Nuclear Task Force

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Task Force Report on Bioaccumulation of Elements to Accompany the Inventory of Radionuclides in the Great Lakes Basin Nuclear Task Force International Joint Commission International Commission -1 joint m ixte --J ~ornrnission internationale TABLE OF CONTENTS > BACKGROUND ....................................................................................... I INTRODUCTION .....................................................................................2 PART1 ...............................................................................................3 ANALYTICALCONCEPTS .....................................................................3 LATITUDE ADJUSTMENT TECHNIQUES FOR NUCLIDES IN FALLOUT .....................3 STATISTICAL APPROACHES - COMPOSITIONAL DATA .................................3 BIOACCUMULATION AND BIOMAGNIFICATION ........................................5 Bioaccumulation factors ..........................................................7 Referenceelements ..............................................................8 Reference elements and Great Lakes data ............................................9 Biotic needs for bioaccumulation data .....................................: ........ I0 Limitations of elemental composition data ...........................................11 Assimilationefficiency ..........................................................11 A lack of comprehensive data sets .................................................13 Pre-1970 data on bioaccumulation and biomagnification ................................ 13 Calcium control paradigm ........................................................15 Nuclides "in" and nuclides "on" organisms ..........................................16 Biomagnification of metals attached to organic molecules ..............................17 Use of nuisance species for bioaccumulation studies ...................................18 BIOUPTAKE DIRECTLY FROM ATMOSPHERIC DEPOSITION .............................18 Radionuclide data from Arctic ecosystems ...........................................25 BIOACCUMULATION IN SOIL MICROFLORA ...........................................28 BlOLOGICALPRODUCTIVITY .........................................................28 The "metabolism of lakes" .......................................................28 The "trophic cascade" concept ....................................................30 PART11 ............................................................................................31 BIOACCUMULATION OF SPECIFIC ELEMENTS .................................................31 TRITIUM ............................................................................31 GROUP Ia AND Ib ELEMENTS: SODIUM. POTASSIUM. LITHIUM. RUBIDIUM. CESIUM. FRANCIUM AND COPPER. SILVER. AND GOLD .............................................31 Sodium and potassium ..........................................................32 Rubidium .....................................................................37 Cesium ......................................................................37 Silver ........................................................................ 47 GROUP IIa ELEMENTS: BERYLLIUM. MAGNESIUM. CALCIUM. STRONTIUM. AND BARIUM ............................................................................. 48 Beryllium .................................................................... 48 Calcium and Magnesium ........................................................ 48 Strontium ..................................................................... 48 Barium .......................................................................49 GROUP 1Ib ELEMENTS: ZINC. CADMIUM. AND MERCURY ............................... 54 Zinc. cadmium. and mercury .....................................................54 GROUP IIIa ELEMENTS: BORON. ALUMINUM. GALLIUM. INDIUM. AND THALLIUM ........ 54 Boron ........................................................................54 Aluminum ....................................................................54 GROUP IIIb ELEMENTS: SCANDIUM. YTTRIUM. LANTHANUM. AND RARE EARTHS ........ 55 Ymium ......................................................................55 Lanthanum ...................................................................55 Cerium .......................................................................56 OtherLanthanides ..............................................................56 GROUP IVa ELEMENTS: CARBON, SILICON, GERMANIUM, TIN, AND LEAD . 60 Carbon .......................................................................60 Silicon .......................................................................60 Germanium ...................................................................60 Tin ..........................................................................61 Lead .........................................................................61 GROUPS IVb AND Vb ELEMENTS: TITANIUM, ZIRCONIUM, HAFNIUM, VANADIUM, ANTIMONY, ANDTANTALUM ............................................................63 Titanium . 63 Zirconium and niobium . 63 Hafnium . 64 Vanadium ....................................................................64 GROUP VIIa ELEMENTS (THE HALOGENS): FLUORINE, CHLORINE, BROMINE, IODINE, AND ASTATINE ....................................................................70 Fluorine ...................................................................... 70 Chlorine ......................................................................70 Bromine ......................................................................70 Iodine .......................................................................71 GROUP VIa ELEMENTS: SULFUR, SELENIUM, TELLURIUM, AND POLONIUM . 7 1 GROUP VIb ELEMENTS: CHROMIUM, MOLYBDENUM, AND TUNGSTEN . 73 Chromium ....................................................................73 Molybdenum ..................................................................73 Tungsten .....................................................................73 GROUP VIIb ELEMENTS: MANGANESE, TECHNETIUM, RHENIUM, IRON, RUTHENIUM, AND OSMIUM ....................................................................74 Ironandmanganese ............................................................ 74 Ruthenium .................................................................... 74 RheniumandOsmium ..................... ..................................... 75 Technetium ...................................................................76 GROUP VIIIB ELEMENTS: COBALT, RHODIUM, IRIDIUM, NICKEL, PALLADIUM, AND PLATINUM ..................................................................76 Cobalt ....................................................................... 76 Nickel ....................................................................... 76 TRANSURANICELEMENTS ........................................................... 77 CONCLUDINGREMARKS ............................................................................ 81 BlBLlOGRAPHY .................................................................................... 83 MEMBERSHIP OF THE NUCLEAR TASK FORCE . 58 TABLES & TEXT BOX LIST TEXT BOX I PROPERTIES OF RADIONUCLIDES THAT WOULD DIMINISH THE NEED TO ESTIMATE BIOACCUMULATION AND BIOMAGNIFICATION PARAMETERS ......................................... 4 TABLE 1 CLASSIFICATION OF ELEMENTS FOR REQUIRING ESTIMATES OF BIOACCUMULATION AND BIOMAGNIFICATION PARAMETERS FOR BIOTA OF THE GREAT LAKES .................................................................. 5 TEXT BOX 2 FACTORS AFFECTING OBSERVATION OF STEADY STATES - IN BIOACCUMULATION PROCESSES ................................................................ 6 TEXT BOX 3 BIOACCUMULATION FACTOR AND BIOMAGNIFICATION FACTOR FORMULAS ........................................................................................9 TEXT BOX 4 QUESTIONS TO ASSESS THE QUALITY OF DATA USED TO EVALUATE BIOACCUMULATION AND BIOMAGNIFICATION ....................................... 10 TEXT BOX 5 RELATIONSHIP BETWEEN ASSIMILATION EFFICIENCY AND BIOACCUMULATION FACTORS ............. 12 TABLE 2 FRESHWATER BIOACCUMULATION FACTORS FOR VARIOUS ELEMENTS ..............................14 TABLE 3 CHEMICAL COMPOSITION OF A TROPICAL GROUND LICHEN ........................................21 TABLE 3 (continued) CHEMICAL COMPOSITION OF A TROPICAL GROUND LICHEN .........................................22 TABLE 4 NATURALLY OCCURRING RADIONUCLIDES IN LICHENS AND MOSSES FROM A FOREST IN WASHINGTON STATE, 1966-1967 .................................................23 TABLE 4 (continued) NATLIRALLY OCCURRING RADIONUCLIDES IN LICHENS AND MOSSES FROM A FOREST IN WASHINGTON STATE, 1966-1 967 .................................................24 TABLE 5 RADIONUCLIDES IN ARCTIC BIOTA (LICHENS AND MOSSES ..........................................26 TABLE 5 (continued) ELEMENTAL ANALYSES (INCLUDING RADIONUCLIDES) OF ARCTICBIOTA ...................................................................................27 TABLE 6 UPTAKE OF UNIVALENT ELEMENTS: Na. K, Li, Rb, Cs, Ag, CI, Br, AND I BY AQUATIC BIOTA PART1,LlNSLEYPOND ........................................................................... 33 TABLE 6 (continued) UPTAKE OF UNIVALENT ELEMENTS: Na, K, Li, Rb, Cs, Ag, CI, Br, AND I BY AQUATIC BIOTA PARTI.LINSLEYPOND ...........................................................................34 TABLE 7 UPTAKE OF UNIVALENT ELEMENTS: Na, K, Li, Rb, Cs, Ag, CI, Br, AND I BY AQUATIC BIOTA PARTII.CULTURES ..............................................................................35
Recommended publications
  • Dr. A.A. El-Mohty Dr. Shoukar T.M. Atwa
    Benha University Faculty of Science Chemistry Department RADIOCHEMICAL STUDIES ON THE SEPARATION OF IODINE- 131 AND RADIOIODINATION OF SOME ORGANIC COMPOUNDS A Thesis Submitted by MAHMOUD ABBAS ISMAIL MOHAMED Isotopes and Radioactive Generators Dep., Hot Labs. Center Atomic Energy Authority To Faculty of Science – Benha University Presented as partial fulfillment of The Degree of M.Sc In chemistry Supervised by Prof .Dr .H .A. Dessouki Prof . Dr .S .A .El -Bayoumy Prof. of Inorganic and Prof. of Radiochemistry Analytical Chemistry Isot. and Radio Generators.Dept, Faculty of Science Benha Univ. Atomic Energy Authority Dr. Shoukar T.M. Atwa Dr. A.A. El-Mohty Lect. of Physical Chemistry Pro Ass it. Prof.of Radiochemistry Faculty of Science Benha Univ. Isot. and Radio Generators.Dept, Atomic Energy Authority 2010 آ ام اء درات آ إ اد- ١٣١و اآت ا د ا ر ــــد س ا ا واات ا – آ ا ارة ه ا ار ا آــ اــــ ــم – ــ ل در ا اء اـــــــــاف أ.د/ ا ا أ.د/ د اذ اء ا و ا أذ اــء اـــ آ ام - ـــ ا واات ا هــــ اـــ ارــــــــ د/ ر أ.م.د / أ ا رس اء ا أذ اــء اـــ آ ام - ـــ ا واات ا هــــ اـــ ارــــــــ ٢٠١٠ List of abbreviations Abbr. Referent CAT Chloramine-T H2O2 Hydrogen peroxide HPLC High performance liquid chromatography TLC Thin layer chromatography Temp. Temperature Conc. Concentration min Minute NCA No Carrier Added Rf Relative front Rt Retention time CNS Central nervous system Y-indole 4-[2-hydroxy-3- (isopentylamino)propoxy] indole Epidepride N-[(1-ethyl-2- pyrrolidyl)methyl]-2,3- dimethoxy-5-(tributylstannyl) benzamide
    [Show full text]
  • Ichtj Annual Report 2002
    NUCLEAR TECHNOLOGIES AND METHODS 121 PROCESS ENGINEERING CERAMIC MEMBRANES APPLIED FOR RADIOACTIVE WASTES PROCESSING Grażyna Zakrzewska-Trznadel, Marian Harasimowicz, Bogdan Tymiński, Andrzej G. Chmielewski Ceramic membranes (MEMBRALOX® and CeRAM use of different complexing agents are shown in INSIDE®) were used for filtration of liquid radio- Fig.1. Best removal of cobalt, europium and am- active wastes. The experimental runs with samples ericium was observed when chelating polymers of original radioactive wastes were carried out. The NaPAA or PEI were applied. Complexing with poly- waste was characterized by a relatively low salinity acrylic acid of molecular weight 1200 and 8000 did (<1 g/dm3), however, the specific radioactivity not result in sufficient increase of decontamina- was in the medium-level liquid waste range (~150 tion factor. For the membrane of 15 nm pore size, kBq/dm3). The main activity came from radioac- which was used in experiments, the proper molecu- tive cobalt and caesium, but also a significant lar weight of NaPAA was 15 000 or 30 000. In most amount of lanthanides and actinides was present. of experiments the removal of Eu-154 and Am-241 To enhance the separation, membrane filtration was complete (specific activity below the detection was combined with complexation (sole ultrafiltra- limit). Binding the caesium ions with all tested poly- tion gave decontamination factors in the range of mers gave rather poor results. The best complexing 1.1-1.7). Soluble polymers like polyacrylic acid agent for caesium was cobalt hexacyanoferrate, (PAA) derivatives of different average molecular which gave decontamination factors higher than weight, polyethylenimine (PEI) and cyanoferrates 100.
    [Show full text]
  • Capabilities of Detecting Medical Isotope Facilities Through Radioxenon Sampling
    AN ABSTRACT OF THE THESIS OF Matthew R. MacDougall for the degree of Master of Science in Nuclear Engineering presented on June 23, 2015. Title: Capabilities of Detecting Medical Isotope Facilities through Radioxenon Sampling Abstract approved: ______________________________________________________ Andrew C. Klein Medical Isotopes are a necessity in modern medicine for cancer treatments and medical imaging. In order to ensure that the needs and demands are met for the medical procedures, facilities are put in place to produce these isotopes. There are over 25 different isotopes of interest being produced by more than 35 research reactors across the United States. A key component in medical isotope production is the isotope separation process. During this process, several types of radioactive gases are released that would otherwise not leave the nuclear fuel component. One of these radioactive gases is radioxenon. The release of radioxenon into the environment is of concern to the Comprehensive Test Ban Treaty Organization (CTBTO) as one of the key critical sampling techniques utilized to detect a nuclear detonation is the presence of radioxenon. As more facilities release radioxenon, background levels increase, desensitizing the equipment, and making it more difficult to detect. For this purpose, the detection of a medical isotope facility through the use of radioxenon is an interest to the CTBTO as an attempt to reduce the background levels of radioxenon and ensure that the detonation capabilities remain unaffected. This thesis will investigate the capabilities of detecting these medical isotope facilities through the use of radioxenon detection. Additionally, probabilities of detection will be determined in order to accurately identify these facilities.
    [Show full text]
  • From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present
    From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Thomson, Jennifer Christine. 2013. From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945- Present. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11125030 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present A dissertation presented by Jennifer Christine Thomson to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts May 2013 @ 2013 Jennifer Christine Thomson All rights reserved. Dissertation Advisor: Charles Rosenberg Jennifer Christine Thomson From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present Abstract This dissertation joins the history of science and medicine with environmental history to explore the language of health in environmental politics. Today, in government policy briefs and mission statements of environmental non-profits, newspaper editorials and activist journals, claims about the health of the planet and its human and non-human inhabitants abound. Yet despite this rhetorical ubiquity, modern environmental politics are ideologically and organizationally fractured along the themes of whose health is at stake and how that health should be protected.
    [Show full text]
  • The Electoral Consequences of Nuclear Fallout: Evidence from Chernobyl
    Working Paper 2020:23 Department of Economics School of Economics and Management The Electoral Consequences of Nuclear Fallout: Evidence from Chernobyl Adrian Mehic November 2020 The electoral consequences of nuclear fallout: Evidence from Chernobyl Adrian Mehic ∗ This version: November 19, 2020 Abstract What are the political effects of a nuclear accident? Following the 1986 Chernobyl disaster, environmentalist parties were elected to parliaments in several nations. This paper uses Chernobyl as a natural experiment creating variation in radioactive fallout exposure over Sweden. I match municipality-level data on cesium ground contamination with election results for the anti-nuclear Green Party, which was elected to parliament in 1988. After adjusting for pre-Chernobyl views on nuclear power, the results show that voters in high-fallout areas were more likely to vote for the Greens. Additionally, using the exponential decay property of radioactive isotopes, I show a persistent, long-term effect of fallout on the green vote. However, the Chernobyl-related premium in the green vote has decreased substantially since the 1980s. Detailed individual-level survey data further suggests that the results are driven by a gradually decreasing resistance to nuclear energy in fallout-affected municipalities. JEL classification codes: D72, P16, Q48, Q53 Keywords: Chernobyl; pollution; voting ∗Department of Economics, Lund University, Sweden. This work has benefited from discus- sions with Andreas Bergh, Matz Dahlberg, Karin Edmark, Henrik Ekengren Oscarsson, Emelie Theobald, and Joakim Westerlund, as well as numerous seminar participants. 1. Introduction Nuclear energy is a widely debated topic. Advocates of nuclear power argue that it provides high power output combined with virtually zero emissions.
    [Show full text]
  • Neutron Deficient Isotopes of Tellurium and Antimony
    UCRL,_.1---,--'_ ~ /t>/,.f oW c-, ( UNIVERSITY OF CALIFORNIA FOR REFERENCE NOT TO BE TAKEN FROM THIS ROOM BERKELEY, CALIFORNIA , • ENG-48 INDEX ITO. ~e:~ -.;;:y ~ This document contains ? pgs, and . plates of figures .-- I: i:BJ·~-;:'--CQPY_.&t.. of' // • Series~ '. e~j" .~ DO NOT RET'40VE LlIS PAGE ----------.._- ~r['N'" '?~,." 1'HIS IS A CLA':'" '-'~~'::::::"".'STF I','P ':i}P~.\'rl.RI=~i1i.3i6TED,.;"-;,- . , ~~~~~-0" .:~.. ",.~. ~~ ---'-clas S":r.iI; ~ i~·nt::6otte'oe;l;"J.m.D.. edhEJre \\ --&~t:' ~l :..'J' ". e}- /; .~ ,s,sWIC-'\l' ti-I'{.t},l J.: li!/er ,.. 'l'bis document contains restrj.cted data within the meaning of ~Rt! ~~ic~rll!¥GY Act of 1946 and/or information affecting the national defense of the :ut~d States within the meaning of the Espionage Act U. S. C. 31 & 32, as amended. Its transmission or the revelation of its contents in an'! manner to an unauthor- ized person is prohibited''';;:na may' r.esult in' severe crimi;,al penalti. Before thisdocument ca.nbei,ivenfoa. person toroad,~his namernust be on the Reading List of those authorized to read material on chis subject, or permissicr must be obtained from the Information Division or the E:l'Zecutive Office. :'i. A SECRET or CONnDENTIAL document is t(') he kept only :I,n a guarded area. 'iVhen stored;-it must be ke'pt-'in a :\.ocked safe or in a lock~d filing case with a twnb ler lock. 4. A SECRIi;T or COnFIDENTIAL document is n('lt tC'l be copied or ctherwise duplicated with0ut ·pormis·s ionOf the originatir..goffice .
    [Show full text]
  • Sulfur and Lead Isotope Characteristics of the Greens Creek Polymetallic Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska
    Sulfur and Lead Isotope Characteristics of the Greens Creek Polymetallic Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska By Cliff D. Taylor, Wayne R. Premo, and Craig A. Johnson Chapter 10 of Geology, Geochemistry, and Genesis of the Greens Creek Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska Edited by Cliff D. Taylor and Craig A. Johnson Professional Paper 1763 U.S. Department of the Interior U.S. Geological Survey Contents Abstract .......................................................................................................................................................241 Introduction.................................................................................................................................................241 Regional and District Setting ...................................................................................................................242 Terrane Relationships ......................................................................................................................242 District Geology ..........................................................................................................................................242 Deposit Geology .........................................................................................................................................243 Mine Sequence Nomenclature and Stratigraphy .......................................................................243 Ore Types and Ore Mineralogy ................................................................................................................244
    [Show full text]
  • Pathways for Neoarchean Pyrite Formation Constrained by Mass
    Pathways for Neoarchean pyrite formation constrained SPECIAL FEATURE by mass-independent sulfur isotopes James Farquhara,b,1, John Cliffb, Aubrey L. Zerklec, Alexey Kamyshnyd, Simon W. Poultone, Mark Clairef, David Adamsb, and Brian Harmsa aDepartment of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742; bCentre for Microscopy and Microanalysis, University of Western Australia, Perth, WA 6009, Australia; cSchool of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; dDepartment of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; eSchool of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom; and fSchool of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved December 28, 2012 (received for review November 1, 2012) It is generally thought that the sulfate reduction metabolism is range of variability for Δ33S is significantly greater in samples older ancient and would have been established well before the Neo- than ∼2.4 Ga than in younger samples (e.g., compilation in refs. archean. It is puzzling, therefore, that the sulfur isotope record of 4 and 5). This observation has been linked to the production, the Neoarchean is characterized by a signal of atmospheric mass- transfer, and preservation of mass-independent sulfur isotope independent chemistry rather than a strong overprint by sulfate signals (presumably of atmospheric origin) early in Earth history. reducers. Here, we present a study of the four sulfur isotopes The production of this signal in the atmosphere and its subsequent obtained using secondary ion MS that seeks to reconcile a number transfer to the Earth surface is sensitive to atmospheric O2 levels of features seen in the Neoarchean sulfur isotope record.
    [Show full text]
  • A Simple and Reliable Method Reducing Sulfate to Sulfide For
    A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis Lei Geng, Joel Savarino, Clara Savarino, Nicolas Caillon, Pierre Cartigny, Shohei Hattori, Sakiko Ishino, | Naohiro Yoshida To cite this version: Lei Geng, Joel Savarino, Clara Savarino, Nicolas Caillon, Pierre Cartigny, et al.. A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis. Rapid Communications inMass Spectrometry, Wiley, 2017, 32 (4), pp.333-341. 10.1002/rcm.8048. insu-02187037 HAL Id: insu-02187037 https://hal-insu.archives-ouvertes.fr/insu-02187037 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 12 October 2017 Revised: 5 December 2017 Accepted: 9 December 2017 DOI: 10.1002/rcm.8048 RESEARCH ARTICLE A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis Lei Geng1 | Joel Savarino1 | Clara A. Savarino1,2 | Nicolas Caillon1 | Pierre Cartigny3 | Shohei Hattori4 | Sakiko Ishino4 | Naohiro Yoshida4,5 1 Univ. Grenoble Alpes, CNRS, IRD, Institut des Rationale: Precise analysis of four sulfur isotopes of sulfate in geological and environmental Géosciences de l'Environnement, IGE, 38000 Grenoble, France samples provides the means to extract unique information in wide geological contexts.
    [Show full text]
  • The Application of S Isotopes and S/Se Ratios in Determining Ore
    Ore Geology Reviews 73 (2016) 148–174 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex Jennifer W. Smith a,b, David A. Holwell a,⁎, Iain McDonald c, Adrian J. Boyce d a Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK b AMTEL, 100 Collip Circle, Suite 205, University of Western Ontario Research Park, London, Ontario N6G 4X8, Canada c School of Earth and Ocean Sciences, Cardiff, University, Park Place, Cardiff CF10 3YE, UK d Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK article info abstract Article history: The application of S/Se ratios and S isotopes in the study of magmatic Ni–Cu–PGE sulfide deposits has long been Received 17 March 2015 used to trace the source of S and to constrain the role of crustal contamination in triggering sulfide saturation. Received in revised form 16 October 2015 However, both S/Se ratios and S isotopes are subject to syn- and post-magmatic processes that may alter their Accepted 20 October 2015 initial signatures. We present in situ mineral δ34S signatures and S/Se ratios combined with bulk S/Se ratios to Available online 22 October 2015 investigate and assess their utility in constraining ore-forming processes and the source of S within magmatic sul- fide deposits. Keywords: – – fi – – Magmatic sulfides Magmatic Ni Cu PGE sul de mineralization in the Grasvally Norite Pyroxenite Anorthosite (GNPA) member, S/Se ratios northern Bushveld Complex was used as a case study based on well-defined constraints of sulfide paragenesis S isotopes and local S isotope signatures.
    [Show full text]
  • Arctic Pollution 2009 Arctic Pollution 2009
    Arctic Pollution 2009 Arctic Pollution Arctic Pollution 2009 Arctic Monitoring and Assessment Programme (AMAP) ISBN 978-82-7971-050-9 Arctic Pollution 2009 Contents Preface .................................................................................................................................................... iii Executive Summary ................................................................................................................................. v I. Introduction ................................................................................................................................................ 1 Climate patterns affect contaminant transport II. Persistent Organic Pollutants ...................................................................................................................... 5 Introduction Brominated flame retardants Fluorinated compounds Polychlorinated naphthalenes (PCNs) High-volume chemicals with POP characteristics Endosulfan and other current use pesticides Legacy POPs Effects in Arctic wildlife Chapter summary III. International treaties and actions to limit the use and emission of POPs and heavy metals .................... 34 IV. Contaminants and Human Health ............................................................................................................. 37 Factors influencing human exposure to contaminants Food, diet, nutrition, and contaminants Levels and trends Contaminants and metabolism Effects and public health Demographic data show different patterns for many
    [Show full text]
  • W. M. White Geochemistry Chapter 9: Stable Isotopes
    W. M. White Geochemistry Chapter 9: Stable Isotopes CHAPTER 9: STABLE ISOTOPE GEOCHEMISTRY 9.1 INTRODUCTION table isotope geochemistry is concerned with variations of the isotopic compositions of elements arising from physicochemical processes rather than nuclear processes. Fractionation* of the iso- S topes of an element might at first seem to be an oxymoron. After all, in the last chapter we saw that the value of radiogenic isotopes was that the various isotopes of an element had identical chemical properties and therefore that isotope ratios such as 87Sr/86Sr are not changed measurably by chemical processes. In this chapter we will find that this is not quite true, and that the very small differences in the chemical behavior of different isotopes of an element can provide a very large amount of useful in- formation about chemical (both geochemical and biochemical) processes. The origins of stable isotope geochemistry are closely tied to the development of modern physics in the first half of the 20th century. The discovery of the neutron in 1932 by H. Urey and the demonstra- tion of variable isotopic compositions of light elements by A. Nier in the 1930’s and 1940’s were the precursors to this development. The real history of stable isotope geochemistry begins in 1947 with the publication of Harold Urey’s paper, “The Thermodynamic Properties of Isotopic Substances”, and Bigeleisen and Mayer’s paper “Calculation of equilibrium constants for isotopic exchange reactions”. Urey not only showed why, on theoretical grounds, isotope fractionations could be expected, but also suggested that these fractionations could provide useful geological information.
    [Show full text]