasions—A Spreading 2. Emergency Powers.............................................67 Threat to America’s Natural Heritage.....................13 3. Biological Control Agents...............................69 Growing in Numbers...............................................13 4. Restoration.......................................................71 Growing Environmental Consequences...................14 Profiles of Invasion..................................................15 CHAPTER IX: Enforcement and Implementation..75 Posing Human Health Risks....................................16 1. Enforcement Authorities...............................75 Resulting Economic Costs.......................................17 2. Funding..................................................79 CHAPTER III: Federal Authorities and Roles.........19 CHAPTER X: Coordination Tools.............................83 Federal Authorities and Roles...................................19 1. Statewide Invasive Species Councils......................84 2. Statewide Invasive Species Plans...........................89 CHAPTER IV: Turning to States.............................23 Analysis of State Tools..............................................24 CHAPTER XI: Recommendations.............................95 Summary.........................................................100 CHAPTER V: Defining an Invasive Species............27 CHAPTER XII. Conclusions...................................102 CHAPTER VI: Prevention......................................33 1. Identifying and Mitigating Future Threats.....33 APPENDICES......................................................103 2. Detection..............................................36 Appendix A: State check-list......................................104 3. Import/Introduction/Release Requirements....39 Appendix B: Acronyms.......................................105 4. Quarantines......................................................43 Appendix C: Significant Federal Invasive Law...….106 5. Education........................................................45 Appendix D: Federal Agency Roles and Interagency Coordination................................................108 Glossary ……...........................................................111 CHAPTER I: INTRODUCTION on-native invasive species, or invasives, signifi- attention, particularly in recent years. However, despite cantly threaten the ecological integrity of our such increased awareness, current federal law offers lim- Nnation’s natural systems.1 These species invade ited protection from this menacing problem. Multiple natural communities, farmland, forestland, wetlands, federal laws and programs address invasive species in a waterways, and pastures. They displace native plants fragmented manner and primarily focus on the impacts and animals, disrupt ecological processes, upset the sta- to our natural resource-based industries, particularly bility of our ecosystems, and can permanently change agriculture; thus, they fail to adequately cover invasive our natural landscapes. Not only do invasives under- species that cause widespread damage to our natural mine biological diversity, but they also cause substan- areas. Federal resources currently devoted to this na- tial economic burdens. States and local governments tional catastrophe simply do not reflect the severity of spend hundreds of millions of dollars to control infes- the problem—neither its economic impacts nor its im- tations and damage caused by such invasive species as pacts to the nation’s biological diversity and biological the zebra mussel, Asian long-horned beetle (Anoplophora integrity. glabripennis), purple loosestrife, and melaleuca tree.2 It Even though many invasive species are not regu- is estimated that invasives cost the U.S. economy at least lated or controlled federally, states have passed a wide 137 billion dollars each year.3 array of laws designed to address invasive species prob- The large majority of non-native species—also re- lems. As with the federal invasive species programs, ferred to as exotic, alien, foreign, introduced, or state programs are varied and dispersed within and be- nonindigenous species—do not pose a threat to the natu- tween multiple state agencies and organizations. There ral or human systems in which they are introduced.4 are many opportunities, however, to utilize existing state However, a small percentage of non-native species that laws to address the problem of invasive species at a more do establish have the potential to become invasive and local level. Many states have agricultural pest control to cause significant economic, environmental, and hu- laws in place to address invasive species that pose a threat man health consequences. to agricultural crops. States are also beginning to adopt The economic and ecological harm caused by the non-agricultural weed prohibitions to protect natural prolific spread of invasive species has captured national systems, especially aquatic or wetland areas. Many of these laws provide states with the authority to control 1 This report adopts the definition outlined in Executive Order the spread of invasive species in the agricultural context 13112 on Invasive Species, signed by President Clinton on Febru- and to address invasive species that impact the natural ary 3, 1999, which states that an “invasive species” is one that is environment more broadly.
Recommended publications
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
    Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA).
    [Show full text]
  • 3.7.10 Curculioninae Latreille, 1802 Jetzt Beschriebenen Palaearctischen Ceuthor- Rhynchinen
    Curculioninae Latreille, 1802 305 Schultze, A. (1902): Kritisches Verzeichniss der bis 3.7.10 Curculioninae Latreille, 1802 jetzt beschriebenen palaearctischen Ceuthor- rhynchinen. – Deutsche Entomologische Zeitschrift Roberto Caldara , Nico M. Franz, and Rolf 1902: 193 – 226. G. Oberprieler Schwarz, E. A. (1894): A “ parasitic ” scolytid. – Pro- ceedings of the Entomological Society of Washington 3: Distribution. The subfamily as here composed (see 15 – 17. Phylogeny and Taxonomy below) includes approx- Scudder, S. H. (1893): Tertiary Rhynchophorous Coleo- ptera of the United States. xii + 206 pp. US Geological imately 350 genera and 4500 species (O ’ Brien & Survey, Washington, DC. Wibmer 1978; Thompson 1992; Alonso-Zarazaga Stierlin, G. (1886): Fauna insectorum Helvetiae. Coleo- & Lyal 1999; Oberprieler et al. 2007), provisionally ptera helvetiae , Volume 2. 662 pp. Rothermel & Cie., divided into 34 tribes. These are geographically Schaffhausen. generally restricted to a lesser or larger degree, only Thompson, R. T. (1973): Preliminary studies on the two – Curculionini and Rhamphini – being virtually taxonomy and distribution of the melon weevil, cosmopolitan in distribution and Anthonomini , Acythopeus curvirostris (Boheman) (including Baris and Tychiini only absent from the Australo-Pacifi c granulipennis (Tournier)) (Coleoptera, Curculion- region. Acalyptini , Cionini , Ellescini , Mecinini , idae). – Bulletin of Entomological Research 63: 31 – 48. and Smicronychini occur mainly in the Old World, – (1992): Observations on the morphology and clas- from Africa to the Palaearctic and Oriental regions, sifi cation of weevils (Coleoptera, Curculionidae) with Ellescini, Acalyptini, and Smicronychini also with a key to major groups. – Journal of Natural His- extending into the Nearctic region and at least tory 26: 835 – 891. the latter two also into the Australian one.
    [Show full text]
  • Cultivating Biodiver
    Étienne Hainzelin Editor Cultivating Biodiversity to Transform Agriculture Cultivating Biodiversity to Transform Agriculture Étienne Hainzelin Editor Cultivating Biodiversity to Transform Agriculture 123 Editor Étienne Hainzelin Cirad, Direction générale Montpellier France ISBN 978-94-007-7983-9 ISBN 978-94-007-7984-6 (eBook) DOI 10.1007/978-94-007-7984-6 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013955250 Éditions Quæ, R10, 78026 Versailles cedex, France http://www.quae.com Ó Éditions Quæ 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • UAV System, Which Is Designed to Deliver Measured Quantities of Naturally Beneficial Predators to Combat Pest Infestations Within Economically Acceptable Timeframes
    A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details SUSTAINABLE CONTROL OF INFESTATIONS USING IMAGE PROCESSING AND MODELLING By FAITHPRAISE, FINA OTOSI Submitted For the Degree Of Doctor Of Philosophy ENGINEERING & DESIGN RESEARCH SCHOOL OF ENGINEERING AND INFORMATICS UNIVERSITY OF SUSSEX BRIGHTON UK MAY 2014 FAITHPRIASE FINA DEDICATION To the almighty God, for his mercy, strength and wisdom to reason out solutions rationally. To my spouse, Mr. Bassey Otosi Faithpraise, for his love, support, dedication, encouragement and tolerance for the successful completion of this research work. To my beloved children (Princewill, Godswill, Favour and Success) for all their sacrificial love and effort. To my Late Father, Mr Mbang Opla for dedicating his time to persuade me to desire the pursuit of higher academic degrees. DEDICATION Page i To God be the Glory, Great things he has done: Take a look at the world of insects, what lesson do you learn? It is only a fool that will say “there is no God” If insects could obey the laws of nature, scientifically we called them nuisance.
    [Show full text]
  • Vol.29 NO.L SOUTHWESTERNENTOMOLOGIST MAR.2004
    vol.29 NO.l SOUTHWESTERNENTOMOLOGIST MAR.2004 GENETIC VARIATION AND GEOGRAPHICAL DISTRIBUTION OF THE SUBTERRANEAN TERMITE GENUS RETICULITERMESItN Tpx.q,S JamesW. Austin2,Allen L. Szalanski2,Roger E. Gold3,and Bart T. Fost# ABSTRACT A molecular geneticsstudy involving DNA sequencingof a portion of the mitochondrialDNA 165 genewas undertakento determinethe extent of geneticvariation with Reticulitermesspp. and the distribution of Reticulitermesspp. subterraneantermites in Texas.From 42 Texascounties a total of 68 R. flavipes, sevenR. hageni,eight R. virginicus,and nine R. tibialis were identified. No geneticvariation was observedin R. virginicus andR. hageni,while sevenhaplotypes were observedin R. tibialis and 13 for R. flavipes.Among the 13.R.flavipes haplotypes,9nucleotides were variableand genetic variationranged from 0.2 to l.60/o.Phylogenetic analysis did not revealany relationships amongthe R. tibialis arld R. flavipes haplotypes,and there wasino apparentgeographical structureto the haplotypes.The high amount of genetic variation, but a lack of genetic structure in R. flavipes supports the hypothesis that this termite species has been distributedrandomly by mandue to its associationwith structures. INTRODUCTION The most abundant native termite in Texas is the subterranean genus ReticulitermesHolgren (Rhiniotermitidae).Four species, the eastern subtenanean Reliculitermesflavipes (Kollar), light southemR. hageniBanks, arid n. nDialis Banks,and dark southernR. virginicus (Banks),are known to occur in Texas(Howell et al. 1987). These speciesare among the most destructiveand costly termites for homeownersand businessesalike, and are of considerableeconomic importance. Su (1993)estimated that over $ I .5 billion is spentannually for termite control in the U.S., of which 80olois spentto control subterraneantermites, More recent estimatesby the National Pest Management Associationsuggest the cost to exceed$2.5 billion annually(Anonymous 2003).
    [Show full text]
  • Forest Health Technology Enterprise Team
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control September 12-16, 2005 Mark S. Hoddle, Compiler University of California, Riverside U.S.A. Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2005-08 Department of Service September 2005 Agriculture Volume I Papers were submitted in an electronic format, and were edited to achieve a uniform format and typeface. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside of the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable. Any references to pesticides appearing in these papers does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by state and federal laws. Applicable regulations must be obtained from the appropriate regulatory agency prior to their use. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status.
    [Show full text]
  • Insect Pest Management: Techniques for Environmental Protection by Jack E
    Insect Pest Management: Techniques for Environmental Protection by Jack E. Rechcigl and Nancy A. Rechcigl Ann Arbor Press Chelsea, Michigan LEWIS PUBLISHERS Boca Raton New York © 2000 by CRC Press LLC Library of Congress Cataloging-in-Publication Data Insect pest management: techniques for environmental protection / [edited] by Jack E. Rechcigl and Nancy A. Rechcigl. p. cm. (Agriculture & environment series) Includes bibliographical references and index. ISBN 1-56670-478-2 (alk. paper) 1. Insect pests -- Biological control. I. Rechcigl, Jack E. II. Rechcigl. Nancy A. III. Series.. SB933.3.I53 1999 632′ .9517—dc21 99-40543 CIP This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-56670-478- 2/00/$0.00+$.50.
    [Show full text]
  • South African National Survey of Arachnida (SANSA): Review of Current Knowledge, Constraints and Future Needs for Documenting Spider Diversity (Arachnida: Araneae)
    South African National Survey of Arachnida (SANSA): review of current knowledge, constraints and future needs for documenting spider diversity (Arachnida: Araneae) A.S. Dippenaar-Schoeman1,2*, C.R. Haddad3, S.H. Foord4, R. Lyle1, L.N. Lotz5 & P. Marais1 1ARC-Plant Protection Research Institute, Private Bag X134, Queenswood, Pretoria, 0121, South Africa; 2Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa; 3Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa; 4Centre for Invasion Biology, Department of Zoology, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa; 5National Museum, Bloemfontein, P.O. Box 266, Bloemfontein, 9300, South Africa *Author for correspondence E-mail: [email protected] Biodiversity is one of the most important concepts in contemporary biology, with a broad range of applications. In November 1995, South Africa ratified the Convention on Biological Diversity (CBD). Signatories are obligated to develop a strategic plan for the conservation and sustainable use of biodiversity. To meet the requirements of the CBD, the South African National Survey of Arachnida (SANSA) was initiated in 1997. This national project has several aims: to document and describe the arachnid fauna of South Africa; to consolidate all the available data on South African arachnids into one relational database and to make this biodiversity information available to science; and to address issues concerning their conservation and sustainable use. Extensive sampling took place and the SANSA database contains a wealth of biodiversity data that are used to provide answers to ecological questions. Presently 71 spider families, 471 genera and 2170 species are known from South Africa, representing approximately 4.8% of the world fauna.
    [Show full text]
  • Chemical Signalling in Beetles
    Topics in Current Chemistry (2005) 240: 85–166 DOI 10.1007/b98316 © Springer-Verlag Berlin Heidelberg 2005 Chemical Signalling in Beetles Wittko Francke1 ( ) · Konrad Dettner2 1 Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany [email protected] 2 Lehrstuhl für Tierökologie II, Universität Bayreuth, Postfach 101251, 95440 Bayreuth, Germany 1 Introduction . 86 2 Isolation and Structure Elucidation . 88 3 Biosynthesis and Structural Principles . 90 4 Carabidae (Ground Beetles) . 96 5 Cicindelidae (Tiger Beetles) . 98 6 Dytiscidae (Predaceous Diving Beetles) . 98 7 Amphizoidae (Trout Stream Beetles) . 101 8 Noteridae (Burrowing Water Beetles) . 102 9 Hygrobiidae=Pelobiidae (Squeak Beetles) . 102 10 Haliplidae (Crawling Beetles) . 102 11 Gyrinidae (Whirligig Beetles) . 102 12 Silphidae (Carrion Beetles) . 103 13 Staphylinidae (Rove Beetles) . 103 14 Scarabaeidae (Scarab Beetles, Chafers, Dung Beetles) . 109 15 Elateridae (Click Beetles) . 114 16 Lampyridae (Lightningbugs or Fireflies) . 116 17 Cantharidae (Soldier Beetles) . 116 18 Dermestidae (Skin Beetles) . 117 19 Bostrychidae (Powder-Post Beetles) . 119 20 Anobiidae (Cigarette Beetles, Drugstore Beetles) . 121 86 W.Francke · K. Dettner 21 Cleridae (Checkered Beetles) . 123 22 Nitidulidae (Sap Beetles) . 123 23 Cucujidae, Silvanidae/Laemophloeidae (Flat Bark Beetles, Grain Beetles) . 125 24 Coccinellidae (Ladybird Beetles) . 129 25 Oedemeridae (False Blister Beetles) . 130 26 Pyrochroidae (Fire-coloured Beetles) . 130 27 Meloidae (Blister Beetles) . 131 28 Anthicidae (Antlike Flower Beetles) . 131 29 Tenebrionidae (Darkling Beetles, Flower Beetles) . 132 30 Cerambycidae (Longhorn Beetles) . 135 31 Chrysomelidae (Leaf Beetles) . 138 32 Bruchidae (Bean Weevils, Seed Beetles) . 141 33 Curculionidae (Snout Beetles,Weevils) . 142 34 Scolytidae (Bark Beetles) . 145 References . 153 Abstract This chapter reviews chemical structures of biologically active, volatile compounds in beetles.
    [Show full text]
  • Monsanto Petition (19-091-01P) for Determination of Nonregulated Status for Insect-Protected MON 88702 Cotton
    Monsanto Petition (19-091-01p) for Determination of Nonregulated Status for Insect-Protected MON 88702 Cotton OECD Unique Identifier: MON-887Ø2-4 Final Environmental Assessment December 2020 Agency Contact Cindy Eck Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 In accordance with federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form.
    [Show full text]
  • The Spiders of the Swartberg Nature Reserve in South Africa (Arachnida: Araneae)
    dippenaar.qxd 2005/08/17 08:39 Page 77 The spiders of the Swartberg Nature Reserve in South Africa (Arachnida: Araneae) A.S. DIPPENAAR-SCHOEMAN, A.E. VAN DER WALT, M. DE JAGER, E. LE ROUX and A. VAN DEN BERG Dippenaar-Schoeman, A.S., A.E. van der Walt, M. de Jager, E. le Roux and A. van den Berg. 2005. The spiders of the Swartberg Nature Reserve in South Africa (Arachnida: Araneae). Koedoe 48(1): 77–86. Pretoria. ISSN 0075-6458. The Swartberg Nature Reserve is situated in the Large Swartberg mountain range, in the Oudtshoorn district of the Western Cape Province. Spiders were collected from the reserve over a 10-year period. This is one of the inventory projects of the South African National Survey (SANSA) for spiders of the Succulent Karoo Biome. A total of 45 fam- ilies comprising 136 genera and 186 species were collected, all which are new records for the area. This represents about 9.4 % of the total known South African spider fauna. Of the spiders collected 142 species (76.5 %) were wanderers and 44 (23.5 %) web dwellers. The plant dwellers comprised 43.3 % of the total number of species and the ground dwellers 56.7 %. The Gnaphosidae was the most diverse family represented by 33 species, followed by the Salticidae with 23 and Thomisidae with 15. Ten species are possibly new to science and the Filistatidae is a first record for South Africa. An anno- tated checklist with information on the guilds, habitat preference and web types are pro- vided.
    [Show full text]