KIRC Biosecurity Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook Publication.Pub
Table of Contents Maui County’s Landscape and Gardening Handbook Xeriscaping in Maui County ................................................................. 1 Planning and Design................................................................................................................. 1 Hydro-zones.............................................................................................................................. 1 Plant Selection and the Maui jkCounty Planting Zones............................................................ 2 Soil Preparation ........................................................................................................................ 4 Mulching.................................................................................................................................... 5 Irrigation .................................................................................................................................... 5 Maintenance ............................................................................................................................. 7 Other Interesting Techniques for the Ambitious ..................................... 8 Xeriscape Ponds....................................................................................................................... 8 Aquaponics in the Backyard ..................................................................................................... 9 Water Polymer Crystals ........................................................................................................... -
Rapid Pest Risk Analysis (PRA) For: Euzophera Bigella
Rapid Pest Risk Analysis (PRA) for: Euzophera bigella June 2018 Summary and conclusions of the rapid PRA Euzophera bigella is a moth found in much of Europe and parts of Asia, whose larvae (caterpillars) feed inside a variety of fruit and under the bark of a number of species of tree. Though there have been several adults caught in light traps in the UK, such records are very scarce and there is no evidence this species is established in any part of this country. Following the rapid screening of E. bigella via the UK Plant Health Risk Register, this PRA was requested to further assess the potential risk to the UK. This rapid PRA shows: Risk of entry The pathway of fruit (and nuts) is considered moderately likely, with medium confidence. Larvae have previously been found in imported fruit in the UK. If larvae were able to complete development inside the fruit, emerging adults would be capable of flying off and locating new hosts. The pathway of larvae under the bark of older trees for planting is considered moderately likely, with medium confidence. Larvae under the bark of younger, smaller trees is assessed as unlikely with medium confidence, as infestations produce swellings and cracks in the bark which are more likely to be seen in smaller trees. The pathway of wood with bark is considered unlikely with low confidence. Confidence is low because a different species of Euzophera has recently travelled from the USA to Italy on this pathway. 1 The pathway of natural spread is considered very unlikely with low confidence. -
Sistema De Clasificación Artificial De Las Magnoliatas Sinántropas De Cuba
Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA Pedro- Pabfc He.r retira Qltver CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA Y UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA ASPIRANTE: Lie. Pedro Pablo Herrera Oliver Investigador Auxiliar Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente DIRECTORES: CUBA Dra. Nancy Esther Ricardo Ñapóles Investigador Titular Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente ESPAÑA Dr. Andreu Bonet Jornet Piiofesjar Titular Departamento de EGdfegfe Universidad! dte Mearte CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver I. INTRODUCCIÓN 1 II. ANTECEDENTES 6 2.1 Historia de los esquemas de clasificación de las especies sinántropas (1903-2005) 6 2.2 Historia del conocimiento de las plantas sinantrópicas en Cuba 14 III. -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Notes on Coccinellid Beetles (Coleoptera: Coccinellidae) from Forest Ecosystem of Uttarakhand, India
Journal of Biological Control, 33(1): 1-6,2019, DOI: 10.18311/jbc/2019/23214 Volume: 33 No. 1 (March) 2019 Coccinellid beetles from Uttarakhand forests - 1 Spider fauna in maize ecosystem - 27 Research Article Notes on coccinellid beetles (Coleoptera: Coccinellidae) from forest ecosystem of Uttarakhand, India AKHILESH KUMAR MISHRA* and MOHD. YOUSUF Forest Protection Division (Forest Entomology Discipline), Forest Research Institute, P.O. New Forest, Dehra Dun – 248006, Uttarakhand, India *Corresponding author E-mail: [email protected] ABSTRACT: Present study on diversity of coccinellid beetles comprises a significant group of predatory beetles which are being utilized in biological control of insect pests from more than one hundred years ago throughout the world. An extensive survey and collection of coccinellid beetles was carried out by following the sweep net and handpicking method during a period of two years, June 2016 to May2018, in Uttarakhand, India. Collection of beetles was also made at different altitudes. All the collected beetles have been identified up to species level. In total, fifteen species of coccinellid beetles were identified as Aiolocaria hexaspilota (Hope), Anegleis cardoni (Weise), Brumoides suturalis (Fabricius), Coccinella septempunctata Linnaeus, C. transversalis Fabricius, Harmonia dimidiata (Fabricius), Henosepilachna vigintioctopunctata (Fabricius), Hippodamia variegata (Goeze), Illeis confusa Timberlake, Menochilus sexmaculatus (Fabricius), Micraspis allardi (Mulsant), Micraspis univittata (Hope), Oenopia sexareata (Mulsant), Platynaspidius saundersi (Crotch) and Propylea dissecta (Mulsant). H. vigintioctopunctata is phytophagous while I. confusa is mycophagous; all other species are predatory feeding on mealy bugs and aphids occurring on forest tree species. Out of all identified species, four species A. hexaspilota, I. confusa, O. sexareata and P. -
COLEOPTERA COCCINELLIDAE) INTRODUCTIONS and ESTABLISHMENTS in HAWAII: 1885 to 2015
AN ANNOTATED CHECKLIST OF THE COCCINELLID (COLEOPTERA COCCINELLIDAE) INTRODUCTIONS AND ESTABLISHMENTS IN HAWAII: 1885 to 2015 JOHN R. LEEPER PO Box 13086 Las Cruces, NM USA, 88013 [email protected] [1] Abstract. Blackburn & Sharp (1885: 146 & 147) described the first coccinellids found in Hawaii. The first documented introduction and successful establishment was of Rodolia cardinalis from Australia in 1890 (Swezey, 1923b: 300). This paper documents 167 coccinellid species as having been introduced to the Hawaiian Islands with forty-six (46) species considered established based on unpublished Hawaii State Department of Agriculture records and literature published in Hawaii. The paper also provides nomenclatural and taxonomic changes that have occurred in the Hawaiian records through time. INTRODUCTION The Coccinellidae comprise a large family in the Coleoptera with about 490 genera and 4200 species (Sasaji, 1971). The majority of coccinellid species introduced into Hawaii are predacious on insects and/or mites. Exceptions to this are two mycophagous coccinellids, Calvia decimguttata (Linnaeus) and Psyllobora vigintimaculata (Say). Of these, only P. vigintimaculata (Say) appears to be established, see discussion associated with that species’ listing. The members of the phytophagous subfamily Epilachninae are pests themselves and, to date, are not known to be established in Hawaii. None of the Coccinellidae in Hawaii are thought to be either endemic or indigenous. All have been either accidentally or purposely introduced. Three species, Scymnus discendens (= Diomus debilis LeConte), Scymnus ocellatus (=Scymnobius galapagoensis (Waterhouse)) and Scymnus vividus (= Scymnus (Pullus) loewii Mulsant) were described by Sharp (Blackburn & Sharp, 1885: 146 & 147) from specimens collected in the islands. There are, however, no records of introduction for these species prior to Sharp’s descriptions. -
GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant Species Not Listed Are Considered UPL for Wetland Delineation Purposes
GREAT PLAINS REGION - NWPL 2016 FINAL RATINGS User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. -
Invasive Aphids Attack Native Hawaiian Plants
Biol Invasions DOI 10.1007/s10530-006-9045-1 INVASION NOTE Invasive aphids attack native Hawaiian plants Russell H. Messing Æ Michelle N. Tremblay Æ Edward B. Mondor Æ Robert G. Foottit Æ Keith S. Pike Received: 17 July 2006 / Accepted: 25 July 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Invasive species have had devastating plants. To date, aphids have been observed impacts on the fauna and flora of the Hawaiian feeding and reproducing on 64 native Hawaiian Islands. While the negative effects of some inva- plants (16 indigenous species and 48 endemic sive species are obvious, other species are less species) in 32 families. As the majority of these visible, though no less important. Aphids (Ho- plants are endangered, invasive aphids may have moptera: Aphididae) are not native to Hawai’i profound impacts on the island flora. To help but have thoroughly invaded the Island chain, protect unique island ecosystems, we propose that largely as a result of anthropogenic influences. As border vigilance be enhanced to prevent the aphids cause both direct plant feeding damage incursion of new aphids, and that biological con- and transmit numerous pathogenic viruses, it is trol efforts be renewed to mitigate the impact of important to document aphid distributions and existing species. ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the Keywords Aphid Æ Aphididae Æ Hawai’i Æ five largest Hawaiian Islands (Hawai’i, Kaua’i, Indigenous plants Æ Invasive species Æ Endemic O’ahu, Maui, and Moloka’i), we provide the first plants Æ Hawaiian Islands Æ Virus evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian Introduction R. -
Highlights in the History of Entomology in Hawaii 1778-1963
Pacific Insects 6 (4) : 689-729 December 30, 1964 HIGHLIGHTS IN THE HISTORY OF ENTOMOLOGY IN HAWAII 1778-1963 By C. E. Pemberton HONORARY ASSOCIATE IN ENTOMOLOGY BERNICE P. BISHOP MUSEUM PRINCIPAL ENTOMOLOGIST (RETIRED) EXPERIMENT STATION, HAWAIIAN SUGAR PLANTERS' ASSOCIATION CONTENTS Page Introduction 690 Early References to Hawaiian Insects 691 Other Sources of Information on Hawaiian Entomology 692 Important Immigrant Insect Pests and Biological Control 695 Culex quinquefasciatus Say 696 Pheidole megacephala (Fabr.) 696 Cryptotermes brevis (Walker) 696 Rhabdoscelus obscurus (Boisduval) 697 Spodoptera exempta (Walker) 697 Icerya purchasi Mask. 699 Adore tus sinicus Burm. 699 Peregrinus maidis (Ashmead) 700 Hedylepta blackburni (Butler) 700 Aedes albopictus (Skuse) 701 Aedes aegypti (Linn.) 701 Siphanta acuta (Walker) 701 Saccharicoccus sacchari (Ckll.) 702 Pulvinaria psidii Mask. 702 Dacus cucurbitae Coq. 703 Longuiungis sacchari (Zehnt.) 704 Oxya chinensis (Thun.) 704 Nipaecoccus nipae (Mask.) 705 Syagrius fulvitarsus Pasc. 705 Dysmicoccus brevipes (Ckll.) 706 Perkinsiella saccharicida Kirk. 706 Anomala orientalis (Waterhouse) 708 Coptotermes formosanus Shiraki 710 Ceratitis capitata (Wiedemann) 710 690 Pacific Insects Vol. 6, no. 4 Tarophagus proserpina (Kirk.) 712 Anacamptodes fragilaria (Grossbeck) 713 Polydesma umbricola Boisduval 714 Dacus dorsalis Hendel 715 Spodoptera mauritia acronyctoides (Guenee) 716 Nezara viridula var. smaragdula (Fab.) 717 Biological Control of Noxious Plants 718 Lantana camara var. aculeata 119 Pamakani, -
ENTOMOGRAPHY 1986 Pp.109-136
108 Volume4ENTOMOGRAPHY 1986 pp.109-136 A Taxonomic Study of the Genus Algarobius (Coleoptera: Bruchidae) John M. Kingsolver SystematicEntomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, c/o National Museum of NaturalHistory, Washington, D.C. 20560 ABSTRACT. - Descriptions, habitus and genitalic illustrations, host lists, and geo graphical distribution are included for the six known species, four of them new, in the genus Algarobil.18. Included are Algarobil.18 prosopis (LeConte), from southwestern UnitedStates and northwesternMexico; A. bottimeriKingsolver from Texas,Oklahoma, New Mexico, and northeastern Mexico; A. joh.nsoni, new species, and A. atratus, new species, from central Mexico, A. nicoya, new species,from Sonora, Mexico, along Pacific coast to Costa Rica; and A. riochama, new species from Colombia and Venezuela. Algarobil.18 spp. apparentlyobligatorily breed in seeds of Prosopis spp. A conspicuous plant in the more xeric portions of our Southwestern United States and extending into South America is the mesquite (Prosopis spp.) which has for centuries provided man with a valuable sourceof food,firewood, medicine, honey,gums, and buildingmaterials (Forbes, 1895; Felger, 1977). Although the foliage is of some value as forage for grazing animals, the pods are a more valuable source of proteinfor both man and animal. Greatquantities of podsare gathered by various tribesof Indians who use them to makeflour and fermented drinks. The woodmakes excellentcharcoal; roots, trunks, and branches are sought for firewood. Standley (1922) and Felger (1977) and Fisher (1977) list other uses of the plant. On the other hand, mesquite is considered an undesirable plant froma range management pointof view, becauseit spreads quickly, is difficult to eradicate because it sprouts readily, and uses water that would otherwisecontribute to growth of grasses and other plantsmore palatable to livestock (Glendening and Paulsen, 1955).