Neutron Deficient Isotopes of Tellurium and Antimony

Total Page:16

File Type:pdf, Size:1020Kb

Neutron Deficient Isotopes of Tellurium and Antimony UCRL,_.1---,--'_ ~ /t>/,.f oW c-, ( UNIVERSITY OF CALIFORNIA FOR REFERENCE NOT TO BE TAKEN FROM THIS ROOM BERKELEY, CALIFORNIA , • ENG-48 INDEX ITO. ~e:~ -.;;:y ~ This document contains ? pgs, and . plates of figures .-- I: i:BJ·~-;:'--CQPY_.&t.. of' // • Series~ '. e~j" .~ DO NOT RET'40VE LlIS PAGE ----------.._- ~r['N'" '?~,." 1'HIS IS A CLA':'" '-'~~'::::::"".'STF I','P ':i}P~.\'rl.RI=~i1i.3i6TED,.;"-;,- . , ~~~~~-0" .:~.. ",.~. ~~ ---'-clas S":r.iI; ~ i~·nt::6otte'oe;l;"J.m.D.. edhEJre \\ --&~t:' ~l :..'J' ". e}- /; .~ ,s,sWIC-'\l' ti-I'{.t},l J.: li!/er ,.. 'l'bis document contains restrj.cted data within the meaning of ~Rt! ~~ic~rll!¥GY Act of 1946 and/or information affecting the national defense of the :ut~d States within the meaning of the Espionage Act U. S. C. 31 & 32, as amended. Its transmission or the revelation of its contents in an'! manner to an unauthor- ized person is prohibited''';;:na may' r.esult in' severe crimi;,al penalti. Before thisdocument ca.nbei,ivenfoa. person toroad,~his namernust be on the Reading List of those authorized to read material on chis subject, or permissicr must be obtained from the Information Division or the E:l'Zecutive Office. :'i. A SECRET or CONnDENTIAL document is t(') he kept only :I,n a guarded area. 'iVhen stored;-it must be ke'pt-'in a :\.ocked safe or in a lock~d filing case with a twnb ler lock. 4. A SECRIi;T or COnFIDENTIAL document is n('lt tC'l be copied or ctherwise duplicated with0ut ·pormis·s ionOf the originatir..goffice .. ExtensIve notes on the contents of a secrot report may be taken only in a bound nctebook with n~mbered pages, having tho designation SECRET. Thi~ rnustbe safeguarded in the same way as a Secret Repcrt (See 1, 2 andS). Other lietes must be avoicl.ed., but if made must be done in a form meaningless tq anyone but the writer and later destroyed. 5. The person or office to whcm t:\. i3ECiT8T ot COnFIDEH'i'IAL document is issued is ac­ counta.ble for the d,'c~ment ::it aTi-t:Lnos. A system-::r-accountability by signed r:e-caj,pcs ~r a signed record bookw~'st e.lways be used, F'erjuissiun for trans~ miss ion t., another office than thJ.t of the ass ignee must be ~bt!.3,ined through the Information Division and record,,,d there. 6. After a document passes the stace vf usefulness to its posf.;essor, it should be returned to the Informati.on Division, whereupon the incHvidual will be relloved of the responsibility for its safe~keeping, Initia:). and date the pages of' this doc1.l1uent \'1hich describe any work that you have witnt)ssed, adding any pertinent information, such as references to orlg1.n­ £1.1 work records .This doounent~ properly signed, dated a.nd annotated, is import­ ant in pJ.tent preparation. Each person who r3As this docU):wnt must sign this cover sheet belO1f;f. Please sign and date th0 'cQvor sheet 13.1"£'01' r'3a'd:i,ng the'r'Gpol::t-:-:Alsr:i-S:tate by Yes or N~ whether or not notes have been taken. See paragraph 4 above, _-1l.2ut~-1Q_-j,_ Re~d -l?.:L_-- Not."e.1-T'-".. .Route j;Q_-T~~ad.E.L__ ,yote"_'-rE~te -- ~- .'. !----t--'.·-------t-------'---------_.. --.--..-3- ..---- --'-"--r---''-- ---- --1-·------- ..------'-·-' ----- ._------ -----------F -----~-_.._-_. - ....... ._._.,-;-_.._-----._- ------_.- __ -.---.--- -'-'-_.- ·..·_--..·_--_·_-----·1--·--·_--_·_--_..1 .----_...- ·_------1---·--- ----' ~--I------,---·I------------ ... ------1-----·---\--------+--- ~ ._-_.. ._--------- , ...-.-.l A··16__ <'Ji'"\.{,'5~'~~'t',;",> .t-..... ,q~"'RESlR\.cl:~~:;:~l ... ,'9'" 0.-.. "«),-; , '-J,!,t, -ha:l?,?:~ocument consists of - I, 'i:f.l.!!;;'i), ~'ii2' t.'I:-""",::.'"" r -,,_~,,_,., -.p,'ag-es, Series A. "1!.,(" 7 .~, 07t.·,- ......".. ;::;'f':, '\')"-""-"" , . "f,,~~~ )0t.. ~,\jCl' _,.}' Sl'" - \'~'';'-;~':_:.:..! NEurRON DEFICIENT ISOTO~E~i%1i1~I~~II.t:Jw1.~CltYP~lANT IM:)NY --o~\,< -, '('r:, :Lrt.'t'W~_ M. Lindner and I. Perlman: ':" Radiation Laboratory and Department of Chemistry University of California, Berkeley, California While investigatinf. the relative yields for the many reactions resulting from the irradiation of antimony with 200-Mev deuterons in the Berkeley 184-inch cyclotron- several previously unreported isotopes of tellurium and antimony were encountered~ The tellurium fraction when followed on a thin mica window counter could be resolved into half-life periods of 2.5 hrs, 6.0 days and a small amount of a long-lived component. The 2.5 hour period has not been further characterized with respect to mass number or'mode of decay other than to note that the radiation is predominantly electrons. The 6.0-day period is accompanied by positrons which were shown to be due to a 3.5 minute antimony dau~hter which is undoubtedly the same activity 1l8 assip-ned to Sb by Risser, Lark... Horowitz and Smithl • The positron energy was found to be 3.1 ~ O~ 2 .lVlev by absorption in berylllum and from the and point of the energy distribution curve taken with a low-resolution beta-ray spectrometer. C~mma activity is also present with this period. The 6~0-day tellurium showed a high abundance of x-rays, little or no conversion electrons and some gamma-ray activity which could be due to the 3.5 minute antimony daughter. The tellurium fraction contained another component of 4.5-d13.y half-life which could not be observed in the decay curve because of' its low abundance but which was detected by means of its 39-hour antimony daughter. The 39-hour antimony showed x-rays of tin (critical absorption with cadmi~mi.:·;~i1"Ver and palladium), no detectable hard radiation or electrons and i~8i'~~p~:txnt1Y identioal,with an activity 1l9 recently assip~ned to Sb by Coleman and P0012 <' • "d cl.t~'~~.;;:'Qf,~,ift~ • corM;"s {e~t~ct - ',:'";'@;';'p;.2"",.,_ 'T' .~ t4 .........'\"'~f1. f l. / • J '~;.~~,~:'i.~~ .•. :1~r'7!"1 ~ l)\li~ej ':.Jl.~lfJS ·O>·1-'.6"!~i)\<:: "". ; AC; .1 "" I. t _.__" ... " - t ,. ':'2 as ame"-- -~~'.:::,~'; ~~n'1 tho!!, j. J:,,;;., ,< \0-; ! 0"", , ' _' the £,sp . "r",' 1 j ,. __ ' "'l_\, ~n !:I~."(;,~.'" \;6 reve\t1t\o. .. d oJ m..-j (~;;'.'oi.' ,'- _ ' ... if~!l:'l:'> or ~ \. ptohib\\.b Q . ,I'_'~!I ""'4.-.!..~ \:z;eOI'el~on IS ~'i~:~~';{~_>:._!", QJ;'~:. ':.;:--::~_- g--,,_P'~: :<~- ~~'~~~~"'>' ments was predicted to produce the d,4n reaction in'gb6d yield and the d,5n reaction in poorer yield. If the 4.5-day tellurium is Te l19 and the B.O-day period is ll8 Te the desired result should be achieved. The counting rates for the x-rays of the ~!o activities were found to be in the ratio of 40:1 in the direction anticipated. Since the rlctivity of' several days half-life is larp-ely that of the 1l8 4.5-day tellurium (except for the positrons of the 3~5"minute Sb ), the negative particles and electromagnetic radiation may be assumed to belong to this isotope. Conversion eleetrons of 0.2 Mev ahd 0.5 .L1!ev were measured with the iow resolution beta-r~y spectrometer and a hard gamma-ray of about 1.5 Mev was detected through a lead absorption curve. Softer gamma radiation could have been present. All tellurium decay curve s ta iled out into a longer period) probably Te 121 • The antimony fraction from bombardments of antimony with 200-~1ev deuterons showed a number of periods which could be resolved by selectively counting the x-reys through beryllium and the electrons without- absorber. There was x-ray activity of a. fe''! hours half-life which could be a mixture of the 2.8 hour and 5.1 hour periods reported by Coleman and Pool. The 2.8-day Sb122 showed up well in the curve taken without absorbers and the 39-hour antimony was prominent in the decay curve taken throu~h beryllium. The yield of the 39-hour antimon~ was much greater than that which could have grown from its 4.5-day tellurium parent, indi- eating direct formation. Another antimony isotope of 6.0-day half-life was also observed. This activity is characterized by a preponderance of x-ray and gamma-ray activity with electrons in low abundance. Since the 6.0-day antimony did not appear in antimony removed from tellurium, the tellurium isobar is either stable or of half-life less than 10 minutes. Although the half-iliife is the same as that of the tellurium mentioned above, it could be separated chemically with antimony from -.- <,,~~--:,;_:,._-.-- .. UCRL-39 Page 3 ) tellurium and there was no positron activity accompanying it. It is not possible to me,ke an isotopic ass io-nment of this activity. After the decay of the 6. O-day antimony, the curve turned into the 60-day period of Sb124 wh'1.0h was 1.'dent'f'1 led 124 } also by its radiation characteristics. The formation of Sb presents tle unans- wered question as to whether this isotope is formed by the hi~h ener~y deuterons or by secondary low enerry neutrons. Table 't: lists the isotopes of antimony and tellurium found in the bombardment of antimony with ZOO-Mev deuterons. The cross sections for their formation will be I"iven in a later publication in which the yields fo r the large number of products of 200-Mev deuterons on antimony will .be discussed. The ass ip'nment of the 4.
Recommended publications
  • Dr. A.A. El-Mohty Dr. Shoukar T.M. Atwa
    Benha University Faculty of Science Chemistry Department RADIOCHEMICAL STUDIES ON THE SEPARATION OF IODINE- 131 AND RADIOIODINATION OF SOME ORGANIC COMPOUNDS A Thesis Submitted by MAHMOUD ABBAS ISMAIL MOHAMED Isotopes and Radioactive Generators Dep., Hot Labs. Center Atomic Energy Authority To Faculty of Science – Benha University Presented as partial fulfillment of The Degree of M.Sc In chemistry Supervised by Prof .Dr .H .A. Dessouki Prof . Dr .S .A .El -Bayoumy Prof. of Inorganic and Prof. of Radiochemistry Analytical Chemistry Isot. and Radio Generators.Dept, Faculty of Science Benha Univ. Atomic Energy Authority Dr. Shoukar T.M. Atwa Dr. A.A. El-Mohty Lect. of Physical Chemistry Pro Ass it. Prof.of Radiochemistry Faculty of Science Benha Univ. Isot. and Radio Generators.Dept, Atomic Energy Authority 2010 آ ام اء درات آ إ اد- ١٣١و اآت ا د ا ر ــــد س ا ا واات ا – آ ا ارة ه ا ار ا آــ اــــ ــم – ــ ل در ا اء اـــــــــاف أ.د/ ا ا أ.د/ د اذ اء ا و ا أذ اــء اـــ آ ام - ـــ ا واات ا هــــ اـــ ارــــــــ د/ ر أ.م.د / أ ا رس اء ا أذ اــء اـــ آ ام - ـــ ا واات ا هــــ اـــ ارــــــــ ٢٠١٠ List of abbreviations Abbr. Referent CAT Chloramine-T H2O2 Hydrogen peroxide HPLC High performance liquid chromatography TLC Thin layer chromatography Temp. Temperature Conc. Concentration min Minute NCA No Carrier Added Rf Relative front Rt Retention time CNS Central nervous system Y-indole 4-[2-hydroxy-3- (isopentylamino)propoxy] indole Epidepride N-[(1-ethyl-2- pyrrolidyl)methyl]-2,3- dimethoxy-5-(tributylstannyl) benzamide
    [Show full text]
  • Capabilities of Detecting Medical Isotope Facilities Through Radioxenon Sampling
    AN ABSTRACT OF THE THESIS OF Matthew R. MacDougall for the degree of Master of Science in Nuclear Engineering presented on June 23, 2015. Title: Capabilities of Detecting Medical Isotope Facilities through Radioxenon Sampling Abstract approved: ______________________________________________________ Andrew C. Klein Medical Isotopes are a necessity in modern medicine for cancer treatments and medical imaging. In order to ensure that the needs and demands are met for the medical procedures, facilities are put in place to produce these isotopes. There are over 25 different isotopes of interest being produced by more than 35 research reactors across the United States. A key component in medical isotope production is the isotope separation process. During this process, several types of radioactive gases are released that would otherwise not leave the nuclear fuel component. One of these radioactive gases is radioxenon. The release of radioxenon into the environment is of concern to the Comprehensive Test Ban Treaty Organization (CTBTO) as one of the key critical sampling techniques utilized to detect a nuclear detonation is the presence of radioxenon. As more facilities release radioxenon, background levels increase, desensitizing the equipment, and making it more difficult to detect. For this purpose, the detection of a medical isotope facility through the use of radioxenon is an interest to the CTBTO as an attempt to reduce the background levels of radioxenon and ensure that the detonation capabilities remain unaffected. This thesis will investigate the capabilities of detecting these medical isotope facilities through the use of radioxenon detection. Additionally, probabilities of detection will be determined in order to accurately identify these facilities.
    [Show full text]
  • Arxiv:1006.4033V2 [Nucl-Ex] 8 Sep 2010
    Discovery of Calcium, Indium, Tin, and Platinum Isotopes S. Amos, J. L. Gross, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Currently, twenty-four calcium, thirty-eight indium, thirty-eight tin and thirty-nine platinum isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented. arXiv:1006.4033v2 [nucl-ex] 8 Sep 2010 ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables November 1, 2018 Contents 1. Introduction . 4 2. Discovery of 35−58Ca ................................................................................... 5 2.1. 36Ca ............................................................................................ 5 2.2. 37Ca ............................................................................................ 7 2.3. 38Ca ............................................................................................ 7 2.4. 39Ca ............................................................................................ 7 2.5. 40Ca ............................................................................................ 7 2.6. 41Ca ............................................................................................ 8 2.7. 42;43Ca .........................................................................................
    [Show full text]
  • PRODUCTION STUDY of GADOLINIUM-153 E, H, Acree N. H
    PRODUCTION STUDY OF GADOLINIUM-153 F. N. Case E, H, Acree N. H. Cutshall LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation. expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of ony information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or 8. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any informotion, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission. or employee of such contractor, to the extent that such employee or contractor of the Commission. or employee of such contractor prepares, dissemlnates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment wtth such contractor. I ORNL-TM-2632 Contract No. W-7405-eng-26 ISOTOPES DEVELOPMENT CENTER PRODUCTION STUDY OF GADOLINIUM-I53 Prepared for NASA, Langley, Hampton, Virginia (Interagency Agreement AEC 40-108-67, MIPR-L-1775) Summary of Results March 1967-December 1968 F. N. Case E. H. Acree N. H. Cutsha I Isotopes Divis on Distribution of this report is provided in the interest of infarmation exchange. Responsibility for the contents resides in the author or orgmization that prepared it. AUGUST 1969 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Assessment of Doses to the Public from Ingested Radionuclides
    ASSESSMENT OF DOSES TO THE PUBLIC FROM INGESTED RADIONUCLIDES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND ARMENIA INDIA PORTUGAL AUSTRALIA INDONESIA QATAR AUSTRIA IRAN, ISLAMIC REPUBLIC OF REPUBLIC OF MOLDOVA BANGLADESH IRAQ ROMANIA BELARUS IRELAND RUSSIAN FEDERATION BELGIUM ISRAEL SAUDI ARABIA BOLIVIA ITALY SENEGAL BOSNIA AND JAMAICA SIERRA LEONE HERZEGOVINA JAPAN SINGAPORE BRAZIL JORDAN SLOVAKIA BULGARIA KAZAKHSTAN SLOVENIA BURKINA FASO KENYA SOUTH AFRICA CAMBODIA KOREA, REPUBLIC OF SPAIN CAMEROON KUWAIT SRI LANKA CANADA LATVIA SUDAN CHILE LEBANON SWEDEN CHINA LIBERIA SWITZERLAND COLOMBIA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC COSTA RICA LIECHTENSTEIN THAILAND COTE D’IVOIRE LITHUANIA THE FORMER YUGOSLAV CROATIA LUXEMBOURG REPUBLIC OF MACEDONIA CUBA MADAGASCAR TUNISIA CYPRUS MALAYSIA TURKEY CZECH REPUBLIC MALI UGANDA DEMOCRATIC REPUBLIC MALTA UKRAINE OF THE CONGO MARSHALL ISLANDS UNITED ARAB EMIRATES DENMARK MAURITIUS UNITED KINGDOM OF DOMINICAN REPUBLIC MEXICO GREAT BRITAIN AND ECUADOR MONACO NORTHERN IRELAND EGYPT MONGOLIA UNITED REPUBLIC EL SALVADOR MOROCCO OF TANZANIA ESTONIA MYANMAR UNITED STATES ETHIOPIA NAMIBIA OF AMERICA FINLAND NETHERLANDS URUGUAY FRANCE NEW ZEALAND UZBEKISTAN GABON NICARAGUA VENEZUELA GEORGIA NIGER VIET NAM GERMANY NIGERIA YEMEN GHANA NORWAY YUGOSLAVIA GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’.
    [Show full text]
  • The Chemical Effects of Nuclear Transformations in Some Tellurium
    THE CHEF11 CAL EFFECTS OF NUCLEAR TRANSFORMATIONS IN SOUE TELLURIUM COMPOUNDS JOHN LAWRENCE WARREN B.Sc. University of Washington, 1966 A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of CHEMISTRY @ JOHN LAWRENCE WARREN, 1970 SIMON FRASER UNIVERSITY November, 1970 EXAMINING COMMITTEE APPROVAL Professor C.H.W. Jones Department of Chemistry ............ Simon Fraser University Research Supervisor Dr. G. Harbottle ./. .w ....-. ..-. .I.. ........... Brookhaven National Laboratory External Examiner Professor B.D. Pate .., ................-......... Department of Chemistry (, Simon Fraser University Examining Committee Professor L.K. Peterson Department of Chemistry . ,f .-.w C-rusr ..-.........--a-. .w ~4 Simon Fraser University Examining Committee Professor D.J. Huntley Department of Physics _-.l~.LJ....~.ic..-........./.. 2Lt , - Simon Fraser University - Examining Committee Name: JOHN LAWRENCE WARREN Degree : DOCTOR OF PHILOSOFHY Title of Thesis: CHEMICAL EFFECTS OF L~UCLEARTRANSFOREWTIONS IN SOME TELLURIUM COMPOUNDS a Date Approved: 30 'F~WCJA~~C~ ABSTRACT The chemical effects of several different nuclear transformations were studied in solid tellurium compounds using both standard radiochemical techniques and ~sssbauer spectroscopy with 129~. In the radiochemical investigation, a comparative study was made in telluric acid, H6Te06, of the molecular - fragmentation accompanying the 130Te (n,y) 131Te +6- 1311 process and the ~--deca~of 13lmTe , 131~e,and 132~e. The chemistry of 12'Te recoil atoms formed in the 128~e(n,y) 12'Te nuclear reaction and the decay of 129m~ein telluric acid were also investigated. In each instance the thermal annealing reactions of the recoil fragments in the solid were investigated. The study of the radioactive decay of 13lmTe - , l3l~e-,132~e-, and 129m~e-labelled samples was of particular importance.
    [Show full text]
  • Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2012 Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor Susan Hogle [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Hogle, Susan, "Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1529 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Susan Hogle entitled "Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. G. Ivan Maldonado, Major Professor We have read this dissertation and recommend its acceptance: Lawrence Heilbronn, Howard Hall, Robert Grzywacz Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Susan Hogle December 2012 © Susan Hogle 2012 All Rights Reserved ii Dedication To my father Hubert, who always made me feel like I could succeed and my mother Anne, who would always love me even if I didn’t.
    [Show full text]
  • Foia/Pa-2015-0050
    Acknowledgements The following were the members of ICRP Committee 2 who prepared this report. J. Vennart (Chairman); W. J. Bair; L. E. Feinendegen; Mary R. Ford; A. Kaul; C. W. Mays; J. C. Nenot; B. No&in; P. V. Ramzaev; C. R. Richmond; R. C. Thompson and N. Veall. The committee wishes to record its appreciation of the substantial amount of work undertaken by N. Adams and M. C. Thorne in the collection of data and preparation of this report, and, also, to thank P. E. Morrow, a former member of the committee, for his review of the data on inhaled radionuclides, and Joan Rowley for secretarial assistance, and invaluable help with the management of the data. The dosimetric calculations were undertaken by a task group, centred at the Oak Ridge Nntinnal-..._._.__. ---...“..,-J,1 .nhnmtnrv __ac ..,.I_.,“.fnllnwr~ Mary R. Ford (Chairwoman), S. R. Bernard, L. T. Dillman, K. F. Eckerman and Sarah B. Watson. Committee 2 wishes to record its indebtedness to the task group for the completion of this exacting task. The data given in this report are to be used together with the text and dosimetric models described in Part 1 of ICRP Publication 30;’ the chapters referred to in this preface relate to that report. In order to derive values of the Annual Limit on Intake (ALI) for radioisotopes of scandium, the following assumptions have been made. In the metabolic data for scandium, a fraction 0.4 of the element in the transfer compartment is translocated to the skeleton. It is assumed thit this scandium in the skeleton is distributed between cortical bone, trabecular bone and red marrow in proportion to their respective masses.
    [Show full text]
  • Isotopes of Iodine 1 Isotopes of Iodine
    Isotopes of iodine 1 Isotopes of iodine There are 37 known isotopes of iodine (I) from 108I to 144I, but only one, 127I, is stable. Iodine is thus a monoisotopic element. Its longest-lived radioactive isotope, 129I, has a half-life of 15.7 million years, which is far too short for it to exist as a primordial nuclide. Cosmogenic sources of 129I produce very tiny quantities of it that are too small to affect atomic weight measurements; iodine is thus also a mononuclidic element—one that is found in nature essentially as a single nuclide. Most 129I derived radioactivity on Earth is man-made: an unwanted long-lived byproduct of early nuclear tests and nuclear fission accidents. All other iodine radioisotopes have half-lives less than 60 days, and four of these are used as tracers and therapeutic agents in medicine. These are 123I, 124I, 125I, and 131I. Essentially all industrial production of radioactive iodine isotopes A Pheochromocytoma is seen as a involves these four useful radionuclides. dark sphere in the center of the body The isotope 135I has a half-life less than seven hours, which is too short to be (it is in the left adrenal gland). Image is by MIBG scintigraphy, with used in biology. Unavoidable in situ production of this isotope is important in radiation from radioiodine in the 135 nuclear reactor control, as it decays to Xe, the most powerful known neutron MIBG. Two images are seen of the absorber, and the nuclide responsible for the so-called iodine pit phenomenon. same patient from front and back.
    [Show full text]
  • Measurements of Proton-Induced Radionuclide Production Cross Sections to Evaluate Cosmic-Ray Activation of Tellurium
    Measurements of proton-induced radionuclide production # cross sections to evaluate cosmic-ray activation of tellurium A. F. Barghouty1, C. Brofferio2,3, S. Capelli2,3, M.Clemenza2,3, O. Cremonesi2,3, S.Cebrián4, E. Fiorini2,3,* , R. C. Haight5, E. B. Norman6,7,8, M. Pavan2,3 , E.Previtali2,3 , B. J. Quiter6, M.Sisti2,3 , A. R. Smith7, and S. A. Wender5 1 NASA-Marshall Space Flight Center, MSFC, AL 35812 U.S.A. 2,3 Dipartimento di Fisica dell’ Università di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare Sezione di Milano-Bicocca, 20126 Milan, Italy 4 Universidad de Zaragoza, 50009 Zaragoza, Spain 5Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A. 6Nuclear Engineering Department, University of California, Berkeley, CA 94720 U.S.A. 7Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 U.S.A. 8Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551 U. S. A. *Corresponding author E-mail address: [email protected] Tel.: 0039 02 64482424 FAX: 0039 02 64482463 #arXiv:1010.4066v1 1 1. INTRODUCTION 1 2 2 Experiments designed to study rare events such as the interactions of solar neutrinos [1], 3 4 5 3 dark matter particles [2] or rare processes like double beta decay (DBD) [3] are carried out in 6 7 4 underground laboratories. One of the main problems in such searches is the presence in 8 9 10 5 various energy regions of background due to environmental radiation. The contribution due 11 12 6 to cosmic rays [4] is strongly reduced by installing the experiment underground [5], 13 14 15 7 sometimes with a further reduction by means of veto counters.
    [Show full text]
  • Electron Antineutrinos in the Water Phase of the SNO+ Experiment By
    Electron Antineutrinos in the Water Phase of the SNO+ Experiment by Pawel Mekarski A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics University of Alberta c Pawel Mekarski, 2018 Abstract The SNO+ experiment will soon complete its commissioning and begin searching for the neutrinoless double beta decay of tellurium, loaded within its liquid scintillator. As a large-scale (780 tonne) liquid scintillator detector, SNO+ will also be well positioned to make a precision measurement of antineu- trinos, produced from nearby nuclear reactors. Measuring these antineutrinos would provide direct information about the cores of these reactors and enable a study of neutrino properties. In anticipation, a first search for antineutrinos was performed over 69.7 live days of data collected while the SNO+ detec- tor was filled with water, an intermediate commissioning phase. A combina- tion of Monte Carlo simulations and measurements with radioactive calibration sources were used to determine what the antineutrino signal (characterized by a coincident positron and neutron) would look like in the detector. The neutron modeling was first validated by performing a series of measure- ments of an americium-beryllium (AmBe) neutron source at the University of Alberta. The neutron interactions were detected by irradiating various tar- gets and measuring the γ rays of the resulting reactions using a High Purity Germanium detector. Following Monte Carlo simulations of antineutrinos in the SNO+ detector, a search algorithm was developed to distinguish this signal ii from naturally occurring backgrounds. Lastly, another AmBe source was placed within the SNO+ detector to exactly characterize its neutron detection capa- bilities.
    [Show full text]