Arctic Pollution 2009 Arctic Pollution 2009

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Pollution 2009 Arctic Pollution 2009 Arctic Pollution 2009 Arctic Pollution Arctic Pollution 2009 Arctic Monitoring and Assessment Programme (AMAP) ISBN 978-82-7971-050-9 Arctic Pollution 2009 Contents Preface .................................................................................................................................................... iii Executive Summary ................................................................................................................................. v I. Introduction ................................................................................................................................................ 1 Climate patterns affect contaminant transport II. Persistent Organic Pollutants ...................................................................................................................... 5 Introduction Brominated flame retardants Fluorinated compounds Polychlorinated naphthalenes (PCNs) High-volume chemicals with POP characteristics Endosulfan and other current use pesticides Legacy POPs Effects in Arctic wildlife Chapter summary III. International treaties and actions to limit the use and emission of POPs and heavy metals .................... 34 IV. Contaminants and Human Health ............................................................................................................. 37 Factors influencing human exposure to contaminants Food, diet, nutrition, and contaminants Levels and trends Contaminants and metabolism Effects and public health Demographic data show different patterns for many Arctic populations Risk communication Summary V. Radioactivity ............................................................................................................................................... 65 Introduction Sources: update based on actions and climate change Protection of the Arctic environment Summary AMAP Arctic Monitoring and Assessment Programme Oslo 2009 ii Citation: AMAP, 2009. Arctic Pollution 2009. Arctic Monitoring and Assessment Programme, Oslo. xi+83pp ISBN 978-82-7971-050-9 © Arctic Monitoring and Assessment Programme, 2009 Published by Arctic Monitoring and Assessment Programme (AMAP), P.O. Box 8100 Dep., N-0032 Oslo, Norway (www.amap.no) Ordering AMAP Secretariat, P.O. Box 8100 Dep, N-0032 Oslo, Norway ([email protected]) This report is also published as electronic documents, available from the AMAP website at www.amap.no AMAP Working Group: John Calder (Chair, USA), Per Døvle (Vice-chair, Norway), Yuri Tsaturov (Vice-chair, Russia), Russel Shearer (Canada), Mikala Klint (Den- mark), Henrik Larsen (Denmark), Morten Olsen (Denmark), Outi Mähönen (Finland), Helgi Jensson (Iceland), Erik Syvertsen (Norway), Yngve Brodin (Sweden), Tom Armstrong (USA), Jan-Idar Solbakken (Permanent Participants of the Indigenous Peoples Organizations). AMAP Secretariat: Lars-Otto Reiersen, Simon Wilson, Yuri Sychev, Inger Utne. ACKNOWLEDGEMENTS Authors: Annika E. Nilsson ([email protected]) and Henry P. Huntington (Huntington Consulting, [email protected]). Contributing experts: M. Alaee C.M. Butt H. Gunnlaugsdóttir H. Kiviranta S. Meakin D. Rawn J. Strand L. Alexeeva L. Camus Ö. Gustafsson J. Klungsøyr T. Messner L-O. Reiersen Y. Su P. Ayotte A. Carlsen B. Hackett A. Kochetkov L. Moseholm F. Rigét E. Sverko P.R. Becker J. Carroll C.J. Halsall A.V. Konoplev D.C.G. Muir J. Rodhe L. Tarrason I. Bergdahl G.N. Christensen J.C. Hansen M. Krahn G. Mulvad B. Salbu C. Teixeira U. Berger A. Covaci A. Heinrich E. Kruemmel L. Needham T. Sandanger C. Tikhonov J. Berner S. Dahle H.E. Heldal J. Kucklick B. Nexø T. Savinova G.T. Tomy A. Bersamin M. Dam P.A. Helm H. Kylin E. Nieboer T. Seppälä B.L. Tracy T.F. Bidleman C. de Wit M. Hermanson S. Leppänen S.P. Nielsen M. Sickel Y. Tsaturov A. Bignert B. Deutch D. Herzke R.J. Letcher A. Nikitin J.U. Skåre A. Vaktskjold P. Bjerregaard E. Dewailly L. Hoferkamp E. Lie T. Nygård H-R. Skjoldal B. van Bavel S. Boitsov R. Dietz I. Holoubek A. Liland T. O’Hara H. Skov J. Van Oostdam E.C. Bonefeld- S.G. Donaldson L. Hubbard J. Lindgren J.Ø. Odland L. Skuterud J. Verreault Jørgensen A. Dudarev H. Hung G. Lindström K. Olafsdottir J. Small M. Verta K. Borgå R.P. Eganhouse K. Hylland B. Luick M. Olsson L. Soininen K. Vorkamp R. Bossi M. Evans T. Ikäheimonen C. Macdonald S. Orre D. Solatie J-P. Weber B. Braune A. Evenset B.M. Jenssen R. Macdonald J. Paatero K. Solomon J. Weber K. Breivik P. Fellin P.K.A. Jensen J. Mannio R. Paltemaa C. Sonne D. Broman G.W. Gabrielsen H. Joensen S. Manø A. Parkinson G. Stern P.M. Weihe E. Brorstrøm- S. Gerland P. Johansen E. Mariussen H.S. Pedersen D. Stone S.J. Wilson Lunden A. Gilman E.H. Jorgensen V. McClelland L.H. Pettersson J. Stow K. Young J-O. Bustnes N. Green R. Kallenborn M. McLachlan A. Rautio P. Strand M.A. Ytre-Eide Indigenous peoples organizations, AMAP observing countries, and international organizations: Aleut International Association (AIA), Arctic Athabaskan Council (AAC), Gwitch’in Council International (GCI), Inuit Circumpolar Conference (ICC), Russian Association of Indigenous Peoples of the North (RAIPON), Saami Council. France, Germany, Netherlands, Poland, Spain, United Kingdom. Advisory Committee on Protection of the Sea (ACOPS), Arctic Circumpolar Route (ACR), Association of World Reindeer Herders (AWRH), Cir- cumpolar Conservation Union (CCU), European Environment Agency (EEA), International Arctic Science Committee (IASC), International Arc- tic Social Sciences Association (IASSA), International Atomic Energy Agency (IAEA), International Council for the Exploration of the Sea (ICES), International Federation of Red Cross and Red Crescent Societies (IFFCRCS), International Union for Circumpolar Health (IUCH), International Union for the Conservation of Nature (IUCN), International Union of Radioecology (IUR), International Work Group for Indigenous Affairs (IW- GIA), Nordic Council of Ministers (NCM), Nordic Council of Parliamentarians (NCP), Nordic Environment Finance Corporation (NEFCO), North Atlantic Marine Mammal Commission (NAMMCO), Northern Forum (NF), OECD Nuclear Energy Agency (OECD/NEA), OSPAR Commission (OSPAR), Standing Committee of Parliamentarians of the Arctic Region (SCPAR), United Nations Development Programme (UNDP), United Nations Economic Commission for Europe (UN ECE), United Nations Environment Programme (UNEP), University of the Arctic (UArctic), World Health Organization (WHO), World Meteorological Organization (WMO), World Wide Fund for Nature (WWF). Graphical production of Arctic Pollution 2009 Lay-out and technical production: John Bellamy ([email protected]). Design and production of computer graphics: Simon Wilson and John Bellamy. Printing and binding: Narayana Press, Gylling, DK-8300 Odder, Denmark (www.narayanapress.dk); a Swan-labelled printing company, 541 562. Copyright holders and suppliers of photographic material reproduced in this volume are listed on page 83. iii Preface The Arctic Monitoring and Assessment Programme (AMAP) tic monitoring, have participated in the preparation of this assessment. is a Working Group of the Arctic Council. The Arctic Council AMAP would like to express its appreciation to all of these Ministers have requested AMAP to: experts, who have contributed their time, effort, and data; espe- • produce integrated assessment reports on the status and trends cially those who were involved in the further development and of the conditions of the Arctic ecosystems, including humans; implementation of the AMAP Trends and Effects Monitoring Programme, and related research. A list of the main contributors • identify possible causes for the changing conditions; is included in the acknowledgements on the previous page of this • detect emerging problems, their possible causes, and the report. The list is based on identified individual contributors to the potential risk to Arctic ecosystems including indigenous peoples AMAP scientific assessments, and is not comprehensive. Specifi- and other Arctic residents; and to cally, it does not include the many national institutes, laboratories • recommend actions required to reduce risks to Arctic and organizations, and their staff, which have been involved in the ecosystems. various countries. Apologies, and no lesser thanks, are given to any These assessments are delivered to Ministers at appropriate individuals unintentionally omitted from the list. intervals in the form of ‘State of the Arctic Environment Reports’ Special thanks are due to the lead authors responsible for the on pollution and climate related issues. These reports are intended preparation of the scientific assessments that provide the basis for to be readable and readily comprehensible, and do not contain this report. Special thanks are also due to the authors of this re- extensive background data or references to the scientific literature. port, Annika Nilsson and Henry Huntington. The authors worked The complete scientific documentation, including sources for all in close cooperation with the scientific experts and the AMAP figures reproduced in this report, is contained in a series of related Secretariat to accomplish the difficult task of distilling the essential reports - the AMAP Assessment 2009 reports - or papers specially messages from a wealth of complex scientific information, and prepared for publication in the scientific literature, all of which are communicating this in an easily understandable way. peer reviewed and fully referenced. For readers interested in the The support of the Arctic countries is vital to the success of scientific
Recommended publications
  • Department of Environment– Wildlife Division
    Department of Environment– Wildlife Division Wildlife Research Section Department of Environment Box 209 Igloolik, NU X0A 0L0 Tel: (867) 934-2179 Fax: (867) 934-2190 Email: [email protected] Frequently Asked Questions Government of Nunavut 1. What is the role of the GN in issuing wildlife research permits? On June 1, 1999, Nunavut became Canada’s newest territory. Since its creation, interest in studying its natural resources has steadily risen. Human demands on animals and plants can leave them vulnerable, and wildlife research permits allow the Department to keep records of what, and how much research is going on in Nunavut, and to use this as a tool to assist in the conservation of its resources. The four primary purposes of research in Nunavut are: a. To help ensure that communities are informed of scientific research in and around their communities; b. To maintain a centralized knowledgebase of research activities in Nunavut; c. To ensure that there are no conflicting or competing research activities in Nunavut; and d. To ensure that wildlife research activities abide by various laws and regulations governing the treatment and management of wildlife and wildlife habitat in Nunavut. 2. How is this process supported by the Nunavut Land Claims Agreement? Conservation: Article 5.1.5 The principles of conservation are: a. the maintenance of the natural balance of ecological systems within the Nunavut Settlement Area; b. the protection of wildlife habitat; c. the maintenance of vital, healthy, wildlife populations capable of sustaining harvesting needs as defined in this article; and d. the restoration and revitalization of depleted populations of wildlife and wildlife habitat.
    [Show full text]
  • New Longevity Record for Ivory Gulls (Pagophila Eburnea) and Evidence of Natal Philopatry M.L
    ARCTIC VOL. 65, NO. 1 (MARCH 2012) P. 98 – 101 New Longevity Record for Ivory Gulls (Pagophila eburnea) and Evidence of Natal Philopatry M.L. MALLORY,1 K.A. ALLARD,2 B.M. BRAUNE,3 H.G. GILCHRIST3 and V.G. THOMAS4 (Received 25 April 2011; accepted in revised form 2 August 2011) ABSTRACT. Ivory gulls (Pagophila eburnea) have been listed as “endangered” in Canada and “near threatened” interna- tionally. In June 2010, we visited Seymour Island, Nunavut, Canada, where gulls were banded in the 1970s and 1980s. We recaptured and released two breeding gulls banded as chicks in 1983, confirming natal philopatry to this breeding colony. These gulls are more than 28 years old, making the ivory gull one of the longest-living marine bird species known in North America. Key words: ivory gull, Pagophila eburnea, Nunavut, banding RÉSUMÉ. La mouette blanche (Pagophila eburnea) figure sur la liste des espèces « en voie de disparition » sur la scène canadienne et des espèces « quasi menacées » sur la scène internationale. En juin 2010, nous sommes allés à l’île Seymour, au Nunavut, Canada, où des mouettes avaient été baguées dans le courant des années 1970 et 1980. Nous avons recapturé et relâché deux mouettes reproductrices qui étaient considérées comme des oisillons en 1983, ce qui nous a permis de confirmer la philopatrie natale de cette colonie de nidification. Ces mouettes blanches ont plus de 28 ans, ce qui en fait l’un des oiseaux aquatiques vivant le plus longtemps en Amérique du Nord. Mots clés : mouette blanche, Pagophila eburnea, Nunavut, baguage Traduit pour la revue Arctic par Nicole Giguère.
    [Show full text]
  • From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present
    From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Thomson, Jennifer Christine. 2013. From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945- Present. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11125030 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present A dissertation presented by Jennifer Christine Thomson to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts May 2013 @ 2013 Jennifer Christine Thomson All rights reserved. Dissertation Advisor: Charles Rosenberg Jennifer Christine Thomson From Wilderness to the Toxic Environment: Health in American Environmental Politics, 1945-Present Abstract This dissertation joins the history of science and medicine with environmental history to explore the language of health in environmental politics. Today, in government policy briefs and mission statements of environmental non-profits, newspaper editorials and activist journals, claims about the health of the planet and its human and non-human inhabitants abound. Yet despite this rhetorical ubiquity, modern environmental politics are ideologically and organizationally fractured along the themes of whose health is at stake and how that health should be protected.
    [Show full text]
  • The Electoral Consequences of Nuclear Fallout: Evidence from Chernobyl
    Working Paper 2020:23 Department of Economics School of Economics and Management The Electoral Consequences of Nuclear Fallout: Evidence from Chernobyl Adrian Mehic November 2020 The electoral consequences of nuclear fallout: Evidence from Chernobyl Adrian Mehic ∗ This version: November 19, 2020 Abstract What are the political effects of a nuclear accident? Following the 1986 Chernobyl disaster, environmentalist parties were elected to parliaments in several nations. This paper uses Chernobyl as a natural experiment creating variation in radioactive fallout exposure over Sweden. I match municipality-level data on cesium ground contamination with election results for the anti-nuclear Green Party, which was elected to parliament in 1988. After adjusting for pre-Chernobyl views on nuclear power, the results show that voters in high-fallout areas were more likely to vote for the Greens. Additionally, using the exponential decay property of radioactive isotopes, I show a persistent, long-term effect of fallout on the green vote. However, the Chernobyl-related premium in the green vote has decreased substantially since the 1980s. Detailed individual-level survey data further suggests that the results are driven by a gradually decreasing resistance to nuclear energy in fallout-affected municipalities. JEL classification codes: D72, P16, Q48, Q53 Keywords: Chernobyl; pollution; voting ∗Department of Economics, Lund University, Sweden. This work has benefited from discus- sions with Andreas Bergh, Matz Dahlberg, Karin Edmark, Henrik Ekengren Oscarsson, Emelie Theobald, and Joakim Westerlund, as well as numerous seminar participants. 1. Introduction Nuclear energy is a widely debated topic. Advocates of nuclear power argue that it provides high power output combined with virtually zero emissions.
    [Show full text]
  • Marine Birds Breeding in Penny Strait and Queens Channel, Nunavut, Canada
    Research note Marine birds breeding in Penny Strait and Queens Channel, Nunavut, Canada Mark L. Mallory & H. Grant Gilchrist Surveys of breeding birds on small islands in Penny Strait and Queens Channel, Nunavut Territory, Canada, were conducted in July 2002 and 2003. Approximately 3600 marine birds were observed, with the most common species being Arctic terns (Sterna paradisaea, N = 2400) and common eiders (Somateria mollissima borealis, N = 620). We observed no Ross’s gulls (Rhodostethia rosea) in either year, and we found ivory gulls (Pagophila eburnea) only in 2003, even though these species com- monly bred here in the 1970s. This previously unsurveyed region sup- ports numerous breeding marine birds, but reproductive success on these small islands may be dependent on annual ice conditions and consequent movements of Arctic foxes (Alopex lagopus). M. L. Mallor y, Canadian Wildlife Ser vice, Box 1714, Iqaluit, NU, X0A 0H0, Canada, mark .mallor y @ ec.gc.ca; H. G. Gilchrist, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, ON, K1A 0H3, Canada. Our knowledge of the distribution and abundance ularly important for many types of Arctic marine of marine birds in the Canadian Arctic remains wildlife (Stirling 1997). Despite this, only a few patchy and incomplete. Many of the early expe- islands in this area have been surveyed for birds, ditions to the Arctic recorded the distribution of mostly to the east of the area we covered (Nettle- some birds, and more recent extensive surveys or ship 1974). In general, the avifauna of this region intensive research in some regions have fi lled in was poorly known and had not been surveyed in many gaps in our distribution maps (e.g.
    [Show full text]
  • Canada Commission Geologique Du Canada
    Geological Survey of Canada Commission geologique du Canada PAPER 86-7 GEOLOGICAL SURVEY OF CANADA RADIOCARBON DATES XXVI W. SLAKE, Jr. 1987 Canada GEOLOGICAL SURVEY OF CANADA PAPER 86·7 GEOLOGICAL SURVEY OF CANADA RADIOCARBON DATES XXVI W. BLAKE, Jr. 1987 © Minister of Supply and Services Canada 1987 Available in Canada through authorized bookstore agents and other bookstores or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada KlA OS9 and from Geological Survey of Canada offices: 601 Booth Street Ottawa, Canada K lA OE8 3303-33rd Street N. W., Calgary, Alberta T2L 2A7 100 West Pender Street Vancouver, British Columbia V6B 1R8 A deposit copy of this publication is also available for reference in public libraries across Canada Cat. No. M44-86/7E Canada: $4.00 ISBN 0-660-12456-4 Other countries: $4.80 Price subject to change without notice CONTENTS 1 Abstract/Resume 1 Introduction 2 Acknowledgments 2 Geological samples 2 Eastern Canada 2 Newfoundland 4 Labrador 5 Nova Scotia 5 Quebec 7 Ontario 8 Western Canada 8 British Columbia 9 Northern Canada, mainland 9 Yukon Territory 12 Northwest Territories 17 Northern Canada, Arctic Archipelago 17 Banks Island 20 Melville Island 20 Russell Island 21 Prince of Wales Island 22 Somerset Island 22 Baffin Island 23 Devon Island 24 Northern Baffin Bay 24 Coburg Island 26 Southern Ellesmere Island 30 East-central Ellesmere Island 36 Pim Island 36 Brevoort Island 37 Northern Ellesmere Island 40 Cornwallis Island 41 Bathurst Island 42 Cameron Island 42 Seymour Island 42 Graham Island 42 Meighen Island 43 United States of America 43 Alaska 44 Greenland 44 North Star Bugt 44 Saunders Cb 45 Carey Cber 46 Olrik Fjord 47 Inglefield Land 48 Washington Land 49 Daugaard-Jensen Land 49 Svalbard 49 Nordaustlandet 51 Union of Soviet Socialist Republics 51 Tomskaya Oblast 51 Estonian SSR 51 Murmansk Oblast 52 References 59 Index Tables 1.
    [Show full text]
  • Hot Particles & the Cold
    Doc-11.qxd 1/21/99 10:25 AM Page 43 INVESTIGATING FALLOUT FROM NUCLEAR TESTING HOT PARTICLES & THE COLD WAR BY PIER ROBERTO DANESI ntering the next century, stratospheric fallout. The first more than 2000 nuclear consists of aerosols that are not Etest explosions of various carried across the tropopause sizes and varieties will have been and that deposit with a mean recorded. Nearly all of them residence time of up to 30 days. were conducted during the Cold During this time, the residues War period ending in the 1990s. become dispersed in the latitude Atmospheric nuclear tests band of injection, following dispersed radioactive residues trajectories governed by wind into the environment. They are patterns. Stratospheric fallout partitioned between the local arises from particles that later ground (or water surface) and give rise to widespread global the tropospheric and fallout, most of which is in the stratospheric regions, depending hemisphere where the nuclear on the type of test, location, and test was conducted. It accounts yield. The subsequent for most of the residues of long- radionuclide composition precipitation carrying the lived fission products. between the time of a nuclear residues leads to both local and Nuclear fallout results in the detonation and the time global fallout. Concentrations exposure of people to samples are collected for 43 of certain radionuclides can radioactivity through internal radiochemical analysis. A result in formation of “hot irradiation (due to inhalation process called fractionation particles” — tiny bits of of radioactive materials in air causes samples of radioactive materials containing radioactive or ingestion of contaminated residues to be unrepresentative chemical elements.
    [Show full text]
  • Soil Pollution: a Hidden Reality
    SOIL POLLUTION: A HIDDEN REALITY THANKS TO THE FINANCIAL SUPPORT OF RUSSIAN FEDERATION SOIL POLLUTION: AHIDDEN ISBN 978-92-5-130505-8 REALITY 9 789251 305058 I9183EN/1/04.18 SOIL POLLUTION AHIDDEN REALITY SOIL POLLUTION AHIDDEN REALITY Authors Natalia Rodríguez Eugenio, FAO Michael McLaughlin, University of Adelaide Daniel Pennock, University of Saskatchewan (ITPS Member) Reviewers Gary M. Pierzynski, Kansas State University (ITPS Member) Luca Montanarella, European Commission (ITPS Member) Juan Comerma Steffensen, Retired (ITPS Member) Zineb Bazza, FAO Ronald Vargas, FAO Contributors Kahraman Ünlü, Middle East Technical University Eva Kohlschmid, FAO Oxana Perminova, FAO Elisabetta Tagliati, FAO Olegario Muñiz Ugarte, Cuban Academy of Sciences Amanullah Khan, University of Agriculture Peshawar (ITPS Member) Edition, Design & Publication Leadell Pennock, University of Saskatchewan Matteo Sala, FAO Isabelle Verbeke, FAO Giulia Stanco, FAO FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 DISCLAIMER AND COPYRIGHT Recommended citation Rodríguez-Eugenio, N., McLaughlin, M. and Pennock, D. 2018. Soil Pollution: a hidden reality. Rome, FAO. 142 pp. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • THESIS the RATE of DECAY of FRESH FISSION PRODUCTS from a NUCLEAR REACTOR Submitted by David J. Dolan Department of Environment
    THESIS THE RATE OF DECAY OF FRESH FISSION PRODUCTS FROM A NUCLEAR REACTOR Submitted by David J. Dolan Department of Environmental and Radiological Health Sciences In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2013 Master’s Committee: Advisor: Thomas Johnson Alexander Brandl Rosemond Desir ABSTRACT THE RATE OF DECAY OF FRESH FISSION PRODUCTS FROM A NUCLEAR REACTOR Determining the rate of decay of fresh fission products from a nuclear reactor is complex because of the number of isotopes involved, different types of decay, half-lives of the isotopes, and some isotopes decay into other radioactive isotopes. Traditionally, a simplified rule of t-1.2 or 7s and 10s is used to determine the dose rate from nuclear weapons and can be to estimate the dose rate from fresh fission products of a nuclear reactor. An experiment was designed to determine the dose rate with respect to time from fresh fission products of a nuclear reactor. The 10 !"#$%&!' experiment exposed 0.5 grams of U308 to a fast neutron fluence rate of 1.09 ! 10 and a !"!!! thermal neutron fluence rate of 7.5 ! 1011 !"#$%&!' from a TRIGA Research Reactor (Lakewood, !"!!! CO) for ten minutes. The dose rate from the fission products was measured by four Mirion DMC 2000XB electronic personal dosimeters over a period of six days. The resulting dose rate with respect to time had a slope of t-1.024 and could be simplified to a rule of 10s: the dose rate of fresh fission products from a nuclear reactor decreases by a factor of 10 for every 10 units of time.
    [Show full text]
  • The Bomb on the Bayou: Nuclear Fear and Public Indifference in New Orleans, 1945 - 1966
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-14-2010 The Bomb on the Bayou: Nuclear Fear and Public Indifference in New Orleans, 1945 - 1966 Gregory J. Schloesser University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Schloesser, Gregory J., "The Bomb on the Bayou: Nuclear Fear and Public Indifference in New Orleans, 1945 - 1966" (2010). University of New Orleans Theses and Dissertations. 1179. https://scholarworks.uno.edu/td/1179 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Bomb on the Bayou: Nuclear Fear and Public Indifference in New Orleans, 1945 - 1966 A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Arts In The Department of History By Gregory J. Schloesser B.A., Loyola University, 1983 May 2010 ACKNOWLEDGEMENTS This thesis almost never came to pass.
    [Show full text]
  • Radioactivity Under the Sand – Analysis with Regard to the Treaty
    E-PAPER The Waste From French Nuclear Tests in Algeria Radioactivity Under the Sand Analysis with regard to the Treaty on the Prohibi- tion of Nuclear Weapons JEAN-MARIE COLLIN AND PATRICE BOUVERET Published by Heinrich Böll Foundation, July 2020 Radioactivity Under the Sand Contents Foreword 3 Summary 5 Introduction 7 1. French nuclear test sites 10 The Hamoudia zone for atmospheric nuclear tests: 13 February 1960 – 25 April 1961 15 The In Ekker zone for underground nuclear tests: 7 November 1961 – 16 February 1966 20 2. Waste under the sand 25 Non-radioactive waste 25 Contaminated material deliberately buried in the sand 29 Nuclear waste from tests and other experiments 36 3. Environmental and health issues in relation to the treaty on the prohibition of nuclear weapons 40 Positive obligations: Articles 6 and 7 43 Application of Articles 6 and 7 in Algeria 44 Cases of assistance for victims and of environmental remediation among States 46 Recommendations 49 References 52 Foreword When we think of nuclear testing, in our mind’s eye we see pictures of big mushroom clouds hovering over the Pacific Ocean, the steppe in Kazakhstan, the desert in New Mexico or in Algeria. Most of these pictures were taken more than half a century ago, when above- ground atmospheric testing was still common practice among nuclear powers. Things have improved significantly since then: explosive nuclear tests went underground from the mid-1960s onwards, and from 1998 onwards, only North Korea resorted to nuclear testing. All major nuclear powers – the US, Russia, France, the United Kingdom, China, India and Pakistan - declared some sort of testing moratorium before the end of the 20th century, and some of them signed or even ratified the Comprehensive Test Ban Treaty (CTBT) afterwards.
    [Show full text]
  • Long-Range Transport of Chemicals in the Environment
    SCIENCE DOSSIER Long-Range Transport of Chemicals in the Environment Dr. James Franklin April 2006 April 2006 This publication is the tenth in a series of Science Dossiers providing the scientific community with reliable information on selected issues. If you require more copies, please send an email indicating name and mailing address to [email protected]. The document is also available as a PDF file on www.eurochlor.org Science Dossiers published in this series: 1. Trichloroacetic acid in the environment (March 2002) 2. Chloroform in the environment: Occurrence, sources, sinks and effects (May 2002) 3. Dioxins and furans in the environment (January 2003) 4. How chlorine in molecules affects biological activity (November 2003) 5. Hexachlorobutadiene – sources, environmental fate and risk characterisation (October 2004) 6. Natural organohalogens (October 2004) 7. Euro Chlor workshop on soil chlorine chemistry 8. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds (December 2004) 9. Hexachlorobenzene - Sources, environmental fate and risk characterisation (January 2005) 10. Long-term transport of chemicals in the environment (April 2006) Copyright & Reproduction The copyright in this publication belongs to Euro Chlor. No part of this publication may be stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or otherwise, without the permission of Euro Chlor. Notwithstanding these limitations, an extract may be freely quoted
    [Show full text]