Capabilities of Detecting Medical Isotope Facilities Through Radioxenon Sampling
Total Page:16
File Type:pdf, Size:1020Kb
AN ABSTRACT OF THE THESIS OF Matthew R. MacDougall for the degree of Master of Science in Nuclear Engineering presented on June 23, 2015. Title: Capabilities of Detecting Medical Isotope Facilities through Radioxenon Sampling Abstract approved: ______________________________________________________ Andrew C. Klein Medical Isotopes are a necessity in modern medicine for cancer treatments and medical imaging. In order to ensure that the needs and demands are met for the medical procedures, facilities are put in place to produce these isotopes. There are over 25 different isotopes of interest being produced by more than 35 research reactors across the United States. A key component in medical isotope production is the isotope separation process. During this process, several types of radioactive gases are released that would otherwise not leave the nuclear fuel component. One of these radioactive gases is radioxenon. The release of radioxenon into the environment is of concern to the Comprehensive Test Ban Treaty Organization (CTBTO) as one of the key critical sampling techniques utilized to detect a nuclear detonation is the presence of radioxenon. As more facilities release radioxenon, background levels increase, desensitizing the equipment, and making it more difficult to detect. For this purpose, the detection of a medical isotope facility through the use of radioxenon is an interest to the CTBTO as an attempt to reduce the background levels of radioxenon and ensure that the detonation capabilities remain unaffected. This thesis will investigate the capabilities of detecting these medical isotope facilities through the use of radioxenon detection. Additionally, probabilities of detection will be determined in order to accurately identify these facilities. ©Copyright by Matthew R. MacDougall June 23, 2015 All Rights Reserved Capabilities of Detecting Medical Isotope Facilities through Radioxenon Sampling by: Matthew R. MacDougall A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented June 23, 2015 Commencement June, 2016 Masters of Science thesis of Matthew R. MacDougall presented on June 23, 2015. APPROVED: Major Professor, representing Nuclear Engineering Head of the Department of Nuclear Engineering and Radiation Health Physics Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of the thesis to any reader upon request. Matthew R. MacDougall, Author ACKNOWLEDGEMENTS The Author expresses sincere appreciation to all those that helped with the reviewing of this thesis. Specifically, Thomas Holschuh, Dr. Andrew Klein, Sean Kreyling, Katie McGivern, Alex Misner, Dr. Camille Palmer, Dr. Albert Stetz, and Dr. Haori Yang. TABLE OF CONTENTS Page 1. Introduction ............................................................................................................................. 1 2. Literature Review .................................................................................................................... 1 1. Medical Isotope Production Overview .................................................................................... 9 1.1. Facility Types ................................................................................................................. 10 1.1.1. Medical Isotope Production Reactors ..................................................................... 10 1.1.2. Particle Accelerators ............................................................................................... 11 2. Reprocessing .......................................................................................................................... 13 2.1. Origin of material (Diversion Scenarios) ....................................................................... 17 2.2. PUREX Process.............................................................................................................. 19 2.3. Pyroprocessing ............................................................................................................... 20 2.4. Signatures of Reprocessing ............................................................................................ 21 3. Relevant Treaties and Agencies ............................................................................................ 22 3.1. Comprehensive Test Ban Treaty Organization .............................................................. 23 3.2. International Atomic Energy Agency ............................................................................ 27 3.3. United States Department of Energy .............................................................................. 31 3.4. National Nuclear Security Administration ..................................................................... 32 4. Case studies ........................................................................................................................... 34 4.1. History of Safeguards ..................................................................................................... 35 4.2. Iran ................................................................................................................................. 35 4.3. Israel ............................................................................................................................... 36 5. Signature Isotopes.................................................................................................................. 37 5.1. Radioxenon..................................................................................................................... 37 5.2. Detection of Radioxenon ................................................................................................ 41 6. Research Presentation ............................................................................................................ 44 6.1. Research Objective ......................................................................................................... 44 6.2. Environmental Condition Sampling ............................................................................... 44 6.3. Location Sampling ......................................................................................................... 47 TABLE OF CONTENTS (Continued) Page 6.4. Plume modeling.............................................................................................................. 48 6.5. Simulation ...................................................................................................................... 54 7. Results ................................................................................................................................... 54 7.1. Stack Height Variation ................................................................................................... 56 7.2. Isotope Separations Scenarios ........................................................................................ 57 7.2.1. 2.0 Ci/year Release Rate ......................................................................................... 57 7.2.2. 1.6 Ci/year Release Rate ......................................................................................... 60 7.2.3. 1.2 Ci/year Release Rate ......................................................................................... 63 7.2.4. 0.8 Ci/year Release Rate ......................................................................................... 65 7.2.5. 0.4 Ci/year Release Rate ......................................................................................... 68 7.3. Detection Summary ........................................................................................................ 70 7.4. Probability of Detection ................................................................................................. 72 8. Analysis ................................................................................................................................. 73 9. Conclusion ............................................................................................................................. 76 10. Bibliography ...................................................................................................................... 78 11. Appendix A- Derivations ................................................................................................... 85 11.1. Centerline maximum concentration location .............................................................. 85 LIST OF FIGURES Figure Page Figure 1: Potential Drop Accelerator ............................................................................................ 12 Figure 2: Circular accelerator orientation through time-varying accelerating fields [36] ............ 13 Figure 3: Linear accelerator orientation through time-varying accelerating fields [36] ............... 13 Figure 4: Material Attractiveness Flow Chart [21] ....................................................................... 14 Figure 5: Pyroprocessing Flow Chart [39].................................................................................... 21 Figure 6: Confirmed IMS stations across the globe [40] .............................................................. 26 Figure 7: Radionuclide Stations in the IMS[30] ........................................................................... 26 Figure 8: Radioxenon Ratio