A Manual for Commercial Production of the Gourami, Trichogaster Trichopterus, a Temporary Paired Spawner

Total Page:16

File Type:pdf, Size:1020Kb

A Manual for Commercial Production of the Gourami, Trichogaster Trichopterus, a Temporary Paired Spawner A Manual for Commercial Production of the Gourami, Trichogaster Trichopterus, A Temporary Paired Spawner Brian Cole, M.S., Clyde S. Tamaru, Ph.D., Richard Bailey, B.A. Sea Grant Extension Service/Aquaculture Development Program School of Ocean and Earth Science and Technology Christopher Brown, Ph.D. Hawaii Institute of Marine Biology School of Ocean and Earth Science and Technology April 1999 Center for Tropical and Subtropical Aquaculture Publication Number 135 - 1 - Acknowledgements The authors extend a sincere thank you to all who contributed to the completion of this manual. The production of this handbook is a combined effort of three institutions: 1) the United States Department of Agriculture Center for Tropical and Subtropical Aquaculture (CTSA) through a grant from the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service (USDA grant #96-38500-2743. 2) the University of Hawaii Sea Grant Extension Service (SGES) through the National Oceanic and Atmospheric Administration (NOAA), project #AIAS-1 which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean Science and Technology (SOEST), under Institutional Grant No. NA36RGO507 from NOAA Office of Sea Grant, Department of Com- merce, UNIHI-SEAGRANT-TR-98-03. 3) the Aquaculture Development Program, Department of Agriculture State of Hawaii, as part of the Aquaculture Extension Project with the University of Hawaii Sea Grant Extension Contract #42991. The views expressed herein are those of the authors and do not necessarily reflect the views of the funding agencies or their sub-agencies. - 2 - Table of Contents Acknowledgements .............................................................................................................................. 2 Introduction to the Gourami ................................................................................................................. 4 Taxonomy ............................................................................................................................... 4 Biology ................................................................................................................................... 5 Distribution ............................................................................................................................. 5 Morphology ............................................................................................................................ 6 Sexing Gouramis .................................................................................................................... 7 Reproductive Biology ............................................................................................................. 7 Fecundity .............................................................................................................................. 11 Temperature and Light ......................................................................................................... 13 Commercial Production ...................................................................................................................... 15 Growth .................................................................................................................................. 17 Feeding ................................................................................................................................. 19 Water Quality ....................................................................................................................... 20 Harvesting............................................................................................................................. 20 Holding Tank ........................................................................................................................ 21 Preparation of Anesthesia ..................................................................................................... 21 Sorting and Grading.............................................................................................................. 21 Disease Prevention, Treatment and Management .............................................................................. 22 Formalin Preparation ............................................................................................................24 Economics .......................................................................................................................................... 24 Literature Cited ................................................................................................................................... 27 Appendix 1. .......................................................................................................................... 28 Appendix 2. .............................................................................................................................. Hatching Brine Shrimp (Artemia) and Preparing Them for Feeding ........................... 29 Appendix 3. Directory of Suppliers and Organizations ....................................................... 32 - 3 - Introduction to the Gourami All gouramis belong to the suborder Anabantoidei and are commonly known as the labyrinth fishes. These fish are characterized primarily by an accessory breathing organ called the labyrinth organ. The labyrinth organ is located next to the gill cavities and is made up of folded membranes mounted on a bony frame. The delicate tissue has a high concentration of blood vessels and func- tions much like a terrestrial lung. If a labyrinth fish is denied access to the air it will drown because the gills alone will not provide sufficient oxygen to the fish. There are over one hundred Anabantoids that are currently traded in the tropical fish industry. Many are color varieties of the same species within the various genera. This would include about thirty species in the genus Betta, about twenty species of Ctenopoma, several species in the genus Colisa, Macropodus, Anabas, Helostomidae, Pseudomodas and Sandelia and the numerous species of Trichogaster. The genus Trichogaster contains many of the more popular gouramis traded in the industry, including the “Pearl gourami”, “Moonlight”, “Snake skid”, “Three spot”, “Blue”, “Silver”, “Gold”, “Opaline” and hybrids in the same genus. All of these fish reproduce in a very similar manner and for that reason this manual will concentrate on the Genus Trichogaster. It should be noted that many of the procedures for the reproduction of these fish can be successfully applied to many of the other genera of gouramis. Taxonomy There are 16 genera and 50 species of Trichogaster distributed over Asia, the Indian sub- continent and Central Africa (Degani et al., 1992 and Alfred, 1962). Like the nomenclature of many other families of fishes, there has been a considerable amount of renaming and \ or reclassification at the level of genera or species. The Gouramis are no exception. Trichogaster Trichopterus, the “Three Spot Gourami”, was originally known as Labrus trichopterus, then in 1801 was renamed Trichogaster Trichopterus which is the present classification (Richter 1988). Other names which might appear in the literature include Trichopodus Trichopterus, Trichopus trichopterus, Trichopus sepat, Osphromemus siamensis, Osphromenus trichopterus, Trichopus siamensis, Trichopodus maculatus and Osphromenus saigonensis. Most of these changes in nomenclature occurred in the mid 1800’s until the current name, Trichogaster Trichopterus, was settled upon as the standard classification. Table (1) gives the current taxonomic classification of the Anabantoids (from Richter, 1988). - 4 - Table 1. Current taxonomic status of the Anabantoids (Modified from Richter 1988. ORDER Perciformes SUBORDER Belontiidae FAMILY Belontia SUBFAMILY Trichogaster, Colisa GENUS Anabantoidei SUBFAMILY Belontinae GENERA Trichogasterinae SUBFAMILY Ctenopinae GENERA Pseudosphromenus, Parosphromenus, Malpulutta, Trichopsis, Ctenops, Betta SUBFAMIL Macropodinae GENUS Macropodus SUBFAMIL Spaerichthyinae GENERA Parasphaerichthys, Sphaerichthys FAMILY Helostomidae GENUS Helostoma FAMILY Osphronemidae GENUS Osphronemus FAMILY Anabantidae GENERA Anabas, Sandelia, Ctenopoma, Oshimia Biology Distribution Labyrinth fishes are only found in southern and western Africa and eastern and southeastern Asia. Figure (1) represents the natural range of these fishes. The natural distribution of Labyrinth fishes has a northern boundary in China at latitude 50 degrees. The eastern boundary of natural distribution is in Korea at a longitude of 130 degrees. The southern most ranges are in Sumatra south to the equator with the western limits in India to longitude 70 degrees east. Trichogaster Trichopterus occurs naturally in southern Vietnam, the Suda Islands, Thailand and the Malayan Peninsula (Richter 1988). Trichogaster Trichopterus is the most common species of fish in rice-field areas and is some- times collected for food in certain parts of Asia and Africa (Alfred 1962). Generally the Trichogaster spp. inhabit the thickly vegetated areas of rivers, canals, ditches, lakes and swamps to avoid preda- tion from birds and fish. - 5 - Figure 1. Natural distribution Anabantoids Morphology Most of the labyrinth fish have developed very similar types of fins as illustrated in Figure 2. In addition many of the Anabantoids exhibit some form of sexual dimorphism either in the form of color and \ or differences in the finnage. Trichogaster
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • GENETICS of the SIAMESE FIGHTING FISH, BETTA Splendensl
    GENETICS OF THE SIAMESE FIGHTING FISH, BETTA SPLENDENSl HENRY M. WALLBRUNN Department of Biology, Uniuersity of Florida, Gainesuille, Florida First received March 13, 1957 ETTA SPLENDENS more commonly known as the Siamese fighting fish has B been popular in aquariums of western Europe and America for over 35 years. Its domestication and consequent inbreeding antedates the introduction into the West by 60 or 70 years. Selection for pugnacity, long fins (see Figure l), and bright colors over this long period has produced a number of phenotypes, none of which is very similar to the short-finned wild form from the sluggish rivers and flooded rice paddies of Thialand (SMITH1945). The aquarium Betta is noted for its brilliant and varied colors. These are pro- duced by three pigments, lutein (yellow), erythropterin (red), and melanin (black) ( GOODRICH,HILL and ARRICK1941 ) and by scattering of light through small hexagonal crystals (GOODRICHand MERCER1934) giving steel blue, blue, or green. Each kind of pigment is contained in a distinct cell type, xanthophores, containing yellow, erythrophores red, and melanophores black. There are no chromatophores containing two pigments such as the xanthoerythrophores of Xiphophorus helleri. The reflecting cells responsible for iridescent blues and greens are known as iridocytes or guanophores and they are more superficial than the other chromatophores. Since the pigment granules may be greatly dispersed in the many branched pseudopods or clumped into a small knot in the center of the chromatophores, the color of any single fish may vary over a wide range of shades, and may do SO in a matter of seconds.
    [Show full text]
  • Betta Splendens: a Territorial Note
    Bulletin of the Psychonomic Society 1980,16 (6),484-485 Betta splendens: A territorial note PAUL M. BRONSTEIN Trenton State College, Trenton, New Jersey 08625 Two communities of Siamese fighting fish were observed, each for about 4 months. Males occasionally built nests, and these structures were always located in corners. Consistent with Goldstein's (1975) report, male Bettas chose isolated areas for nest building and spawning. This paper is a brief report appended to a set of twice daily (1000 and 1600 h). During feedings, the existence studies concerned with the style and function of aggres­ and location of nests, along with subjects' positions with regard sion in male Siamese fighting fish (Betta sp/endens) to any nests, were recorded. (Bronstein, in press). In that longer article, I showed, first, that bettas build nests against vertical surfaces, Results On May 7, 1980, the male was found with a bubble with crevices and corners more preferred than flat nest in an external corner of the tank. The male, now walls. Second, it was demonstrated that nests were observed for 10 min/feeding, located himself beneath constructed far from male competitors. Third, exposure the nest almost exclusively, and this nest flxation to a male challenger led nest builders to fixate on and persisted through May 9. He left the nest only briefly enlarge their nests. and then only when in immediate pursuit of females. These individual behaviors suggest a strategy whereby During these 72 h, the male spawned with two of the animals disperse and segregate themselves as a preface to females, one at a time, near his nest.
    [Show full text]
  • Model of Profit Maximization of the Giant Gourami (Osphronemus Goramy) Culture
    Omni-Akuatika, 13 (1): 54–59, 2017 ISSN: 1858-3873 print / 2476-9347 online Research Article Model of Profit Maximization of the Giant Gourami (Osphronemus goramy) Culture Dian Wijayanto1*), Faik Kurohman1, Ristiawan Agung Nugroho1 1Fakultas Perikanan dan Ilmu Kelautan Universitas Diponegoro *Corresponding author: [email protected] Received 7 November 2016; Accepted 16 April 2017; Available online 31 May 2017 ABSTRACT This research’ objective is to develop a model of profit maximization that can be applied to the giant gourami culture. The development of fish growth model uses polynomial growth function. Profit maximization process uses the first derivative of profit equation to culture time equal to zero. This research develop the equations to estimate the culture time to reach the size target of cultured fish. This research model can be applied in the giant gouramy culture. The giant gouramy culture can produce the maximum profit at 324 days with profit of IDR. 7.847.700 per culture cycle. To achieve size target of 500 g per fish, it needs 135 days of culture time. Keywords: bioeconomy, profit maximization, the giant gouramy 1. Introduction (1992), Springborn et al. (1992), Heap (1993), Strand and Mistiaen (1999), and Wijayanto The giant gouramy (Osphronemus (2014). Bjorndal (1988) estimated the optimal goramy) is one of major fisheries commodities harvest in fish culture used fish growth base on in Indonesia. It is also one of favorite food for Beverton-Holt model. Then, Arnason (1992), Indonesian cuisine. The giant gouramy culture Heap (1993), and Strand and Mistiaen (1999) has grown in Indonesia, including the Central also developed optimization profit model base Java province.
    [Show full text]
  • Helostoma Temminckii (Kissing Gourami)
    Kissing Gourami (Helostoma temminckii) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: 5snake5. Licensed under CC BY-SA 4.0. Available: https://commons.wikimedia.org/wiki/File:Helostoma_temminkii_01.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Fuller and Neilson (2018): “Tropical Asia, including central Thailand, Malay Peninsula, Sumatra, Borneo, and Java (Berra 1981; Roberts 1989; Talwar and Jhingran 1992).” 1 Status in the United States Fuller and Neilson (2018) report Helostoma temminckii from the following HUCs (hydrologic units) in Florida between 1971 and 1978: Florida Southeast Coast, Little Manatee, and Tampa Bay. From Fuller and Neilson (2018): “Failed at both locations in Florida. No additional specimens have been reported or collected.” This species is in trade in the United States. From Arizona Aquatic Gardens (2018): “Pink Kissing Gourami Fish […] $8.99 Out of stock” Means of Introductions in the United States From Fuller and Neilson (2018): “The introduction resulted from either an aquarium release or a fish-farm escape.” Remarks This species’ name is spelled “Helostoma temminkii” according to ITIS (2018), but the correct spelling according to Fricke et al. (2018) is “Helostoma temminckii”. The misspelling occurs often enough that it was also used when researching in preparation of this report. From Fricke et al. (2018): “temminkii, Helostoma Cuvier [G.] (ex Kuhl & van Hasselt) 1829:228 [Le Règne
    [Show full text]
  • Recent Trends in Breeding and Trade of Ornamental Gourami in India
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331717622 Recent Trends in Breeding and Trade of Ornamental Gourami in India Article in World Aquaculture · March 2019 CITATIONS READS 3 3,032 2 authors: Alok Kumar Jena Pradyut Biswas Central Institute of Fisheries Education Central Agricultural University 29 PUBLICATIONS 37 CITATIONS 62 PUBLICATIONS 132 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effects of temperature on the Caudal fin regeneration of Flying Barb Esomus danricus (Hamilton, 1822) (Cyprinidae) View project Grow-out rearing of Indian butter catfish, Ompok bimaculatus (Bloch), at different stocking densities in outdoor concrete tanks View project All content following this page was uploaded by Alok Kumar Jena on 13 March 2019. The user has requested enhancement of the downloaded file. Recent Trends in Breeding and Trade of Ornamental Gourami in India Alok Kumar Jena, Pradyut Biswas and Sandeep Shankar Pattanaik FIGURE 2. Blue gourami Trichogaster trichopterus (Left) and pearl gourami Trichogaster leeri (Right). FIGURE 1. Banded gourami Colisa fasciatus juvenile. TABLE 1. List of gouramis indigenous to India. Common Name Scientific Name Rainbow gourami/banded gourami Colisa fasciatus Dwarf gourami/lily gourami Colisa lalia Honey gourami Colisa chuna FIGURE 3. Preparation of bubble nest by a male gourami. The ornamental fish TABLE 2. List of gouramis exotic to India. farms located in the country
    [Show full text]
  • Aquacultue OPEN COURSE: NOTES PART 1
    OPEN COURSE AQ5 D01 ORNAMENTAL FISH CULTURE GENERAL INTRODUCTION An aquarium is a marvelous piece of nature in an enclosed space, gathering the attraction of every human being. It is an amazing window to the fascinating underwater world. The term ‘aquarium’is a derivative of two words in Latin, i.e aqua denoting ‘water’ and arium or orium indicating ‘compartment’. Philip Henry Gosse, an English naturalist, was the first person to actually use the word "aquarium", in 1854 in his book The Aquarium: An Unveiling of the Wonders of the Deep Sea. In this book, Gosse primarily discussed saltwater aquaria. Aquarium or ornamental fish keeping has grown from the status of a mere hobby to a global industry capable of generating international exchequer at considerable levels. History shows that Romans have kept aquaria (plural for ‘aquarium’) since 2500 B.C and Chinese in 1278-960 B.C. But they used aquaria primarily for rearing and fattening of food fishes. Chinese developed the art of selective breeding in carp and goldfish, probably the best known animal for an aquarium. Ancient Egyptians were probably the first to keep the fish for ornamental purpose. World’s first public aquarium was established in Regents Park in London in 1853. Earlier only coldwater fishes were kept as pets as there was no practical system of heating which is required for tropical freshwater fish. The invention of electricity opened a vast scope of development in aquarium keeping. The ease of quick transportation and facilities for carting in temperature controlled packaging has broadened the horizon for this hobby.
    [Show full text]
  • Freshwater Crustaceans As an Aboriginal Food Resource in the Northern Great Basin
    UC Merced Journal of California and Great Basin Anthropology Title Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin Permalink https://escholarship.org/uc/item/3w8765rq Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Henrikson, Lael S Yohe, Robert M, II Newman, Margaret E et al. Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Joumal of Califomia and Great Basin Anthropology Vol. 20, No. 1, pp. 72-87 (1998). Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin LAEL SUZANN HENRIKSON, Bureau of Land Management, Shoshone District, 400 W. F Street, Shoshone, ID 83352. ROBERT M. YOHE II, Archaeological Survey of Idaho, Idaho State Historical Society, 210 Main Street, Boise, ID 83702. MARGARET E. NEWMAN, Dept. of Archaeology, University of Calgary, Alberta, Canada T2N 1N4. MARK DRUSS, Idaho Power Company, 1409 West Main Street, P.O. Box 70. Boise, ID 83707. Phyllopods of the genera Triops, Lepidums, and Branchinecta are common inhabitants of many ephemeral lakes in the American West. Tadpole shrimp (Triops spp. and Lepidums spp.) are known to have been a food source in Mexico, and fairy shrimp fBranchinecta spp.) were eaten by the aborigi­ nal occupants of the Great Basin. Where found, these crustaceans generally occur in numbers large enough to supply abundant calories and nutrients to humans. Several ephemeral lakes studied in the Mojave Desert arul northern Great Basin currently sustain large seasonal populations of these crusta­ ceans and also are surrounded by numerous small prehistoric camp sites that typically contain small artifactual assemblages consisting largely of milling implements.
    [Show full text]
  • Experiments on the Biology of Infusoria Inhabiting the Rumen of Goats Helen A
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1930 Experiments on the biology of infusoria inhabiting the rumen of goats Helen A. Mowry Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physiology Commons, Veterinary Physiology Commons, and the Zoology Commons Recommended Citation Mowry, Helen A., "Experiments on the biology of infusoria inhabiting the rumen of goats " (1930). Retrospective Theses and Dissertations. 14255. https://lib.dr.iastate.edu/rtd/14255 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Status of Fish Species Diversity in Ghaghat River in Northern Bangladesh M
    Ann.M. R. Bangladesh Islam, M. Das, Agric. M. (2018) N. Mondal 22 (1) and : 95-105 G. M. Mostakim ISSN 1025-482X (Print)95 2521-5477 (Online) STATUS OF FISH SPECIES DIVERSITY IN GHAGHAT RIVER IN NORTHERN BANGLADESH M. R. Islam1*, M. Das1, M. N. Mondal2 and G. M. Mostakim3 Abstract Fish species diversity and it’s conservation status of Ghaghat river in northern region of Bangladesh was investigated by field sampling using a taxonomic guide, FishBase data and International Union for Conservation of Nature (IUCN) conservation index. The study revealed that a total of 55 species of fishes belonging to 45 genera, 22 families and 9 orders were found in the river. Among the identified fish orders, Cypriniformes was the highest diverse group with 34% species abundance followed by Siluriformes and Perciformes with 24% each. On the other hand, fishes under the orders Beloniformes, Decapoda, and Tetradontiformes were the least abundant (2%). Fish species diversity was found prominent during the monsoon. Based on IUCN conservation index 6(11%), 10(18%) and 7(13%) species in Ghaghat river were identified as critically endangered, endangered and vulnerable respectively. A total 14 types of fishing gear under 8 major groups were found to operate in the studied river, which included some banned gears like gill net and seine net. An effective conservation strategy needs to be developed to stop indiscriminate fishing and to conserve the fish biodiversity in Ghaghat river. Keywords: Fish, biodiversity, ghaghat river, conservation. Introduction barrages, pollution, using of banned fishing gears fish biodiversity is declining (Rahman Bangladesh is blessed with a large number et al., 2016).
    [Show full text]
  • Fish Tales | in This Issue
    Fish Tales | In this issue: 3 Presidents Message Greg Steeves 4 A Visit to the Michigan Cichlid Association Greg Steeves 10 DIY Pleco Caves Mike & Lisa Hufsteler Volume 6 Issue 3 13 Zebra Pleco added to The FOTAS Fish Tales is a quarterly publication of the Federation of Tex- as Aquarium Societies a non-profit organization. The views and opinions CITES List! contained within are not necessarily those of the editors and/or the of- Clay Trachtman ficers and members of the Federation of Texas Aquarium Societies. 14 Bettas in the Classroom FOTAS Fish Tales Editor: Gerald Griffin Gerald Griffin [email protected] 17 FOTAS CARES Fish Tales Submission Guidelines Greg Steeves Articles: Please submit all articles in electronic form. We can accept most popular 18 FOTAS 2016 Recap software formats and fonts. Email to [email protected]. Photos and Kyle Osterholt graphics are encouraged with your articles! Please remember to include the photo/graphic credits. Graphics and photo files may be submitted in 22 An Introduction to any format, however uncompressed TIFF, JPEG or vector format is pre- Apistos ferred, at the highest resolution/file size possible. If you need help with graphics files or your file is too large to email, please contact me for alter- David Soares native submission info. 26 Surviving the Dreaded Art Submission: Power Outage! Graphics and photo files may be submitted in any format. However, Gerald Griffin uncompressed TIFF, JPEG or vector formats are preferred. Please submit the 28 Going Wild with Bettas highest resolution possible. Gerald Griffin Next deadline…… January 15th 2017 35 Characodon, a Goodeid COPYRIGHT NOTICE that always surprises! All Rights Reserved.
    [Show full text]
  • Breeding and Embryonic Development of an Indigenous Ornamental Fish
    Journal of Entomology and Zoology Studies 2017; 5(3): 111-115 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(3): 111-115 Breeding and embryonic development of an © 2017 JEZS indigenous ornamental fish Trichogaster lalius Received: 18-03-2017 Accepted: 19-04-2017 (Hamilton, 1822) in captive condition Shibam Saha Department of Fisheries Resource Management, Faculty of Fishery Shibam Saha, S. Behera, Dibakar Bhakta, Abhrajyoti Mandal, Sanjeev Sciences, West Bengal University of Animal and Fishery Sciences, Kumar and Anandamoy Mondal Budherhat Road, Chakgaria, Panchasayar, Kolkata, West Bengal, India. Abstract The present study was conducted to perform the captive breeding and embryonic development of dwarf S. Behera gourami Trichogaster lalius (Hamilton, 1822) in control condition at the Laboratory of Faculty of Department of Fisheries Resource Management, Faculty of Fishery Fishery Sciences, WBUAFS, Kolkata, West Bengal between May and June, 2016. A total 10 sets of Sciences, West Bengal University of experiment were conducted by keeping one pair of healthily fish (male and female 1:1 ratio) for each set. Animal and Fishery Sciences, The absolute fecundity was ranged from 1000 to 1350. The fertilization rate was found to be 63±0.50% Budherhat Road, Chakgaria, and incubation period was recorded 23 to 26 hours at 29.15 ± 0.95 ºC. The fertilized eggs were not Panchasayar, Kolkata, West Bengal, India. adhesive, golden in colour and optically transparent and size was ranged from 0.60 ± 0.05 to 0.69 ± 0.08 mm. The present findings established that T. lalius can easily bred in captive condition by maintaining Dibakar Bhakta suitable environmental parameters which is prerequisite to conserve the species in natural water bodies.
    [Show full text]