Rhizobia Isolated from the Relict Legume Vavilovia Formosa Represent a Genetically Specific Group Within Rhizobium Leguminosarum Biovar Viciae

Total Page:16

File Type:pdf, Size:1020Kb

Rhizobia Isolated from the Relict Legume Vavilovia Formosa Represent a Genetically Specific Group Within Rhizobium Leguminosarum Biovar Viciae G C A T T A C G G C A T genes Article Rhizobia Isolated from the Relict Legume Vavilovia formosa Represent a Genetically Specific Group within Rhizobium leguminosarum biovar viciae Anastasiia K. Kimeklis 1,2,* , Elizaveta R. Chirak 1, Irina G. Kuznetsova 1 , Anna L. Sazanova 1, Vera I. Safronova 1, Andrey A. Belimov 1 , Olga P. Onishchuk 1, Oksana N. Kurchak 1, Tatyana S. Aksenova 1, Alexander G. Pinaev 1, Evgeny E. Andronov 1,2,3 and Nikolay A. Provorov 1 1 All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia; [email protected] (E.R.C.); [email protected] (I.G.K.); [email protected] (A.L.S.); [email protected] (V.I.S.); [email protected] (A.A.B.); [email protected] (O.P.O.); [email protected] (O.N.K.); [email protected] (T.S.A.); [email protected] (A.G.P.); [email protected] (E.E.A.); [email protected] (N.A.P.) 2 Saint-Petersburg State University, 199034 Saint Petersburg, Russia 3 V.V. Dokuchaev Soil Science Institute of Russian Academy of Science, 119017 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-(921)-350-22-02 Received: 23 October 2019; Accepted: 27 November 2019; Published: 1 December 2019 Abstract: Twenty-two rhizobia strains isolated from three distinct populations (North Ossetia, Dagestan, and Armenia) of a relict legume Vavilovia formosa were analysed to determine their position within Rhizobium leguminosarum biovar viciae (Rlv). These bacteria are described as symbionts of four plant genera Pisum, Vicia, Lathyrus, and Lens from the Fabeae tribe, of which Vavilovia is considered to be closest to its last common ancestor (LCA). In contrast to biovar viciae, bacteria from Rhizobium leguminosarum biovar trifolii (Rlt) inoculate plants from the Trifolieae tribe. Comparison of house-keeping (hkg: 16S rRNA, glnII, gltA, and dnaK) and symbiotic (sym: nodA, nodC, nodD, and nif H) genes of the symbionts of V. formosa with those of other Rlv and Rlt strains reveals a significant group separation, which was most pronounced for sym genes. A remarkable feature of the strains isolated from V. formosa was the presence of the nodX gene, which was commonly found in Rlv strains isolated from Afghanistan pea genotypes. Tube testing of different strains on nine plant species, including all genera from the Fabeae tribe, demonstrated that the strains from V. formosa nodulated the same cross inoculation group as the other Rlv strains. Comparison of nucleotide similarity in sym genes suggested that their diversification within sym-biotypes of Rlv was elicited by host plants. Contrariwise, that of hkg genes could be caused by either local adaptation to soil niches or by genetic drift. Long-term ecological isolation, genetic separation, and the ancestral position of V. formosa suggested that symbionts of V. formosa could be responsible for preserving ancestral genotypes of the Rlv biovar. Keywords: Rhizobium leguminosarum bv. viciae; Vavilovia formosa (Stev.) Fed.; tribe Fabeae; evolution of symbiosis; housekeeping genes (hkg); symbiotic (sym) genes; group separation 1. Introduction Root nodule bacteria (rhizobia) represent a useful model for studying the molecular and ecological mechanisms of evolution of symbiotic bacteria. Divergent evolution (intra-species radiation and formation of new species) by these bacteria is promoted by host plants, which elicit the selection pressures responsible for the genetic and ecological diversification of rhizobia [1–3]. This evolution Genes 2019, 10, 991; doi:10.3390/genes10120991 www.mdpi.com/journal/genes Genes 2019, 10, 991 2 of 17 may be traced using specialised symbiotic (sym) genes representing the accessory parts of bacterial genomes,Genes 2019 which, 10, x diFORffer PEER in theirREVIEW natural histories from housekeeping genes (hkg) representing2 of the 18 core partsevolution of genomes may [ 4be]. traced As a resultusing specialised of co-evolutionary symbiotic processes,(sym) genes symbiosisrepresenting is the formed accessory between parts of tightly co-adaptedbacterial cross-inoculation genomes, which differ groups in their of rhizobia natural andhistories legumes, from housekeeping and their coevolution genes (hkg is) representing directed by a set of symbiosis-specificthe core parts of genomes genes from [4]. As each a result partner of co [5-evolutionary–7]. In some processes, rhizobia, symbiosissym genes is areformed more between susceptible to autonomoustightly co-adapted horizontal cross gene-inoculation transfer thangroupshkg ofgenes, rhizobia because and theylegumes, are locatedand their on coevolution plasmids—mobile is elementsdirected of the by genomea set of symbiosis [3]. This- resultsspecific ingenes an intensive from each recombination partner [5–7]. In of some host rhizobia, specific andsym chromosomalgenes are markersmore [8 susceptible]. For example, to autonomousRhizobium horizontal leguminosarum gene transferis composed than hkg of genes, two because biovars, they which are havelocated diverged on basedplasmids on their—mobile plasmid-encoded elements of the host genom rangese [3]. [9 ].This Biovar resultsviciae in an (intensiveRlv) nodulates recombination legumes of fromhost the specific and chromosomal markers [8]. For example, Rhizobium leguminosarum is composed of two Fabeae tribe, while biovar trifolii (Rlt) nodulates clovers from the Trifolieae tribe; however, they show a biovars, which have diverged based on their plasmid-encoded host ranges [9]. Biovar viciae (Rlv) conservative chromosomal arrangement of hkg markers (Figure1). nodulates legumes from the Fabeae tribe, while biovar trifolii (Rlt) nodulates clovers from the EvenTrifolieae so, divergenttribe; however, evolution they show of rhizobia a conservative is not restrictedchromosomal to sym arrangementgenes. Application of hkg markers of (Figure the average nucleotide1). identity (ANI) method has demonstrated that a local R. leguminosarum population could be separatedEven into so, five divergent genomic evolution species, of di rhizobiaffering inis not their restrictedhkg genes, to sym representing genes. Application their core of the genomes average [10]. However,nucleotide this speciationidentity (ANI) does method not correlate has demonstrated with the diversificationthat a local R. leguminosarum of R. leguminosarum populationinto could biovars viciaebeand separatedtrifolii, suggestinginto five genomic that hkg species,and sym differinggene in evolution their hkgis genes, controlled representing by diff theirerent core mechanisms. genomes We decided[10]. to However, probe this this hypothesis speciationusing does not the correlate model of withRlv, the a symbiont diversification of the of legume R. leguminosarum tribe Fabeae, into which includesbiovars five viciae genera: andLens trifolii, Lathyrus, suggesting, Pisum that, Vicia hkg, andand Vaviloviasym gene[ 11evolution]. The latter is controlled genus consists by different of a single mechanisms. We decided to probe this hypothesis using the model of Rlv, a symbiont of the legume species, Vavilovia formosa (Stev.) Fed., a relict and endangered legume plant, which grows mostly in tribe Fabeae, which includes five genera: Lens, Lathyrus, Pisum, Vicia, and Vavilovia [11]. The latter high-mountain regions of the Caucasus and Middle East [12–15]. Based on genetic and morphological genus consists of a single species, Vavilovia formosa (Stev.) Fed., a relict and endangered legume plant, markers,whichVavilovia grows mostlyis closely in high related-mountain to Pisum regions, such of thatthe Caucasus it is still sometimesand Middle attribute East [12– to15]. this Based genus on [16]. Basedgenetic on a number and morphological of phenotypic markers, traits, VaviloviaV. formosa is closelyis considered related to Pisum to be, thesuch closest that it is living still sometimes relative to the last commonattribute ancestorto this genus (LCA) [16]. of Based the Fabeaeon a number tribe of [17 phenotypic]. Due to hard-to-reachtraits, V. formosa niches, is considered scarce to populations, be the and theclosest deeply living growing relativeroots to the of lastV. formosacommon, itancestor is challenging (LCA) of to the obtain Fabeae a representativetribe [17]. Due collectionto hard-to- of its symbionts.reach niches, Nevertheless, scarce populations, symbionts and representing the deeply growing a local populationroots of V. formosa in North, it is challenging Ossetia were to obtain previously describeda representative [18]. Most collection of the isolates of its symbionts. were identified Nevertheless, as Rlv, symbionts with some representing isolates belonging a local population to the genera Bosea,inTardiphaga North Ossetia, and werePhyllobacterium previously. described A remarkable [18]. Most feature of ofthe these isolatesRlv wereisolates identified was that as theRlv,nod withX gene some isolates belonging to the genera Bosea, Tardiphaga, and Phyllobacterium. A remarkable feature of was found in all strains [18]. This gene enables rhizobia to nodulate the highly selective Afghanistan these Rlv isolates was that the nodX gene was found in all strains [18]. This gene enables rhizobia to pea lines, which have a specific allele of the sym2 gene, sym2A, which restricts nodulation by Rlv strains nodulate the highly selective Afghanistan pea lines, which have a specific allele of the sym2 gene, devoidsym of2A,nod whichX[19 restricts]. nodulation by Rlv strains devoid of nodX [19]. FigureFigure 1. Plant 1. Plant hosts hosts of Rlv of Rlvand andRlt Rlton on the the scheme scheme of of Fabeae Fabeae
Recommended publications
  • Ecogeographic, Genetic and Taxonomic Studies of the Genus Lathyrus L
    ECOGEOGRAPHIC, GENETIC AND TAXONOMIC STUDIES OF THE GENUS LATHYRUS L. BY ALI ABDULLAH SHEHADEH A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham March 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Lathyrus species are well placed to meet the increasing global demand for food and animal feed, at the time of climate change. Conservation and sustainable use of the genetic resources of Lathyrus is of significant importance to allow the regain of interest in Lathyrus species in world. A comprehensive global database of Lathyrus species originating from the Mediterranean Basin, Caucasus, Central and West Asia Regions is developed using accessions in major genebanks and information from eight herbaria in Europe. This Global Lathyrus database was used to conduct gap analysis to guide future collecting missions and in situ conservation efforts for 37 priority species. The results showed the highest concentration of Lathyrus priority species in the countries of the Fertile Crescent, France, Italy and Greece.
    [Show full text]
  • Lathlati FABA FINAL
    Lathyrus latifolius L. Common Names: Perennial Pea (1), Everlasting Pea (2), Broad-leaved Everlasting Pea (3). Etymology: Lathyrus comes from Lathyros, a leguminous plant of Ancient Greece classified by Theophrastus and believed to be an aphrodisiac. “The name is often said to be composed of the prefix, la, very, and thuros, passionate.” (1). Latifolius means broad-leaved (4). Botanical synonyms: Lathyrus latifolius L. var. splendens Groenl. & Rumper (5) FAMILY: Fabaceae (the pea family) Quick Notable Features: ¬ Winged stem and petioles ¬ Leaves with only 2 leaflets ¬ Branched leaf-tip tendril ¬ Pink papilionaceous corolla (butterfly- like) Plant Height: Stem height usually reaching 2 m (7). Subspecies/varieties recognized: Lathyrus latifolius f. albiflorus Moldenke L. latifolius f. lanceolatus Freyn (5, 6): Most Likely Confused with: Other species in the genus Lathyrus, but most closely resembles L. sylvestris (2). May also possibly be confused with species of the genera Vicia and Pisum. Habitat Preference: A non-native species that has been naturalized along roadsides and in waste areas (7). Geographic Distribution in Michigan: L. latifolius is scattered throughout Michigan, in both the Upper and Lower Peninsula. In the Upper Peninsula it is found in Baraga, Gogebic, Houghton, Keweenaw, Mackinac, Marquette, Ontonagon, and Schoolcraft counties. In the Lower Peninsula it is found in the following counties: Alpena, Antrim, Benzie, Berrien, Calhoun, Cass, Charlevoix, Cheboygan, Clinton, Emmet, Genesee, Hillsdale, Isabella, Kalamazoo, Kalkaska, Kent, Leelanau, Lenawee, Livingston, Monroe, Montmorency, Newaygo, Oakland, Oceana, Ostego, Saginaw, Sanilac, Van Buren, Washtenaw, and Wayne (2, 5). At least one quarter of the county records are newly recorded since 1985: 29 county records were present in 1985 and there are 38 county- level records as of 2014.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Overview of Vicia (Fabaceae) of Mexico
    24 LUNDELLIA DECEMBER, 2014 OVERVIEW OF VICIA (FABACEAE) OF MEXICO Billie L. Turner Plant Resources Center, The University of Texas, 110 Inner Campus Drive, Stop F0404, Austin TX 78712-1711 [email protected] Abstract: Vicia has 12 species in Mexico; 4 of the 12 are introduced. Two new names are proposed: Vicia mullerana B.L. Turner, nom. & stat. nov., (based on V. americana subsp. mexicana C.R. Gunn, non V. mexicana Hemsl.), and V. ludoviciana var. occidentalis (Shinners) B.L. Turner, based on V. occidentalis Shinners, comb. nov. Vicia pulchella Kunth subsp. mexicana (Hemsley) C.R. Gunn is better treated as V. sessei G. Don, the earliest name at the specific level. A key to the taxa is provided along with comments upon species relationships, and maps showing distributions. Keywords: Vicia, V. americana, V. ludoviciana, V. pulchella, V. sessei, Mexico. Vicia, with about 140 species, is widely (1979) provided an exceptional treatment distributed in temperate regions of both of the Mexican taxa, nearly all of which were hemispheres (Kupicha, 1982). Some of the illustrated by full-page line sketches. As species are important silage, pasture, and treated by Gunn, eight species are native to green-manure legumes. Introduced species Mexico and four are introduced. I largely such as V. faba, V. hirsuta, V. villosa, and follow Gunn’s treatment, but a few of his V. sativa are grown as winter annuals in subspecies have been elevated to specific Mexico, but are rarely collected. Gunn rank, or else treated as varieties. KEY TO THE SPECIES OF VICIA IN MEXICO (largely adapted from Gunn, 1979) 1.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Nymphaea Folia Naturae Bihariae Xli
    https://biblioteca-digitala.ro MUZEUL ŢĂRII CRIŞURILOR NYMPHAEA FOLIA NATURAE BIHARIAE XLI Editura Muzeului Ţării Crişurilor Oradea 2014 https://biblioteca-digitala.ro 2 Orice corespondenţă se va adresa: Toute correspondence sera envoyée à l’adresse: Please send any mail to the Richten Sie bitte jedwelche following adress: Korrespondenz an die Addresse: MUZEUL ŢĂRII CRIŞURILOR RO-410464 Oradea, B-dul Dacia nr. 1-3 ROMÂNIA Redactor şef al publicațiilor M.T.C. Editor-in-chief of M.T.C. publications Prof. Univ. Dr. AUREL CHIRIAC Colegiu de redacţie Editorial board ADRIAN GAGIU ERIKA POSMOŞANU Dr. MÁRTON VENCZEL, redactor responsabil Comisia de referenţi Advisory board Prof. Dr. J. E. McPHERSON, Southern Illinois Univ. at Carbondale, USA Prof. Dr. VLAD CODREA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Dr. MASSIMO OLMI, Universita degli Studi della Tuscia, Viterbo, Italy Dr. MIKLÓS SZEKERES Institute of Plant Biology, Szeged Lector Dr. IOAN SÎRBU Universitatea „Lucian Blaga”,Sibiu Prof. Dr. VASILE ŞOLDEA, Universitatea Oradea Prof. Univ. Dr. DAN COGÂLNICEANU, Universitatea Ovidius, Constanţa Lector Univ. Dr. IOAN GHIRA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Univ. Dr. IOAN MĂHĂRA, Universitatea Oradea GABRIELA ANDREI, Muzeul Naţional de Ist. Naturală “Grigora Antipa”, Bucureşti Fondator Founded by Dr. SEVER DUMITRAŞCU, 1973 ISSN 0253-4649 https://biblioteca-digitala.ro 3 CUPRINS CONTENT Botanică Botany VASILE MAXIM DANCIU & DORINA GOLBAN: The Theodor Schreiber Herbarium in the Botanical Collection of the Ţării Crişurilor Museum in
    [Show full text]
  • Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration
    Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration Olympic National Park, Washington Cynthia Lee Riskin A project submitted in partial fulfillment of the requirements for the degree of Master of Environmental Horticulture University of Washington 2013 Committee: Linda Chalker-Scott Kern Ewing Sarah Reichard Joshua Chenoweth Program Authorized to Offer Degree: School of Environmental and Forest Sciences Guidebook to Invasive Nonnative Plants of the Elwha Watershed Restoration Olympic National Park, Washington Cynthia Lee Riskin Master of Environmental Horticulture candidate School of Environmental and Forest Sciences University of Washington, Seattle September 3, 2013 Contents Figures ................................................................................................................................................................. ii Tables ................................................................................................................................................................. vi Acknowledgements ....................................................................................................................................... vii Introduction ....................................................................................................................................................... 1 Bromus tectorum L. (BROTEC) ..................................................................................................................... 19 Cirsium arvense (L.) Scop. (CIRARV)
    [Show full text]
  • The First Complete Chloroplast Genome of the Genistoid
    The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family Guillaume E. Martin, Mathieu Rousseau-Gueutin, Solenn Cordonnier, Oscar Lima, Sophie Michon-Coudouel, Delphine Naquin, Julie Ferreira de Carvalho, Malika L. Aïnouche, Armel Salmon, Abdelkader Aïnouche To cite this version: Guillaume E. Martin, Mathieu Rousseau-Gueutin, Solenn Cordonnier, Oscar Lima, Sophie Michon- Coudouel, et al.. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evi- dence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Annals of Botany, Oxford University Press (OUP), 2014, 113 (7), pp.1197-1210. 10.1093/aob/mcu050. hal-01061902 HAL Id: hal-01061902 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01061902 Submitted on 8 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1! ‘ORIGINAL ARTICLE’ 2! 3! The first complete chloroplast genome of the genistoid legume Lupinus luteus: Evidence for a 4! novel major lineage-specific rearrangement and new insights on plastome evolution in the 5! legume family 6! 7! Authors 8! Guillaume E.
    [Show full text]
  • Violaceae – Violkovité
    Fabaceae – bobovité F. krytosemenné (angiosperms) oddělení: Angiospermae (Magnoliophyta) dvouděložné (Dicots) pravé dvouděložné (Eudicots) rosidy (Rosids, Eudicots I) pravé rosidy (Eurosids) fabidy (Eurosids I) Řád: Fabales – bobotvaré Fabaceae – bobovité - Byliny i dřeviny (keře i stromy) Robilnia pseudoacacia - Symbióza s hlízkovými bakteriemi rodu Rhizobium Trifolium pratense Rhizobium Cytisus nigricans Fabaceae – bobovité - Listy střídavé, složené Genista tinctoria Securigera varia (zpeřené nebo dlanité), vzácně jednoduché - Palisty přítomny - Vzácně fylodia Trifolium pratense palist Trifolium ochroleucon Lathyrus vernus Fabaceae – bobovité - Květenství hrozen nebo strboul Laburnum anagyroides Trifolium ochroleucon květenství - hrozen květenství - strboul Fabaceae – bobovité - Květy oboupohlavné, Anthylis vulneraria zygomorfní (aktinomorfní pouze u cizokrajných), cyklické, pentamerické - Květní obaly rozlišené (kalich vytrvalý kalich srostlý, koruna volná) Lathyrus sylvestris pavéza Vicia faba křídla http://upload.wikimedia.org člunek Fabaceae – bobovité - Tyčinky zpravidla srostlé (9+1) - Gyneceum apokarpní, svrchní Lotus corniculatus Lathyrus vernus nitky 9 tyčinek srůstající v rourku čnělka dvoubratré tyčinky semeník vzniklý z 1 plodolistu Fabaceae – bobovité - Plod lusk, struk nebo nažka Trifolium fragiferum Lathyrus hirsutus Vicia tetrasperma nažka ukrytá ve lusk vytrvalém kalichu Fabaceae – bobovité Naši zástupci Dorycnium germanicum Lotus corniculatus Astragalus onobrychis Hedysarum hedysaroides Lathyrus vernus Lamiaceae –
    [Show full text]
  • Evolutionary Origin of Highly Repetitive Plastid Genomes Within the Clover Genus (Trifolium) Saemundur Sveinsson* and Quentin Cronk
    Sveinsson and Cronk BMC Evolutionary Biology 2014, 14:228 http://www.biomedcentral.com/1471-2148/14/228 RESEARCH ARTICLE Open Access Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium) Saemundur Sveinsson* and Quentin Cronk Abstract Background: Some clover species, particularly Trifolium subterraneum, have previously been reported to have highly unusual plastomes, relative to closely related legumes, enlarged with many duplications, gene losses and the presence of DNA unique to Trifolium, which may represent horizontal transfer. In order to pinpoint the evolutionary origin of this phenomenon within the genus Trifolium, we sequenced and assembled the plastomes of eight additional Trifolium species widely sampled from across the genus. Results: The Trifolium plastomes fell into two groups: those of Trifolium boissieri, T. strictum and T. glanduliferum (representing subgenus Chronosemium and subg. Trifolium section Paramesus) were tractable, assembled readily and were not unusual in the general context of Fabeae plastomes. The other Trifolium species (“core Trifolium”) proved refractory to assembly mainly because of numerous short duplications. These species form a single clade, which we call the “refractory clade” (comprising subg, Trifolium sections Lupinaster, Trifolium, Trichocephalum, Vesicastrum and Trifoliastrum). The characteristics of the refractory clade are the presence of numerous short duplications and 7-15% longer genomes than the tractable species. Molecular dating estimates that the origin of the most recent common ancestor (MRCA) of the refractory clade is approximately 13.1 million years ago (MYA). This is considerably younger than the estimated MRCA ages of Trifolium (c. 18.6 MYA) and Trifolium subg. Trifolium (16.1 MYA). Conclusions: We conclude that the unusual repetitive plastome type previously characterized in Trifolium subterraneum had a single origin within Trifolium and is characteristic of most (but not all) species of subgenus Trifolium.
    [Show full text]
  • A Systematic Study of Lathyrus Vestitus Nutt. Ex T
    AN ABSTRACT OF THE THESIS OF Steven Leo Broich for the degree of Doctor of Philosophy in Botany and Plant Pathologypresented on 4 March 1983 Title: A SYSTEMATIC STUDY OF LATHYRUS VESTITUS NUTT. EX T. & G. (FABACEAE) AND ALLIED SPECIES OF THE PACIFIC COAST Abstract approved: Redacted for Privacy Kenton L.Chdbers Eight species of Lathvrus (Fabaceae, Faboideae) endemic to the Pacific Coast of North America were the subject of a systematic investigation. Taxa studied included Lathvrus vestituq Nutt. ex T. & G., L. .1aetiflorus Greene, Lo iepsonii Greene, L. splendens Kellogg, L. polv-chvllus Nutt. ex T. & G., L. holochlorus (Piper) C. L. Hitchcock, L. delnorticus C. L. Hitchcock and L. sulphureus Brewer. Taximetric studies, including hierarchical and non-hierarchical cluster analyses followed by discriminant analyses, revealed the existence of one new species. Lathvrus holochlorus, Lo delnorticus, L. sulphureus, L. Polviohvllus, L. iepsonii and L. splendens were found to be morphologically distinct while extensive morphological intergradation was found between J. vestitus and L. laetiflorus. Principal Components analysis was used to document two clinal trends within the L. vestitus-laetiflorus complex. Flower size increases and floral shape changes from north to south along the Pacific Coast; pubescence increases clinally from north to south and from the coast inland. The anatomy of stems and leaflets was examined by tissue clearing methods. Vascular anatomy of nodes and internodes was found to conform to patterns described previously for European species of Lathvrus. Epidermal cell shape and stomatal frequency on leaflets varies greatly within species and these data were not useful for taxonomic distinctions. The diploid chromosome number for all species studied was found to be 2n = 14; only small differences in karyotypes could be noted.
    [Show full text]
  • Conserved Gene Clusters in the Scrambled Plastomes of IRLC Legumes (Fabaceae: 2 Trifolieae and Fabeae)
    bioRxiv preprint doi: https://doi.org/10.1101/040188; this version posted February 18, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Conserved gene clusters in the scrambled plastomes of IRLC legumes (Fabaceae: 2 Trifolieae and Fabeae). 3 4 Saemundur Sveinsson1*’, Quentin Cronk2 5 6 1Faculty of Land and Animal Resources, Agricultural University of Iceland, Keldnaholt, 112 7 Reykjavik, Iceland;2Department of Botany and Biodiversity Research Centre, University of 8 British Columbia, 6270 University Boulevard, Vancouver BC V6T 1Z4, Canada. 9 10 Author for correspondence: 11 Saemundur Sveinsson 12 Tel: 354-4335219 13 Email: [email protected] 14 Total word count 2884 No. of figures: 3 (Figs 1 and 2 in (excluding summary, colour) references and legends): Summary: 179 No. of Tabels: 3 Introduction: 397 No. of Supporting 0 Information files: Materials and 1038 Methods: Results: 663 Discussions: 719 Acknowledgements: 61 15 16 1 bioRxiv preprint doi: https://doi.org/10.1101/040188; this version posted February 18, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 Summary 18 The plastid genome retains several features from its cyanobacterial-like ancestor, one being 19 the co-transcriptional organization of genes into operon-like structures. Some plastid operons 20 have been identified but undoubtedly many more remain undiscovered. Here we utilize the 21 highly variable plastome structure that exists within certain legumes of the inverted repeat 22 lost clade (IRLC) to find conserved gene clusters.
    [Show full text]