Tecnologías Intel: Microarquitectura Atom Núcleo Tremont En Lakefield

Total Page:16

File Type:pdf, Size:1020Kb

Tecnologías Intel: Microarquitectura Atom Núcleo Tremont En Lakefield Tecnologías Intel: Microarquitectura Atom núcleo Tremont en Lakefield Tomado de : https://www.anandtech.com/show/15009/intels-new-atom-microarchitecture-the-tremont-core, https://www.pcworld.com/article/3447343/intel-tells-more-about-tremont-the-atom-core-inside-the-surface- neo-and-lakefield-chip.html, Intel ha presentado formalmente Tremont, su núcleo de procesador Atom de próxima generación y la mitad del dúo de procesadores que formarán Lakefield y alimentarán el próximo Surface Neo de Microsoft. La compañía describio el diseño de Tremont en detalle en la Linley Fall Processor Conference. Intel reveló Tremont tan pronto como el pasado mes de enero en el CES showcase, cuando presentó Lakefield, una novedosa arquitectura híbrida con los procesadores Tremont y Core trabajando juntos. Es justo decir que se trata de un caso de misterio envuelto en un enigma, ya que el único producto anunciado que utiliza Lakefield es el Surface Neo de Microsoft, un dispositivo de doble pantalla similar a un PC, que Microsoft mostró brevemente hace unas semanas. Con Tremont, al menos, podemos empezar a desentrañar más de los misterios que subyacen a Surface Neo y Lakefield. Debido a que Tremont es una arquitectura de procesador, como la arquitectura de Sunny Cove que subyace a los chips Ice Lake Core de Intel de 10ª generación, ciertos detalles específicos, como la velocidad del reloj, por ejemplo, deben esperar hasta que los productos reales salgan al mercado. Pero sabemos los papeles que se le asignan a Tremont: Según Stephen Robinson, ingeniero principal senior de Intel, Tremont está siendo diseñado para dispositivos de red, PC y IO. Los productos construidos alrededor de Tremont consumirán entre 0.5W y 2W. Lakefield, y los núcleos de Tremont que contiene, se están fabricando utilizando el proceso de 10 nm de Intel. El desempeño de un solo subproceso será un 30 por ciento más alto que su predecesor, Goldmont Plus, basado en los puntos de referencia SPECint y SPECfp, dice Intel. Aunque Intel ha estado discutiendo mucho sobre su microarquitectura Core, es fácil olvidar que sus diseños Atom de menor potencia siguen prevaleciendo en muchas verticales comerciales. El año pasado, en la Cumbre de Arquitectura de Intel, la compañía presentó una hoja de ruta ampliada que muestra las próximas tres generaciones de Atom después de Goldmont Plus: Tremont, Gracemont y `Future Mont'. Tremont está listo para ser lanzado este año, siendo el primero en un diseño híbrido x86 de baja potencia llamado Lakefield para portátiles, y usando una nueva tecnología de apilamiento llamada Foveros construida sobre 10+ nm. En la conferencia de procesadores Linley de hoy, Intel dio a conocer más sobre la microarquitectura detrás de Tremont. Una breve historia de Atom La microarquitectura Atom de menor potencia de Intel se ha utilizado para una variedad de soluciones: plataformas integradas, redes, teléfonos inteligentes, tabletas, netbooks, dispositivos NAS, concentradores de control y una amplia gama de cosas que ni siquiera conocemos. El posicionamiento de Atom en comparación con Core fue pensado para que Atom fuera el diseño de núcleo más pequeño, ocupando menos área de matriz de silicio y siendo de menor rendimiento, pero en última instancia con menor potencia en una época en la que la microarquitectura Core se centraba más en diseños de alto rendimiento. Las últimas generaciones de Atom son fácilmente cuantificables: Silvermont basado en 22nm fue un gran producto para la compañía, que ha evolucionado hasta convertirse en Airmont, Goldmont, Goldmont Plus y ahora Tremont. Intel's Atom History Node Smartphone Tablet Netbook Networking Notebook Server Medfield Saltwell 32nm 2011 Clover Trail Cedar Trail Clover Trail+ Merrifield Bay Trail-M Rangeley Silvermont 22nm 2013 Bay Trail-T Moorefield Bay Trail-D Avoton Airmont 14nm 2015 'Riverton' Cherry Trail-T Braswell Denverton Willow Trail Goldmont 14nm 2016 'Broxton' Apollo Lake Apollo Lake Goldmont+ 14nm 2017 Gemini Lake Tremont 10+ 2019 Lakefield Lakefield Snow Ridge Las líneas de la familia Atom se confunden un poco con el juego de Intel en todos estos espacios. El núcleo del átomo dentro de una familia dada suele ser idéntico (la configuración de L2 puede cambiar), y debido a la SoC en juego, podría obtener un nombre diferente basado en el mercado al que se dirigía. Intel descartó el programa de teléfonos inteligentes con Broxton en 2016, y el tipo de tableta de SoC también ha desaparecido. Con Lakefield, que combina Core y Atom, podría utilizarse de nuevo en Tablets para 2019/2020, pero lo veremos en Notebooks con el Surface Pro Neo y en mercados de networking/embedded como Snow Ridge. Cabe señalar que a medida que Intel amplió el alcance de su microarquitectura Core, de 1,5 W por núcleo a más de 20 W por núcleo, ha convertido a Atom en un tipo de producto más especializado. Atom todavía tenía esa ventaja de super-baja potencia, con un área de troquelado mucho más pequeña, pero también ha tenido un rendimiento súper bajo con una función de paso cuantificable por debajo de lo que Core puede proporcionar. Con Tremont, el objetivo principal de Intel era llevar el rendimiento de rosca única del diseño de Atom en paridad a Core en el extremo inferior del rendimiento, con una superposición considerable entre el rendimiento de un diseño de núcleo único y el de un diseño de átomo único. Intel publicó este gráfico para demostrar cómo se ve esto en el silicio temprano: Ahora, las plataformas Atom de Intel no han tenido la mejor prensa en los últimos años. Además de proporcionar unos portátiles realmente bonitos con una gama de 200 dólares en el lado del consumidor, el lado de la empresa ha estado lidiando con un problema de degradación del reloj que, en última instancia, hace que los sistemas Atom construidos con procesadores C2000 no puedan arrancar, lo que fue una mala noticia para los sistemas Atom integrados, diseñados para funcionar durante 10-20 años. Intel ha corregido desde entonces ese error con una actualización de silicio, pero el objetivo de ese silicio era que no se tocara durante una generación. Con eso aparte, Intel está buscando revivir su fortuna en Atom con el nuevo diseño de Tremont, y está deseando que llegue Gracemont y más allá. Un mayor rendimiento, el cruce con Core, y con hardware construido sobre el último proceso 10+ de Intel, debería ofrecer una serie de oportunidades. Hasta que tengamos en nuestras manos el hardware, vamos a examinar el diseño. Metas de diseño para Tremont La peculiaridad del diseño de CPU es que para los ingenieros que han estado incrustados en este espacio durante 20 años, cuando se les enseñó sobre el diseño de procesadores, el enfoque principal era el rendimiento. Se prestó poca atención al poder. Avanzar rápidamente hasta el día de hoy, y la potencia es el punto del que se habla a menudo cuando se trata de dispositivos alimentados por batería, y aprender a diseñar tanto para el rendimiento como para la potencia se convierte en un intenso acto de equilibrio para todos los ingenieros implicados. Hemos hablado con compañías que sólo permiten mejoras en el rendimiento si el aumento de potencia es como mucho igual en porcentaje, o quizás una relación 2:1 de rendimiento/potencia. Es un pastel difícil de hornear. Lo interesante de nuestra reunión informativa con Intel es que afirmaron específicamente que Tremont se construyó teniendo en cuenta el rendimiento, y el objetivo era lograr un aumento considerable en la producción bruta de reloj a reloj en comparación con la generación anterior de Atom, Goldmont Plus. Basado en las propias métricas de Intel, es decir, el uso de SPEC, Intel va a reclamar un aumento promedio del 30% en el rendimiento de isofrecuencia en el rendimiento básico de Tremont sobre Goldmont Plus. Vale la pena señalar aquí que estos datos son de un diseño temprano de Tremont que se nos dijo, y deberían representar un mínimo de levantamiento. El gráfico está algo sesgado en el extremo superior, con tres de las pruebas SPEC obteniendo un aumento del 65%+, y en el momento de la discusión, Intel no tenía que hacer exactamente las pruebas que eran (probablemente libquantum, lbm). No nos dijeron cómo se compiló el código, sin embargo, Intel declaró que los mismos binarios compilados se usaban tanto en Tremont como en Goldmont Plus. Intel no indicó si en realidad están ajustando el reloj de cada núcleo para que coincida con el de los demás, ni si están haciendo un análisis del desempeño por reloj utilizando la frecuencia como factor de división. Estos resultados deben tomarse al pie de la letra. Un salto medio del 30% en rendimiento es un salto considerable para cualquier cadencia de generación a generación. Tomarlo como está se siente prematuro: aparte de los avances microarquitectónicos y un salto a 10nm, tiene que haber algo en juego aquí - ya sea el presupuesto de energía de Atom se ha disparado, o el área de la matriz. Con Intel explícitamente fuera de la puerta diciendo que su enfoque en el rendimiento, un cínico va a sugerir que algo más ha pagado ese precio, y con ese fin Intel no estaba preparado para hablar de ventanas de energía o área de morir, aunque señalaron a la ya anunciada CPU de Lakefield, que tiene un 1 x núcleo + 4 x Tremont diseño y se compara con las CPUs de 7 W. Comparar 14nm Goldmont Plus (que es 14nm estándar, no 14+ o 14+++) con un núcleo de Tremont 10+ va a ser difícil: el núcleo de Tremont tiene más para impulsar ese rendimiento, sin embargo, lo que no se sabe es cuánto espacio se ahorró al pasar de 14nm a 10+ y si las piezas adicionales hacen que el núcleo sea más grande o más pequeño en general.
Recommended publications
  • Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
    Intel® Architecture Instruction Set Extensions and Future Features Programming Reference 319433-037 MAY 2019 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica- tions. Current characterized errata are available on request. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1- 800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Intel, the Intel logo, Intel Deep Learning Boost, Intel DL Boost, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
    [Show full text]
  • Horizontal PDF Slides
    1 2 Speed, speed, speed $1000 TCR hashing competition D. J. Bernstein Crowley: “I have a problem where I need to make some University of Illinois at Chicago; cryptography faster, and I’m Ruhr University Bochum setting up a $1000 competition funded from my own pocket for Reporting some recent work towards the solution.” symmetric-speed discussions, Not fast enough: Signing H(M), especially from RWC 2020. where M is a long message. Not included in this talk: “[On a] 900MHz Cortex-A7 NISTLWC. • [SHA-256] takes 28.86 cpb ::: Short inputs. • BLAKE2b is nearly twice as FHE/MPC ciphers. • fast ::: However, this is still a lot slower than I’m happy with.” 1 2 3 Speed, speed, speed $1000 TCR hashing competition Instead choose random R and sign (R; H(R; M)). D. J. Bernstein Crowley: “I have a problem where I need to make some Note that H needs only “TCR”, University of Illinois at Chicago; cryptography faster, and I’m not full collision resistance. Ruhr University Bochum setting up a $1000 competition Does this allow faster H design? funded from my own pocket for TCR breaks how many rounds? Reporting some recent work towards the solution.” symmetric-speed discussions, Not fast enough: Signing H(M), especially from RWC 2020. where M is a long message. Not included in this talk: “[On a] 900MHz Cortex-A7 NISTLWC. • [SHA-256] takes 28.86 cpb ::: Short inputs. • BLAKE2b is nearly twice as FHE/MPC ciphers. • fast ::: However, this is still a lot slower than I’m happy with.” 1 2 3 Speed, speed, speed $1000 TCR hashing competition Instead choose random R and sign (R; H(R; M)).
    [Show full text]
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • Broadwell Skylake Next Gen* NEW Intel NEW Intel NEW Intel Microarchitecture Microarchitecture Microarchitecture
    15 лет доступности IOTG is extending the product availability for IOTG roadmap products from a minimum of 7 years to a minimum of 15 years when both processor and chipset are on 22nm and newer process technologies. - Xeon Scalable (w/ chipsets) - E3-12xx/15xx v5 and later (w/ chipsets) - 6th gen Core and later (w/ chipsets) - Bay Trail (E3800) and later products (Braswell, N3xxx) - Atom C2xxx (Rangeley) and later - Не включает в себя Xeon-D (7 лет) и E5-26xx v4 (7 лет) 2 IOTG Product Availability Life-Cycle 15 year product availability will start with the following products: Product Discontinuance • Intel® Xeon® Processor Scalable Family codenamed Skylake-SP and later with associated chipsets Notification (PDN)† • Intel® Xeon® E3-12xx/15xx v5 series (Skylake) and later with associated chipsets • 6th Gen Intel® Core™ processor family (Skylake) and later (includes Intel® Pentium® and Celeron® processors) with PDNs will typically be issued no later associated chipsets than 13.5 years after component • Intel Pentium processor N3700 (Braswell) and later and Intel Celeron processors N3xxx (Braswell) and J1900/N2xxx family introduction date. PDNs are (Bay Trail) and later published at https://qdms.intel.com/ • Intel® Atom® processor C2xxx (Rangeley) and E3800 family (Bay Trail) and late Last 7 year product availability Time Last Last Order Ship Last 15 year product availability Time Last Last Order Ship L-1 L L+1 L+2 L+3 L+4 L+5 L+6 L+7 L+8 L+9 L+10 L+11 L+12 L+13 L+14 L+15 Years Introduction of component family † Intel may support this extended manufacturing using reasonably Last Time Order/Ship Periods Component family introduction dates are feasible means deemed by Intel to be appropriate.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Intel® Omni-Path Architecture Overview and Update
    The architecture for Discovery June, 2016 Intel Confidential Caught in the Vortex…? Business Efficiency & Agility DATA: Trust, Privacy, sovereignty Innovation: New Economy Biz Models Macro Economic Effect Growth Enablers/Inhibitors Intel® Solutions Summit 2016 2 Intel® Solutions Summit 2016 3 Intel Confidential 4 Data Center Blocks Reduce Complexity Intel engineering, validation, support Data Center Blocks Speed time to market Begin with a higher level of integration HPC Cloud Enterprise Storage Increase Value VSAN Ready HPC Compute SMB Server Block Reduce TCO, value pricing Block Node Fuel innovation Server blocks for specific segments Focus R&D on value-add and differentiation Intel® Solutions Summit 2016 5 A Holistic Design Solution for All HPC Needs Intel® Scalable System Framework Small Clusters Through Supercomputers Compute Memory/Storage Compute and Data-Centric Computing Fabric Software Standards-Based Programmability On-Premise and Cloud-Based Intel Silicon Photonics Intel® Xeon® Processors Intel® Solutions for Lustre* Intel® Omni-Path Architecture HPC System Software Stack Intel® Xeon Phi™ Processors Intel® SSDs Intel® True Scale Fabric Intel® Software Tools Intel® Xeon Phi™ Coprocessors Intel® Optane™ Technology Intel® Ethernet Intel® Cluster Ready Program Intel® Server Boards and Platforms 3D XPoint™ Technology Intel® Silicon Photonics Intel® Visualization Toolkit Intel Confidential 14 Parallel is the Path Forward Intel® Xeon® and Intel® Xeon Phi™ Product Families are both going parallel How do we attain extremely high compute
    [Show full text]
  • Intel Atom Processor E3800 Product Families in Retail
    White Paper Intelligent Systems Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families Intel® Celeron® Processor and Intel® Atom™ Processor E3800 Product Families in Retail Transform user experiences in entry retail devices with full HD video decode, improved graphics, quad-core compute performance, and built-in security Introduction Advanced features include: Intelligent devices that provide HD • Media: Scalable full HD video playback video capability, compelling graphics, includes support for 10 or more responsive performance, and security are simultaneous video streams. transforming in-store retail experiences. • Graphics: Gen 7 Intel® Graphics Today’s retail customers expect POS Architecture enables enhanced visual systems, interactive kiosks, and digital processing over previous-generation signs to support rich media and graphics Intel Atom processors. experience for timely and visually compelling digital promotions and a range • Power and Form Factor: SoC with of choices at checkout, with confidence smaller package size and industrial “The Intel Celeron processor and that the device provides security to temperature range is ideal for thin, protect transactional and personal data. light and environmentally adaptive Intel Atom processor E3800 entry retail devices. The Intel® Celeron® processor and Intel® product families provide full Atom™ processor E3800 product families • Compute: Quad-core processing1 HD simultaneous video decode for intelligent systems help bring these enables improved out-of-order compute capabilities to entry retail devices. performance for more responsive user capability, delivering interactive Compared to previous-generation Intel experiences. Celeron and Atom processors, this new 2-D and 3-D graphics with much • Security: Built-in hardware-assisted processor family provides significantly security enhancements include Intel® improved playback enabling improved media and graphics performance AES New Instructions (Intel® AES NI)2 and enables smaller, more power-efficient immersive visual experiences and Secure Boot.
    [Show full text]
  • Intel® Atom™ Processor E3800 the Latest Low Power Platform E3800 Family Platform for Intelligent Systems
    Intel® Atom™ Processor E3800 The Latest Low Power Platform E3800 Family Platform for Intelligent Systems tŚŝůĞĚĞƐŝŐŶĞĚƚŽďĞĂƚƌƵĞƚĞƐƚŽĨ/ŶƚĞů͛ƐƉĞƌĨŽƌŵĂŶĐĞŝŶƚŚĞƵůƚƌĂŵŽďŝůĞƐƉĂĐĞ͕^ŝůǀĞƌŵŽŶƚŝƐƚŚĞĮƌƐƚƚƌƵĞĂƌĐŚŝƚĞĐƚƵƌĞ ƵƉĚĂƚĞƚŽ/ŶƚĞů͛ƐƚŽŵƉƌŽĐĞƐƐŽƌƐŝŶĐĞŝƚƐŝŶƚƌŽĚƵĐƟŽŶŝŶϮϬϬϴ͘>ĞǀĞƌĂŐŝŶŐ/ŶƚĞů͛ƐĮƌƐƚϮϮŶŵƉƌŽĐĞƐƐĂŶĚĂǀĞƌLJůŽǁƉŽǁĞƌͲ ŵŝĐƌŽĂƌĐŚŝƚĞĐƚƵƌĞ͕^ŝůǀĞƌŵŽŶƚĂŝŵƐƐƋƵĂƌĞůLJĂƚƚŚĞůĂƚĞƐƚ<ƌĂŝƚĐŽƌĞƐĨƌŽŵYƵĂůĐŽŵŵĂŶĚZD͛ƐŽƌƚĞdžϭϱ͘ĂƐĞĚŽŶ ^ŝůǀĞƌŵŽŶƚ͕/ŶƚĞůΠŝŶƚƌŽĚƵĐĞƐϯϴϬϬƉƌŽĚƵĐƚĨĂŵŝůLJ͕ĂƐĞƌŝĞƐŽĨƐLJƐƚĞŵŽŶĐŚŝƉ;^ŽͿĚĞƐŝŐŶĞĚĨŽƌůŽǁͲƉŽǁĞƌ͕ĨĞĂƚƵƌĞͲƌŝĐŚ ĂŶĚŚŝŐŚůLJͲĐĂƉĂďůĞĂƉƉůŝĐĂƟŽŶƐ͘ ϯϴϬϬƉƌŽĚƵĐƚĨĂŵŝůLJƚĂŬĞƐƵƉƚŽĨŽƵƌ^ŝůǀĞƌŵŽŶƚĐŽƌĞƐ͕ĂŶĚĨŽƌƚŚĞĮƌƐƚƟŵĞŝŶĂŶƵůƚƌĂŵŽďŝůĞ/ŶƚĞů^Ž͕ŝƐƉĂŝƌĞĚǁŝƚŚ /ŶƚĞů͛ƐŽǁŶŐƌĂƉŚŝĐƐ/W͘/ŶŽƚŚĞƌǁŽƌĚƐ͕ƌĂƚŚĞƌƚŚĂŶƵƐŝŶŐĂ'WhďůŽĐŬĨƌŽŵ/ŵĂŐŝŶĂƟŽŶdĞĐŚŶŽůŽŐŝĞƐ͕E3800 product family leverages the same GPU architecture as the 3rdŐĞŶĞƌĂƟŽŶ/ŶƚĞůŽƌĞƉƌŽĐĞƐƐŽƌƐ;ĐŽĚĞŶĂŵĞĚ/ǀLJƌŝĚŐĞͿ͘ Silvermont Core Highlights Better Performance Better Power Efficiency 22nm Architecture 200 250 150 300 100 350 50 400 0 450 500 Out-of-order execuon engine Wider dynamic operang range 3D Tri-gate transistors tuned for New mul-core and system fabric Enhanced acve and idle power SoC products architecture management Architecture and design co-opmized with the process New IA instrucons extensions (Intel Core Westmere Level) Bay Trail: Not just for Atoms anymore E3800 product family combines a CPU based on Intel’s new Silver- mont architecture with a GPU that is architecturally similar to (but 4xPCIe* less powerful than) the HD 4000 graphics engine integrated in the 3rdŐĞŶĞƌĂƟŽŶ/ŶƚĞůΠŽƌĞƉƌŽĐĞƐƐŽƌƐůĂƵŶĐŚĞĚŝŶĞĂƌůLJϮϬϭϮ͘dŚĞƐĞ
    [Show full text]
  • Validation Report
    National Information Assurance Partnership Common Criteria Evaluation and Validation Scheme Validation Report Cisco Network Convergence System 1000 Series Report Number: CCEVS-VR--11093 Dated: 07/07/2020 Version: 1.0 National Institute of Standards and Technology National Security Agency Information Technology Laboratory Information Assurance Directorate 100 Bureau Drive 9800 Savage Road STE 6940 Gaithersburg, MD 20899 Fort George G. Meade, MD 20755-6940 Cisco Network Convergence System 1000 SeriesValidation Report Version 1.0, 07/06/2020 ACKNOWLEDGEMENTS Validation Team Paul Bicknell: Senior Validator Randy Heimann Linda Morrison: Lead Validator Clare Olin Common Criteria Testing Laboratory Chris Keenan Katie Sykes Gossamer Security Solutions, Inc. Catonsville, MD ii Cisco Network Convergence System 1000 SeriesValidation Report Version 1.0, 07/06/2020 Table of Contents Contents 1 Executive Summary .................................................................................................... 1 2 Identification ............................................................................................................... 2 3 Architectural Information ........................................................................................... 3 3.1 TOE Evaluated Configuration ............................................................................ 3 3.2 TOE Architecture ................................................................................................ 3 3.3 Physical Boundaries ...........................................................................................
    [Show full text]
  • Sales Opportunity Guide
    Intel® Pentium® Silver and Celeron® Processors Sales Opportunity Better Performance Faster Security And battery life Enabled Browsing better web browsing 3 UP TO UP 79% experience better Windows* browsing and sharing application hours of Security- with password 1 2 ** APPROX. UP TO UP 58% performance 10 battery life enabled managers Flexible connectivity Enhanced media and choices graphics experience graphics Gigabit Fast networking performance performance with the first Gigabit Wi-Fi PC 4 UP TO UP 2.7X improvement Wi-fi* capability on entry level systems – faster than wired Dynamically boost your display visibility outdoors in sunlight with Gigabit Ethernet connection5,6 Local Adaptive Contrast Enhancement (LACE) technology 1. As projected by SYSmark* 2014 v1.5 on Intel® Pentium® Silver Processor N5000 PL1=6W TDP, 4C/4T, up to 2.7GHz, Memory: 2x2GB DDR4 2400, Storage: Intel SSD, OS: Windows* 10 RS2 vs. Intel® Pentium® Processor N3540, PL1=7.5W TDP, 4C/4T, up to 2.66GHz, Memory: 2x2GB DDR3L-1333, Storage: Intel SSD, OS: Windows* 10 RS2 > 2. As projected by 1080p Video Playback on Intel® Pentium® Silver Processor N5000 , PL1=6W TDP, 4C/4T, up to 2.7GHz, Memory: 2x2GB DDR4 2400, Storage: Intel SSD, OS: Windows* 10 RS2 Battery: 35WHr, 12.5", 1920x1080 > 3. As projected by WebXPRT* 2015 on Intel® Pentium® Silver Processor N5000 PL1=6W TDP, 4C/4T, up to 2.7GHz, Memory: 2x2GB DDR4 2400, Storage: Intel SSD, OS: Windows* 10 RS2 vs. Intel® Pentium® Processor N3540, PL1=7.5W TDP, 4C/4T, up to 2.66GHz, Memory: 2x2GB DDR3L-1333, Storage: Intel SSD, OS: Windows* 10 RS2 > 4.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.2
    The Intel x86 Microarchitectures Map Version 2.2 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • New instructions: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]