Summary of Reviewed Studies of the Role of Moths in Pollination (See Tables S1.1–1.3)

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Reviewed Studies of the Role of Moths in Pollination (See Tables S1.1–1.3) Appendix S2 Table S1: Summary of reviewed studies of the role of moths in pollination (see Tables S1.1–1.3). Type of moth- No. No. ecosystems, pollination study studies species, or taxa Ecosystems (Table 14 13 S1.1) Plant species (Table 143 289 S1.2) Pollinating seed 11 12 parasites (Table S1.3) Total 168 314 Table S1.1: Ecosystems in which moths have been found to be important pollinators. In column 5 (Methods), the methods used to provide evidence for moth pollination are indicated as follows: C = contact with anthers and/or stigmas observed, D = pollen deposited on and/or removed from stigmas, E = experimental exclusion of diurnal and nocturnal pollinators, I = inferred by pollination syndrome, P = pollen present on captured moths, R = literature review, S = moth scales or hairs present on stigmas, VF = flower visitation determined by fluorescent markers deposited by visiting moths, VO = flower visitation determined by observations, VR = flower visitation determined by video recordings U = unspecified/unavailable. Climate System Location % of plants Methods Notes Reference moth- pollinated Temperate Coniferous Scotland P ~25% of moths were carrying Devoto et al. (2011) forest pollen. Various South-eastern R Moth pollination is relatively Johnson (2004) Africa common in some areas as bee diversity is low. Meadow Portugal P ~39% of moths were carrying Banza (2011) pollen representing 36 plant taxa. Xeric sandhill Florida, USA P, VO, VR Atwater (2013) Tropical Bush-savannah Kenya ~4.6 I, VO Sphingidae only investigated. Martins and Johnson (2013) Grassland Venezuela 6 C, P, VO Moth-pollinated plants the Ramirez (2004) second most abundant animal-pollinated group. Lowland dry Costa Rica ~10 P, VO Sphingidae only investigated. Haber and Frankie (1989) forest Monsoon forest Laos 6 P, VO Kato et al. (2008) Oceanic islands Galápagos R Only Hymenoptera more Chamorro et al. (2012) important to pollination than moths. Rainforest Costa Rica 16 I, VO Moth-pollinated plants the Bawa et al. (1985) second most abundant group. Rainforest New Caledonia 20 P, VO Moth-pollinated plants the Kato and Kawakita (2004) second most abundant group. Savannah Brazil 14 I, VO Woody plants only; moths Oliveira et al. (2004), were third most important Martins and Batalha (2006) pollinators. Wet evergreen India C, VO Moths are third most Devy and Davidar (2003) forest important pollinators. Table S1.2: Examples of plants found to be pollinated by moths. In column 3 (Prediction of moth pollination): E = explicit (stated) prediction of pollination by hawkmoths (Sphingidae), I = implicit prediction of pollination by hawkmoths (eg. introductory discussion of characteristics of sphingophilous flowers), N = prediction of no pollination by moths, O = prediction of pollination by moths other than hawkmoths, U = prediction of pollination by general or unspecified moths, and X = no clear prediction made. In column 4 (Moth pollinators): C = Cosmopterigidae, Cr = Crambidae, Ct = Ctenuchidae, E = Erebidae, Ge = Gelechiidae, G = Geometridae, Gl = Glyphipterigidae, Gr = Gracillariidae, L = Lasiocampidae, M = Micropterigidae, N = Noctuidae, No = Nolidae, Pr = Prodoxidae, Pt = Pterophoridae, P = Pyralidae, Sa = Saturniidae, Se = Sesiidae, S = Sphingidae, Th = Thyrididae, T = Tortricidae, U = Uranidae, X = unspecified/unknown. For studies where exact pollinating moth species or genera are given, this is detailed in column 7 (Notes). In column 6 (Methods), the methods used to provide evidence for moth pollination are indicated as follows: C = contact with anthers and/or stigmas observed, D = pollen deposited on stigmas and/or removed from anthers, E = plants pollinated when experimentally exposed only to visits by moths, I = inferred by pollination syndrome, P = pollen present on captured moths, S = moth scales or hairs present on stigmas, VF = flower visitation determined by fluorescent markers transferred by visiting moths, VO = flower visitation determined by observations, VR = flower visitation determined by video recordings, VT = flower visitation determined by flower-visitor trapping, U = unspecified/unavailable. Plant Family Plant species Prediction Moth pollinators Other pollinators? Methods Notes References of moth pollination Adoxaceae Adoxa N N Various Diptera P Orthosia gothica L. Holmes (2005) moschatellina L. was the main nocturnal pollinator. Three other Orthosia spp. and Lithophane hepatica Clerck. also recorded carrying pollen. Amaranthaceae Beta vulgaris L. U X – P, VO Banza (2011) Amaryllidaceae Allium cepa L. U X – P, VO Banza (2011) Ammocharis E S – VO Martins and Johnson tinneana (Kotschy (2013) & Peyr.) Milne- Redh. & Schweick. Crinum flaccidum E S None I Howell and Prakash Herb. (1990) Crinum jagus (J. E S None C, VO Only Sphingidae Brantjes and Bos Thomps.) Dandy considered as (1980) potential pollinators Crinum macowanii E S – VO Martins and Johnson Baker (2013) Hymenocallis E N, S Hymenoptera, C, VO Graham (2010) coronaria (Leconte) Trochilidae Kunth Hymenocallis E E, N, S None C, VO Graham (2010) occidentalis (Leconte) Kunth Narcissus E S, X Syrphid flies P Pérez-Barrales et al. papyraceus Ker (Diptera) (2007) Gawl. Narcissus O X None I Vogel and Mueller- viridiflorus Doblies (1975) Schousb. Pancratium I S None P, VF, VO Eisikowitch and Galil maritimum L. (1971) Anacardiaceae Schinus X X Hymenoptera VO Kato and Kawakita terebinthifolia (2004) Raddi Apiaceae Daucus carota L. U X – P, VO Banza (2011) Apocynaceae Acokanthera E S – VO Martins and Johnson schimperi (A.DC.) (2013) Schweinf. Alstonia costata X X None VO Kato and Kawakita (G.Forst.) R.Br. (2004) Asclepias syriaca L. U E, G, N Bombus spp. P, VO Jennersten and (Hymenoptera: Morse (1991) Apidae) Asclepias U G, N Bombus spp. P, VO Bertin and Willson verticillata L. (1980) Aspidosperma U X None I, VO Not Sphingidae Oliveira et al. (2004), macrocarpon Mart. Martins and Batalha (2006) Aspidosperma U X – I Martins and Batalha nobile Müll.Arg. (2006) Aspidosperma U X – I Martins and Batalha polyneuron (2006) Müll.Arg. Aspidosperma U N, P None C, VO Lin and Bernardello quebracho-blanco (1999) Schltdl. Aspidosperma U X None I, VO Not Sphingidae Oliveira et al. (2004), tomentosum Mart. Martins and Batalha (2006) Carissa spinarum L. E S – VO Martins and Johnson (2013) Cerbera manghas X S None VO Kato and Kawakita (2004) L. Chonemorpha X S None VO Kato et al. (2008) fragrans (Moon) Alston Hancornia speciosa U S None I, VO Oliveira et al. (2004), Gomes Martins and Batalha (2006) Himatanthus U S None I, VO Oliveira et al. (2004), obovatus Martins and Batalha (Müll.Arg.) (2006) Woodson Mandevilla laxa I S None P Primarily Manduca Moré et al. (2007) (Ruiz & Pav.) sexta L. Woodson Mandevilla I S None P Primarily Manduca Moré et al. (2007) longiflora (Desf.) sexta Pichon Mandevilla petraea I S None P Primarily Manduca Moré et al. (2007) (A. St.-Hil.) Pichon tucumana Rothschild & Jordan Metaplexis U N, P None P, VO Sugiura and japonica (Thunb.) Yamazaki (2005) Makino Sarcostemma N N, T None VO Philipp et al. (2006) angustissimum (Andersson) R.W. Holm Strophanthus X X None VO Kato et al. (2008) wallichii A.DC. Arecaceae Elaeis guineensis N C Thysanoptera VO Syed (1979) Jacq. Asparagaceae Agave lechuguilla N S Various C, VO Primarily Hyles Silva-Montellano and Torr. Hymenoptera lineata Fabricius Eguiarte (2003) Agave N N, S, X Bats (Chiroptera), VO Extremely dependent Arizaga et al. (2000a, macroacantha Hymenoptera, on nocturnal 2000b) Zucc. diurnal pollinators (probably Lepidoptera, Chiroptera) for hummingbirds reproductive success (Trochilidae) Agave palmeri N S Bats (Chiroptera) P Alarcón et al. (2008) Engelm. Chlorogalum E S – P, VO Grant (1983) pomeridianum (DC.) Kunth Manfreda virginica I N, S Large bees C, VO Behavioural Groman and Pellmyr L. Salisb. ex Rose (Hymenoptera) observations indicate (1999) Noctuidae unlikely to contribute significantly to pollination Ornithogalum U X – P, VO Banza (2011) narbonense L. Yucca spp. X Pr – U Tegeticula and Pellmyr et al. (1996) Parategeticula spp. Obligate pollinating seed parasite mutualism Asteraceae Ageratina U X – P, VO Atwater (2013) aromatica (L.) Spach Balduina U X – P, VO Atwater (2013) angustifolia (Pursh) B.L.Rob. Cirsium spp. U N – P Diarsia mendica Devoto et al. (2011) mendica Fabricius. Pollen of Cirsium palustre (L.) Coss. ex Scop. and C. arvense (L.) Scop. not distinguished Espeletia N G, N, P Bombus spp. C, VO Fagua and Gonzalez grandiflora Humb. (Apidae) primarily, (2007) & Bonpl. as well as Trochilidae, Diptera and Coleoptera Eupatorium U X – P, VO Atwater (2013) compositifolium Walter Galactites U X – P, VO Banza (2011) tomentosa Moench. Glebionis coronaria U X – P, VO Banza (2011) (L.) Cass. ex Spach Jacobaea vulgaris U G, N – P Devoto et al. (2011) Gaertn. Leontodon U X – P, VO Banza (2011) taraxacoides Hoppe & Hornsch. Liatris tenuifolia U X – P, VO Atwater (2013) Nutt. Pityopsis U X – P, VO Atwater (2013) graminifolia (Michx.) Nutt. Senecio vulgaris L. U X – P, VO Banza (2011) Tithonia E S – VO Martins and Johnson diversifolia (2013) (Hemsl.) A.Gray Balsaminaceae Impatiens X S Diurnal C, P, VO Sreekala et al. (2008) coelotropis Fischer Lepidoptera, Hymenoptera and Diptera Impatiens X S Diurnal C, P, VO Sreekala et al. (2011) cuspidata Wight & Lepidoptera, Arn. Hymenoptera and Diptera Bignoniaceae Catalpa speciosa U E, G, L, N Hymenoptera S, VO Stephenson and (Warder ex Barney) Thomas (1977) Warder ex Engelm. Pyrostegia U X None I Flowers fit moth- Pool (2008) millingtonioides pollination syndrome Sandwith and are most likely moth-pollinated Sphingiphila X S None I Gentry (1990) tetramera A. Gentry Boraginaceae Cordia revoluta N P, X None VO Philipp et al. (2006) Hook.f. Cynoglossum U X – P, VO Banza (2011) creticum Mill. Macromeria E S Trochilidae D, VO Primarily by Boyd (2004) viridiflora A. DC. Trochilidae Tournefortia rufo- U N, P Ants P, VO Ants are primary McMullen (2007) sericea Hook. f. (Hymenoptera) and pollinators Coleoptera Brassicaceae Maerua E S – VO Martins and Johnson decumbens (2013) (Brongn.) DeWolf Raphanus U X – P, VO Banza (2011) raphanistrum L. Rapistrum U X – P, VO Banza (2011) rugosum (L.) All. Cactaceae Cereus repandus X S None I, VO Agrius cingulata Silva and Sazima (L.) Mill.
Recommended publications
  • Tesis. Síndromes De Polinización En
    Dr. Luis Giménez Benavides, Profesor Contratado Doctor del Departamento de Biología y Geología, Física y Química Inorgánica de la Universidad Rey Juan Carlos, CERTIFICA Que los trabajos de investigación desarrollados en la memoria de tesis doctoral, “Síndromes de polinización en Silene. Evolución de las interacciones polinizador-depredador con Hadena” son aptos para ser presentados por el Ldo. Samuel Prieto Benítez ante el tribunal que en su día se consigne, para aspirar al Grado de Doctor en el Programa de Doctorado de Conservación de Recursos Naturales por la Universidad Rey Juan Carlos de Madrid. V°B° Director de Tesis Dr. Luis Giménez Benavides TESIS DOCTORAL Síndromes de polinización en Silene. Evolución de las interacciones polinizador- depredador con Hadena. Samuel Prieto Benítez Dirigida por: Luis Giménez Benavides Departamento de Biología y Geología, Física y Química Inorgánica Universidad Rey Juan Carlos Mayo 2015 A mi familia y a Sofía, gracias por el apoyo y el cariño que me dais. ÍNDICE RESUMEN Antecedentes 11 Objetivos 19 Metodología 20 Conclusiones 25 Referencias 27 Lista de manuscritos 33 CAPÍTULOS/CHAPTERS Capítulo 1/Chapter 1 35 Revisión y actualización del estado de conocimiento de las relaciones polinización- depredación entre Caryophyllaceae y Hadena (Noctuidae). Capítulo 2/Chapter 2 65 Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae. Capítulo 3/Chapter 3 113 Floral scent evolution in Silene: a multivariate phylogenetic analysis. Capítulo 4/Chapter 4 145 Flower circadian rhythm restricts/constraints pollination generalization and prevents the escape from a pollinator-seed predating specialist in Silene. Capítulo 5/Chapter 5 173 Spatio-temporal variation in the interaction outcome between a nursery pollinator and its host plant when other other pollinators, fruit predators and nectar robbers are present.
    [Show full text]
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • American Horticulturist Volume 72, Number 2 February 1993
    American Horticulturist Volume 72, Number 2 February 1993 ARTICLES Proven Performers In our popular annual feature, three national plant societies name some (nearly) fail-safe favorites. Dianthuses by Rand B. Lee ......................................... 12 African Violets by Carol Bruce ......................................... 17 Lilies by Calvin Helsley .. .......................... .......... 21 Men Who've Loved Lilies by Melissa Dodd Eskilson .................. ...... ....... 26 From the exquisite but fussy species, lily-breeding pioneers have produced tough-as-nails hybrids for gardeners and florists. FEBRUARY'S COVER Drip Rationale Photographed by Priscilla Eastman by Robert Kourik ....................................... 34 The three-foot-tall Vollmer's tiger Simple hardware offers a drought-busting, water-conserving path lily, Lilium vollmeri, grows in to lusher growth. hillside bogs in two counties in southwest Oregon and adjacent A Defense of Ailanthus areas of California. It is threatened by Richard S. Peigler .... .. ... ......................... 38 by collecting throughout its range, according to Donald C. Eastman's It may be the stinking ash to some, but in a city lot bereft of other Rare and Endangered Plants of greenery, it earns the name tree-of-heaven. Oregon. Of ninety lily species native to the Northern hemisphere, only twenty-two have been tapped by breeders for garden and DEPARTMENTS cut-flower hybrids. The Nature Conservancy reports that at least Commentary .. ... .... .. ............. ... ... ............ 4 seven
    [Show full text]
  • Natural Enemies and Sex: How Seed Predators and Pathogens Contribute to Sex-Differential Reproductive Success in a Gynodioecious Plant
    Oecologia (2002) 131:94–102 DOI 10.1007/s00442-001-0854-8 PLANT ANIMAL INTERACTIONS C.L. Collin · P. S. Pennings · C. Rueffler · A. Widmer J.A. Shykoff Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant Received: 3 May 2001 / Accepted: 5 November 2001 / Published online: 14 December 2001 © Springer-Verlag 2001 Abstract In insect-pollinated plants flowers must bal- Introduction ance the benefits of attracting pollinators with the cost of attracting natural enemies, when these respond to floral Flowering plants have many different reproductive sys- traits. This dilemma can have important evolutionary tems, the most predominant being hermaphroditism, consequences for mating-system evolution and polymor- which is found in 72% of all species (Klinkhamer and de phisms for floral traits. We investigate the benefits and Jong 1997). However, unisexuality or dioecy has risks associated with flower size and sex morph variation evolved many times, with gynodioecy – the coexistence in Dianthus sylvestris, a gynodioecious species with pis- of female and hermaphrodite individuals within a species – tillate flowers that are much smaller than perfect flowers. seen as a possible intermediate state between hermaphro- We found that this species is mainly pollinated by noc- ditism and dioecy (Darwin 1888; Thomson and Brunet turnal pollinators, probably moths of the genus Hadena, 1990). Delannay (1978) estimates that 10% of all angio- that also oviposit in flowers and whose caterpillars feed sperm species have this reproductive system, which is on developing fruits and seeds. Hadena preferred larger widespread in the Lamiaceae, Plantaginaceae (Darwin flowers as oviposition sites, and flowers in which Hadena 1888), and Caryophyllaceae (Desfeux et al.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells
    IJMS Vol 43, No 1, January 2018 Original Article Antiproliferative Effects of Pancratium Maritimum Extracts on Normal and Cancerous Cells Ghaleb Tayoub1, PhD; Abstract Mohmad Al-Odat2, PhD; Amal Amer1, BSc; Background: Plants are an important natural source of Abdulmunim Aljapawe1, BSc; compounds used in cancer therapy. Pancratium maritimum Adnan Ekhtiar1,PhD contains potential anti-cancer agents such as alkaloids. In this study, we investigated the anti-proliferative effects of P. maritimum extracts on MDA-MB-231 human epithelial 1Department of Molecular Biology and Biotechnology, Atomic Energy adenocarcinoma cell line and on normal lymphocytes in vitro. Commission of Syria, Damascus, Syria; Methods: Leaves, flowers, roots, and bulbs of P. maritimum 2Department of Radiation Protection and Safety, Atomic Energy Commission of were collected and their contents were extracted and diluted to Syria, Damascus, Syria different concentrations that were applied on MDA-MB-231 cells and normal human lymphocytes in vitro for different intervals. Correspondence: Ghaleb Tayoub, PhD; Cells viability, proliferation, cell cycle distribution, apoptosis, Atomic Energy Commission of Syria, and growth were evaluated by flow cytometry and microscopy. P. O. Box: 6091, Damascus, Syria Parametric unpaired t-test was used to compare effects of plant Fax: +963 11 6112289 Tel: +963 11 2132580 extracts on treated cell cultures with untreated control cell Email: [email protected] cultures. IC50 was also calculated. Received: 3 September 2016 Results: P. maritimum extract had profound effects on Revised: 15 October 2016 Accepted: 13 November 2016 MDA-MB-321 cells. It inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values were 0.039, 0.035, and 0.026 mg/ml after 48, 72, and 96 hours of treatment with 0.1 mg/ml concentration of bulb extract, respectively.
    [Show full text]
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • Araracuara, Un Nuevo Género De Rhamnaceae De La Amazonía Colombiana
    Volumen 65 N.º 2 julio-diciembre 2008 Madrid (España) ISSN: 0211-1322 CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Anales del Jardín Botánico de Madrid Vol. 65(2): 343-352 julio-diciembre 2008 ISSN: 0211-1322 Araracuara, un nuevo género de Rhamnaceae de la Amazonía colombiana por José Luis Fernández-Alonso1 & María Victoria Arbeláez2 1 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado Aéreo 7495, Bogotá D.C., Colombia. [email protected] 2 Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands. [email protected] Resumen Abstract Fernández-Alonso, J.L., & Arbeláez, M.V. 2008. Araracuara, un Fernández-Alonso, J.L., & Arbeláez, M.V. 2008. Araracuara, the nuevo género de Rhamnaceae de la Amazonía colombiana. Ana- new genera of the Rhamnaceae from Colombian Amazon. Ana- les Jard. Bot. Madrid 65(2): 343-352. les Jard. Bot. Madrid 65(2): 343-352 (in Spanish). Se describe e ilustra Araracuara Fern. Alonso, un nuevo género de Araracuara Fern. Alonso, a new genus of Rhamnaceae only la familia Rhamnaceae conocido tan sólo de las mesetas de arenisca known from the sandstone plateaus of the Colombian Amazon, de la Amazonía colombiana. Se discuten sus posibles afinidades en is described and illustrated. Its possible affinities are discussed la familia y se sugiere que estaríamos ante un género relíctico, rela- and it is proposed that this is a relictual genus related to the pan- cionado con el pantropical Colubrina y en menor medida con el tropical Colubrina and to a lesser degree with the Amazonian amazónico Ampelozizyphus.
    [Show full text]
  • Lepidoptera Sphingidae:) of the Caatinga of Northeast Brazil: a Case Study in the State of Rio Grande Do Norte
    212212 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 59(4), 2005, 212–218 THE HIGHLY SEASONAL HAWKMOTH FAUNA (LEPIDOPTERA SPHINGIDAE:) OF THE CAATINGA OF NORTHEAST BRAZIL: A CASE STUDY IN THE STATE OF RIO GRANDE DO NORTE JOSÉ ARAÚJO DUARTE JÚNIOR Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58059-900, João Pessoa, Paraíba, Brasil. E-mail: [email protected] AND CLEMENS SCHLINDWEIN Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brasil. E-mail:[email protected] ABSTRACT: The caatinga, a thorn-shrub succulent savannah, is located in Northeastern Brazil and characterized by a short and irregular rainy season and a severe dry season. Insects are only abundant during the rainy months, displaying a strong seasonal pat- tern. Here we present data from a yearlong Sphingidae survey undertaken in the reserve Estação Ecológica do Seridó, located in the state of Rio Grande do Norte. Hawkmoths were collected once a month during two subsequent new moon nights, between 18.00h and 05.00h, attracted with a 160-watt mercury vapor light. A total of 593 specimens belonging to 20 species and 14 genera were col- lected. Neogene dynaeus, Callionima grisescens, and Hyles euphorbiarum were the most abundant species, together comprising up to 82.2% of the total number of specimens collected. These frequent species are residents of the caatinga of Rio Grande do Norte. The rare Sphingidae in this study, Pseudosphinx tetrio, Isognathus australis, and Cocytius antaeus, are migratory species for the caatinga.
    [Show full text]
  • Confirmation of Hawkmoth Pollination in Habenaria Epipactidea: Leg Placement of Pollinaria and Crepuscular Scent Emission ⁎ C.I
    Available online at www.sciencedirect.com South African Journal of Botany 75 (2009) 744–750 www.elsevier.com/locate/sajb Confirmation of hawkmoth pollination in Habenaria epipactidea: Leg placement of pollinaria and crepuscular scent emission ⁎ C.I. Peter a, , G. Coombs a, C.F. Huchzermeyer a, N. Venter a, A.C. Winkler a, D. Hutton a, L.A. Papier a, A.P. Dold a, S.D. Johnson b a Department of Botany, Rhodes University, PO Box 94, Grahamstown 6140, South Africa b School of Conservation and Biological Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa Received 5 June 2009; received in revised form 30 July 2009; accepted 17 August 2009 Abstract In his landmark work on the pollination biology of South African plants in 1954, Stefan Vogel described the deposition of Habenaria epipactidea (= H. polyphylla) pollinaria on the forelegs of the hawkmoth Hippotion celerio. The discovery of a large, well-pollinated population of H. epipactidea in the Eastern Cape allowed us to confirm the presence of this unusual pollen placement on a number of species of shorter- tongued hawkmoths. The long-tongued species Agrius convolvuli is likely to function as a nectar thief as the length of the tongue of this species relative to the nectar spur ensures that the forelegs are unlikely to come into contact with the viscidia. The legitimate hawkmoth pollinators removed a large proportion of pollinaria from the flowers and the majority of flowers had pollen deposited on their stigmas. Despite this, pollen transfer efficiency was relatively low at 8.4%.
    [Show full text]
  • Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes.
    [Show full text]
  • 1 the Global Flower Bulb Industry
    1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A.
    [Show full text]