Phytotaxa 236 (3): 237–248 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.3.4

Mutinus albotruncatus (, ), a new phalloid from the Brazilian semiarid, and a key to the world

BIANCA D. B. DA SILVA*1, TIARA S. CABRAL2, MARÍA P. MARTÍN3, PAULO MARINHO4, FRANCISCO D. CALONGE5 & IURI GOULART BASEIA6 1Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] 2Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia–INPA; Av. André Araújo, 2936–Petrópolis; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 3Departamento de Micología, Real Jardín Botánico–CSIC, Plaza de Murillo 2, 28014 Madrid, Spain. Email: [email protected] 4Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte 59072-970, Brazil. Email: [email protected] 5Departamento de Micología, Real Jardín Botánico–CSIC, Plaza de Murillo 2, 28014 Madrid, Spain. Email: [email protected] 6Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] *Corresponding author: Bianca D. B. da Silva, email: [email protected]

Abstract

A new species of the has been found in the semiarid region of Northeastern Brazil. Mutinus albotruncatus is described macro- and microscopically, and is characterized by the white pseudostipe and truncated apex. Molecular and ecological data are also provided. Phylogenetic analyses, based on LSU (large subunit of nuclear ribosomal DNA) and atp6 (subunit 6 of ATP synthase) sequences, support the inclusion of this new species in the genus Mutinus. A provisional key to the species of Mutinus known in the world is proposed.

Key words: Gasteromycetes, fungal , phalloid fungi, phylogeny, stinkhorns

Introduction

The genus Mutinus Fries (1849: 434) belongs to the family Corda (1842: 29), of the order Phallales Fischer (1898: 276), and the Subclass Phallomycetidae Hosaka, Castellano & Spatafora (2006: 955) (Hosaka et al. 2006). It is characterized by presenting a globose to ovoid, white to yellowish immature basidiome basally attached by white rhizomorphs; with a mucilaginous layer inside, splitting at the apex into two or three lobes and finally collapsing against the base of the spongy pseudostipe, cylindrical to fusiform, hollow, perforated or not at the tip; mucilaginous, covering the apical portion of the pseudostipe; and elliptical and smooth (Bottomley 1948, Dring 1964, Liu 1984, Pegler et al. 1995, Calonge 1998). Cunningham (1944) separates the species of the genus into three sections: Glabrosi, characterized by the fertile portion smooth or rugulose; Granulosi, with fertile portion with irregular pseudoparenchymatous processes, appearing pseudo-reticulate; and Tuberculosi, with fertile portion covered with digitate processes. Mutinus is close to Junius ex Linnaeus (1753: 1178), differing by the presence of gleba on the receptacle on the apical part of the pseudostipe in Phallus (Calonge 1998). According to Index Fungorum (http://www.indexfungorum.org/Names/Names.asp—accessed April 2015) and MycoBank (http://www.mycobank.org/—accessed April 2015) there are 36 species of Mutinus described to date. (Huds.) Fries (1849: 434) is the type species of the genus and six synonyms may be considered: Aedycia Rafinesque (1808: 358), Caromyxa Montagne (1856: 281), Corynites Berk. & M.A. Curtis (1853: 136), Cynophallus (Fr.) Corda (1842: 29), Floccomutinus Hennings (1895: 109), and Jansia Penzig (1899: 139) (Kirk et al. 2008). The genera Jansia and Floccomutinus have been shown molecularly to belong to the genus Mutinus (Degreef et al. 2013, Trierveiler-Pereira et al. 2014).

Accepted by Genevieve Gates: 13 Nov. 2015; published: 1 Dec. 2015 237 Seven Mutinus species are recorded from Brazil, distributed throughout the Northeast, North, and South Regions of the country. The first species was Mutinus bambusinus (Zoll.) E. Fischer (1886: 30), cited by Möller (1895) and Rick (1961), followed by M. borneensis Cesati (1879: 13), M rugulosus Rick (1929: 300) (Rick, 1961), M. argentinus Spegazzini (1887: 62) (Meijer 2006, Magnago et al. 2013), M. caninus (Baseia et al. 2006, Trierveiler-Pereira et al. 2011, Magnago et al. 2013), M. elegans (Mont.) E. Fischer (1888: 13) (Cortez et al. 2008), and M. fleischeri Penzig 1899: 137) (Cabral et al. 2014). Of those, according to Möller (1895) and Liu (1984), M. argentinus is considered synonymous with M. bambusinus, while Dring & Rose (1977) argue that the true M. bambusinus has a longer, often more strongly colored fertile portion, with a much more marked sterile tip than M. argentinus. In the Northeast Region of Brazil, only M. argentinus and M. caninus have been recorded, growing in vegetated areas of Atlantic forest from the state of Rio Grande do Norte. During our studies on in Brazil, we collected specimens (UFRN-Fungos 2025) of a taxon of Phallaceae with a lignicolous habitat, and the morphological characters of the genus Mutinus, although the apical portion of the pseudostipe resembles species of the genus Phallus. In order to clarify the phylogenetic position of these specimens, sequences of LSU (large subunit of nuclear ribosome DNA) and atp6 (subunit 6 of ATP synthase) were compared with homologous sequences from GenBank published by Degreef et al. (2013) and Hosaka et al. (2006), and newly generated sequences from other Mutinus species from Brazil. Morphological characters were also compared with all the species of the genus Mutinus described to date. Thus, after seven decades, a new Mutinus species is described. Moreover, a provisional key for all known species of the genus Mutinus is proposed (not considering the synonyms).

Materials and methods

Morphological analysis The specimens studied were collected in the Floresta Nacional do Araripe (FLONA Araripe), State of Ceará, Brazil (7°11’42”S, 39°13’28”W), located in a semiarid region (Ministério do Meio Ambiente 2004). The macroscopic analyses were performed on fresh material, using a stereoscopic microscope. Colors were standardized according to Kornerup & Wanscher (1978). For the analysis of microstructures, hand-cut sections of dried material were mounted in 5% KOH, Melzer’s reagent and Congo Red for light microscopic examination. We measured 20 of each of the following structures: the basidiospores, the pseudoparenchymatous cells of the pseudostipe, the hyphae of the volva, and the hyphae of the rhizomorphs. The material was deposited in the Herbarium UFRN at the Universidade Federal do Rio Grande do Norte, Brazil. Herbarium acronyms are according to Thiers (2015).

DNA extraction, PCR amplification, and DNA sequencing DNA was extracted from fresh basidiomata of collection UFRN-Fungos 2025 (Table 1), following Silva et al. (2013). Since very few Mutinus sequences were found in GenBank, DNA was isolated from two other Mutinus collections kept at the UFRN-Fungos herbarium. The LSU and atp6 regions were amplified using previously described primers LR0R/ LR5 (Vilgalys & Hester 1990) and ATP6-1/ATP6-2 (Kretzer & Bruns 1999). PCR amplifications were performed with 50ng of DNA in a basic reaction of 0.5µl of each 10µM primer, 0.8µl of dNTP’s (10mM), 0.08µl of 5U/µl KAPA Taq

Standard (KAPA Biosystems), 2µl of KAPA Taq Buffer A (10X, with 1.5 mM MgCl2 at 1X) and 1.5µl of 25mM MgCl2 for atp6 PCR reactions. The atp6 amplifications were done following thermal cycling conditions of Kretzer & Bruns (1999), while LSU cycling parameters were 1 cycle of 94ºC for 3 min., 35 cycles of 94ºC for 1 min., 53ºC for 30 sec. and 72ºC for 1 min., and final extension of 72ºC for 10 min. The PCR reactions were confirmed in a 1.5% agarose gel, stained with GelRed™ (Biotium, City, Country) and examined under UV light. The PCR fragments were purified using FastAP™ (Thermo Scientific, City, Country), following the manufacturer’s instructions. Sequencing reactions were performed with BigDye® Terminator v3.1 Cycle Sequencing Kit with the same primers as in the PCR, and submitted to ABI 3500 Genetic Analyzer. The barcoding sequence (ITS: internal transcribed spacer nrDNA, Schoch et al. 2012) of the new species was deposited in GenBank.

238 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL. Table 1. Species used to reconstruct the phylogenetic tree and their herbarium or isolate numbers and GenBank accession numbers. Species Herbarium voucher or GenBank Accession Number isolate number LSU atp6 Anthurus archeri (Berk.) E. Fisch. REB2182 DQ218624 DQ218913 Abrachium floriforme (Baseia & Calonge) Baseia & T.S. Cabral UFRN-Fungos 1481 JF968440 JF968438 Aseroë rubra Labill. OSC122632 DQ218625 DQ218914 Clathrus chrysomycelinus Möller PDD75096 DQ218626 DQ218915 Dictyophora duplicata (Bosc) E. Fisch. OSC38819 DQ218481 DQ218765 Dictyophora indusiata (Vent.) Desv. OSC36088 DQ218627 DQ218917 Dictyophora multicolor Berk. & Broome MEL1054289 DQ218628 DQ218918 Gelopellis sp. H4397 DQ218630 DQ218919 Gelopellis sp. H4571 DQ218631 DQ218920 cibarium Tul. & C. Tul. OSC122734 DQ218633 DQ218922 Ileodictyon gracile Berk. MEL2054561 DQ218636 DQ218925 Itajahya rosea (Delile) E. Fisch. UFRN-Fungos 535 JF968441 JF968439 Kobayasia nipponica (Kobayasi) S. Imai & A. Kawam OSC122862 DQ218638 DQ218926 Laternea triscapa Turpin OSC122864 DQ218640 DQ218928 Lysurus borealis (Burt) Henn. OSC39531 DQ218641 DQ218929 Lysurus mokusin (L.) Fr. MB02012 DQ218507 DQ218791 Mutinus albotruncatus sp. nov. UFRN-Fungos 2025 KT183493 KT183490 (Mont.) E. Fisch. OSC107657 AY574643 AY574785 Mutinus zenkeri (Henn.) E. Fisch. JD837 KC128656 - Mutinus zenkeri (Henn.) E. Fisch. JD782 KC128655 - Mutinus zenkeri (Henn.) E. Fisch. JD781 KC128654 - Mutinus sp. UFRN-Fungos 2021 KT183495 KT183492 Mutinus sp. UFRN-Fungos 1371 KT183494 KT183491 Phallobata alba G. Cunn. PDD76197 DQ218642 DQ218930 Phallus costatus Vent. MB-02-040 DQ218513 DQ218797 Phallus hadriani Vent. OSC107658 DQ218514 DQ218798 Phallus ravenelii Berk. & M.A. Curtis CUW s.n. DQ218515 DQ218799 Protubera borealis S. Imai OKM21898 DQ218516 DQ218800 Protubera canescens G.W. Beaton & Malajczuk MEL2105035 DQ218645 DQ218932 Protubera jamaicensis (Murrill) Zeller T28248 DQ218647 DQ218933 Protubera maracuja Möller Garido2550-A DQ218518 DQ218802 Protubera parvispora Castellano & Beever OSC59689 DQ218648 DQ218934 Protubera sabulonensis Malloch T12737 DQ218649 DQ218935 (E. Fisch.) Lloyd ASM-4705 AF213128 Simblum sphaerocephalum Schltdl. MB02016 DQ218521 DQ218806 Trappea darkeri (Zeller) Castellano OSC65085 DQ218651 DQ218938

Outgroup Hysterangium cistophilum (Tul. & C. Tul.) Zeller & C.W. Dodge T1088 DQ218493 DQ218777 Hysterangium album Zeller & C.W. Dodge T15139 DQ218490 DQ218774

Sequence alignment and phylogenetic analysis Sequences were visualized in ChromasPro v 1.7.6 (Technelysium Pty Ltd, City, Country) and assembled in Geneious XX. The newly generated atp6 and LSU sequences and those selected from Genbank (Table 1) were aligned and manually edited in MEGA v. 5.2 (Tamura et al. 2007), resulting in two different matrices. Dataset congruence was analyzed using a preliminary parsimony bootstrapping in PAUP* v.4.0b10 (Swoford 2003), and performing 1000 non-parametric replicates (Felsenstein 1985) with the “fast” stepwise-addition option. Conflicts among datasets were considered according to Hillis & Bull (1993). Since no conflicts were detected, the datasets were concatenated to reconstruct the phylogenetic trees. The concatenated alignment was analyzed by maximum parsimony (MP), using PAUP* v.4.0b10, and Bayesian inference, using Mr. Bayes 3.2.5 (Ronquist et al. 2012). The MP analysis was conducted under heuristic searches with TBR branch swapping algorithm and initial tree obtained by stepwise addition with random addition of 100 times repeated sequences and 1000 replicates as bootstrap (bs) settings. a new phalloid from Brazil Phytotaxa 236 (3) © 2015 Magnolia Press • 239 In the Bayesian analysis the two markers were partitioned as separate subsets, with topology linked across subsets, but with separate model parameters values for each. Nucleotide substitution models were chosen with MrModelTest (Nylander 2004). Two parallel runs were executed with four incrementally heated simultaneous MCMC simulations over 2 million generations, with trees sampled at every 1000 generations. Parts of the trees were discarded in a burn-in stage, by observing the average standard deviation of split frequencies values, to estimate posterior probabilities (pp) and a consensus tree was reconstructed with the rest. Trees were visualized and edited in FigTree version 1.4.2 (http:// tree.bio.ed.ac.uk/software/figtree/). These data are also available in TreeBASE under ID 18307.

Figure 1. Phylogenetic tree obtained by 50% majority-rule consensus, on Bayesian analysis. Posterior probabilities (>0.6) are indicated before bars and bootstrap values (>50%) after bars, on nodes.

240 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL. Results

Molecular results We were able to generate LSU, atp6 and ITS sequences from the Brazilian specimens (Table 1, in bold). The concatenated matrix of LSU and atp6 had 1250 positions (584 LSU, and 666 atp6). In the MP analysis, 761 positions were constant, 117 parsimony-uninformative and 372 parsimony-informative. Parsimony tree scores were identical for all the trees: consistency index (CI) = 0.496, retention index (RI) = 0.702 and homoplasy index = 0.504. The nucleotide substitution model selected by MrModel was GTR+I+G, for both LSU and atp6 analyses. Best likelihood ratings for each run were lnL1 = -8637.32 and lnL2 = -8677.50. The 50% majority-rule consensus Bayesian tree is shown in Fig. 1. This consensus tree had almost identical topology as the MP consensus tree (available on TreeBase, ID 18307); the boostrap values are indicated on the branches of the 50% majority-rule consensus tree (Fig. 1). According to our analyses, the genus Mutinus is monophyletic with strong support (pp = 1.0; bs = 90%) and the sequences obtained from Brazilian specimens (UFRN-Fungos 2025) are included in the Mutinus clade. Based on molecular analyses and morphological data, a new Mutinus species is here described.

Taxonomy

Mutinus albotruncatus B.D.B. Silva & Baseia, sp. nov. (Fig. 2, 3 and 4) MycoBank no.: MB 812516

Etymology:—albotruncatus refers to the white pseudostipe and truncated apex. Diagnosis:—Egg fabiform to reniform, 6–17 mm height × 5–8 mm in diameter. Pseudostipe cylindrical, 50–70 mm high, apically perforate, sterile portion white, straight, not chambered; fertile portion doliform, truncated, slightly rugulose, covering about 1/3 of the total length of pseudostipe. Gleba confined in the upper region of the pseudostipe, mucilaginous. Basidiospores 3.8–5.0 × 2.2–2.5 µm, ellipsoid, smooth. Type:—BRAZIL. Ceará: Crato, Município Santana do Cariri, FLONA Araripe, 07°13.284’S, 39°31.445’W, 947 m, 24 January 2011, BDB Silva & BT Goto (holotype UFRN 2025, isotype UFRN 2589) [GenBank accession numbers—LSU: KT183493, atp6: KT183490, ITS: KT202281; all from holotype].

Unexpanded basidiome (egg) fabiform to reniform to ellipsoid (Fig. 2a, 3b), 6–17 mm height × 5–8 in diameter, epigeous. Exoperidium membranaceous, smooth, white, orangy white (5A2) to greyish orange (6B3), with several white central rhizomorphs emerging from the base. Endoperidium gelatinous, hyaline. Expanded basidiome formed by pseudostipe and volva (Fig. 3a). Pseudostipe cylindrical, 50–70 mm height × 4–6 mm diameter, apically perforate, hollow, spongy; sterile portion white, straight, not chambered (Fig. 2f); fertile portion light brown (6D4), slightly thick, doliform to cylindrical, truncated (Fig. 2b–2d), slightly rugulose (Fig. 2e), 14–22 mm high, covering about 1/3 of the total length of pseudostipe. Gleba covering and confined to the upper region of the pseudostipe, mucilaginous, olive green (3E3) to olive grey (3E2). Basidiospores 3.8–5.0 × 2.2–2.5 µm, ellipsoid (Fig. 4a), smooth, hyaline to slightly greenish in 5% KOH. Pseudostipe composed of pseudoparenchymatous cells, hyaline, irregular shaped, 20.2–57.3 × 17.8–47.1 µm (Fig. 4b). Volva formed by filamentous hyphae, septate, branched, hyaline, 2.2–4.5 µm diameter (Fig. 4c). Rhizomorphs composed of filamentous hyphae, septate, hyaline, 1.4–3.6 µm diameter (Fig. 4d). Habitat:—growing on decaying wood. Distribution:—State of Ceará, Brazil. Remarks:—The presence of a white pseudostipe, a brown, doliform to cylindrical and truncated fertile portion, and the lignicolous habitat differentiate Mutinus albotruncatus from other species in the genus. The apical region of the pseudostipe of M. albotruncatus resembles species of the genus Phallus, due to the truncated region and the thick surface which give the appearance of a receptacle. However, an in-depth analysis of the morphology revealed that M. albotruncatus does not have a receptacle. The brownish color of the fertile portion resembles M. zenkeri Henn. E. Fischer (1900: 47). However, M. zenkeri is differentiated by having an incomplete and brittle membrane on which the gleba is located (Dring & Rose 1977, Degreef et al. 2013). Mutinus annulatus F. M. Bailey (1895: 10), M. borneensis, M. boninensis Lloyd (1908: 402), M. caninus var. albus Zeller (1944: 263) and M. proximus Berkeley ex Massee (1891: 94) also have a pseudostipe with a white sterile portion. M. annulatus (Lloyd 1909) is distinguished by an a new phalloid from Brazil Phytotaxa 236 (3) © 2015 Magnolia Press • 241 annulated base and red-ochre color of the fertile portion of the pseudostipe, M. borneensis (Lloyd 1909, Grgurinovic 1997) has a shorter and salmon pink or red fertile portion, M. boninensis (Lloyd 1909, Kobayasi 1937) has a fertile portion with pointed apex and it is completely annulated, M. caninus var. albus (Zeller 1944) has a red and glabrous fertile portion and M. proximus has an obtuse and imperforate apex, as well as a pseudostipe with an orange-red fertile portion. Mutinus rugulosus (recorded from the state of Rio Grande do Sul, Brazil (Rick 1929, 1961)) also has a white pseudostipe but it is a species with little information in its protologue. The only information provided is a comparison to M. bambusinus, with M. rugulosus having larger basidiomes and a white pseudostipe (Rick 1929).

Figure 2. Mutinus albotruncatus (holotype): a. Immature basidiome; b–d. Fresh basidiome with white pseudostipe and truncated apex; e. Fertile part slightly rugulose with an olive green mass; f. Pseudostipe not chambered. Bar a–d = 10 mm, bar e–f = 5 mm Photos by: Bianca Silva.

242 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL. Figure 3. Macroscopic drawings. a. Expanded basidiome with volva and pseudostipe, delimiting the sterile and fertile portion, bar = 10 mm; b. Immature basidiome, bar = 5 mm. Drawings by: Rhudson Cruz.

a new phalloid from Brazil Phytotaxa 236 (3) © 2015 Magnolia Press • 243 Table 2. Species of Mutinus, based on Mycobank and Index Fungorum, and our own observations. Legitimate species are in bold; synonyms are indented below. Mutinus albotruncatus B.D.B. Silva & Baseia sp. nov. Mutinus annulatus F.M. Bailey ≡ Floccomutinus annulatus (F.M. Bailey) Lloyd ≡ Phallus annulatus (F.M. Bailey) G. Cunn. Mutinus annulatus Lloyd Mutinus argentinus Speg. Mutinus bambusinus (Zoll.) E. Fisch. Mutinus bambusinus Cooke = Mutinus ravenelii (Berk. & M.A. Curtis) E. Fisch. Mutinus bicolor Lév. Mutinus boninensis Lloyd Mutinus borneensis Ces. Mutinus bovinus Morgan = Mutinus curtisii (Berk.) E. Fisch. Mutinus caninus (Huds.) Fr. Mutinus caninus var. albus Zeller Mutinus caninus var. caninus (Huds.) Fr. Mutinus caninus var. levonensis Noelli Mutinus cartilagineus J.H. Willis Mutinus coracoideus Kawam. Mutinus curtisii (Berk.) E. Fisch. = Mutinus elegans (Mont.) E. Fisch Mutinus discolor (Kalchbr.) E. Fisch. = Phallus aurantiacus var. discolor Kalchbr. Mutinus elegans (Mont.) E. Fisch Mutinus fleischeri Penz. Mutinus granulatus E. Fisch. Mutinus hardyi F.M. Bailey = Lysurus mokusin (L.) Fr. Mutinus inopinatus Ulbr. = Mutinus elegans (Mont.) E. Fisch Mutinus minimus Pat. Mutinus muelleri E. Fisch. = Mutinus bambusinus (Zoll.) E. Fisch. Mutinus papuasius Kalchbr. ≡ Phallus papuasius (Kalchbr.) Kalchbr. Mutinus pentagonus F.M. Bailey = Lysurus mokusin (L.) Fr. Mutinus pentagonus var. hardyi F.M. Bailey = Lysurus mokusin (L.) Fr. Mutinus pentagonus var. pentagonus F.M. Bailey = Lysurus mokusin (L.) Fr. Mutinus penzigii E. Fisch. Mutinus proximus Berk. ex Massee Mutinus quadrigenus Sawada Mutinus ravenelii (Berk. & M.A. Curtis) E. Fisch Mutinus rugulosus Rick Mutinus sulcatus Cooke & Massee = Lysurus gardneri Berk. = Lysurus cruciatus (Lepr. & Mont.) Henn. Mutinus watsonii (Berk.) E. Fisch. = Mutinus borneensis Ces. Mutinus xylogenus Lloyd ≡ Xylophallus xylogenus (Mont.) E. Fisch. Mutinus zenkeri (Henn.) E. Fisch.

244 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL. There are many species of the genus Mutinus that need to be reviewed. Some features are lost when the material is dry and this complicates the analysis of the specimens. Moreover, as in M. rugulosus, there are some species with little information in their protologues: M. bicolor Léveillé (1855: 109), M. coracoideus Kawamura (1929: 300), M. granulatus E. Fischer (1927: 472), M. proximus, M. quadrigenus Sawada (1931: 330); and, in some cases, they have been only recorded a single time from their type locality. Based on our survey, we accept 21 species in the genus Mutinus (Table 2), including the new species here described.

Figure 4. Photographs of microstructures of Mutinus albotruncatus: a. Basidiospores, bar = 5 µm; b. Pseudoparenchymatous cells of the pseudostipe, bar = 20 µm; c. Hyphae of the volva, bar = 5 µm; d. Hyphae of the rhizomorphs, bar = 5 µm. Photos by: Bianca Silva.

A provisional key is provided for the Mutinus species, excluding M. coracoideus, M. granulatus, M. quadrigenus and M. rugulosus on account of the lack of information in their protologues and because it was not possible to review the types.

Provisional key to Mutinus species

1. Fertile portion of the pseudostipe smooth or rugulose (Section Glabrosi) or covered with irregular pseudoparenchymatous pro- cesses, appearing granular or pseudo-reticulate (Section Granulosi)...... 2 - Fertile portion of the pseudostipe covered with digitate processes (Section Tuberculosi)...... 16 2. Pseudostipe white or pale yellowish...... 3 - Pseudostipe yellow, pink, pale pinkish or reddish...... 10 3. Sterile portion of the pseudostipe smooth, adherent and integral throughout its length with two colors: green at the apical portion and red at the base...... M. bicolor - Sterile portion of the pseudostipe smooth to rugulose or covered with irregular pseudoparenchymatous processes, appearing granu- lar or pseudo-reticulate, a single color throughout its length...... 4 4. Fertile portion of the pseudostipe orange, brownish to ochraceous...... 5 - Fertile portion of the pseudostipe red to pink...... 7 5. Gleba restricted to the upper part of the pseudostipe; surface of the pseudostipe not rigid and not cartilaginous; lignicolous...... 6 a new phalloid from Brazil Phytotaxa 236 (3) © 2015 Magnolia Press • 245 - Gleba carried over the greater part of the pseudostipe upon a firmly attached woven membrane; surface of the pseudostipe appear- ing rigid and cartilaginous; growing on humus-rich soil...... M. cartilagineus 6. Basidiome up to 70 mm length, straight, side walls complete; fertile surface with truncated apex, slightly wrinkled, brownish, covering about 1/3 of the total length of basidiome...... M. albotruncatus - Basidiome up to 30 mm length, slightly curved about halfway along the length, much of the side walls incomplete so as to form a network on which the gleba is borne; fertile surface with not truncated apex, surface resembling annular ridges, orange or ochra- ceous, covering about 2/3 of the total length of basidiome...... M. zenkeri 7. Fertile portion annulated...... 8 - Fertile portion not annulated...... 9 8. Fertile portion with attenuate apex and annulated base, occupying about 1/2 of the total height of the pseudostipe... M. annulatus - Fertile portion with pointed apex and completely annulated, occupying about 1/3 of the total height of the pseudostipe...... M. boninensis 9. Fertile portion of the pseudostipe smooth to rugulose...... M. caninus var. albus - Fertile portion of the pseudostipe forming an irregular fragile network of variable meshes...... M. borneensis 10. Fertile portion occupying 1/6 a 1/8 of the total height of the pseudostipe, apically not perforated...... 11 - Fertile portion occupying more than 1/6 a 1/8 of the total height of the pseudostipe, apically perforated...... 12 11. Fertile portion pink...... M. fleischeri - Fertile portion red...... M. minimus 12. Fertile portion smooth to rugulose...... 13 - Fertile portion granulose...... 14 13. Pseudostipe deep pink; fertile portion attenuated towards the apex...... M. elegans - Pseudostipe pale pink; fertile portion with apex conical...... M. caninus var. caninus 14. Fertile portion of the basidiome not covered with gleba up to the apex, usually terminates in a sterile tip...... M. bambusinus - Fertile portion of the basidiome completely covered with gleba up to the apex...... 15 15. Fertile portion red...... M. ravenelii - Fertile portion pale pink...... M. argentinus 16. Pseudostipe pinkish ...... M. penzigii - Pseudostipe white ...... M. proximus

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Brazil) by the scholarship and to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil, process PVE/407474/2013-7 and PPBio/457476/2012-5) for the financial support.

References

Bailey, F.M. (1895) Contributions to the Queensland Flora. Botany Bulletin of the Department of Agriculture of Queensland 10: 1–43. Baseia, I.G., Calonge, F.D. & Maia, L.C. (2006) Notes on the Phallales in Neotropics. Boletín de la Sociedad Micológica de Madrid 30: 87–93. Berkeley, M.J. & Curtis, M.A. (1853) Centuries of North American fungi. The Annals and Magazine of Natural History II 11: 136. http://dx.doi.org/10.1080/03745485709495068 Bottomley, A.M. (1948) Gasteromycetes of South Africa. Bothalia 4: 473–810. http://dx.doi.org/10.4102/abc.v4i3.1859 Cabral, T.S., Silva, B.D.B., Ishikawa, N.K., Alfredo, D.S., Braga-Neto, R., Clement, C.R. & Baseia, I.G. (2014) A new species and new records of gasteroid fungi () from Central Amazonia, Brazil. Phytotaxa 183 (4): 239–253. http://dx.doi.org/10.11646/phytotaxa.183.4.3 Calonge, F.D. (1998) Gasteromycetes. I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Flora Mycologica Iberica 3: 1–271. Cesati, V. (1879) Mycetum in itinere Borneensi lectorum. Atti dell´Accademia di Scienze Fisiche e Matematiche Napoli 8 (3): 1–28. Corda, A.C.J. (1842) Icones fungorum hucusque cognitorum V. Prague, JG Calve, 92 pp. Cortez, V.G., Baseia, I.G. & Silveira, R.M.B. (2008) Gasteromicetos (Basidiomycota) no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biologia 6: 291–299. Cunningham, G.H. (1944) The Gasteromycetes of and New Zealand. Dunedin, J. McInhoe, Dunedin, 236 pp. Degreef, J., Amalfi, M., Decock, C. & Demoulin, V. (2013) Two rare Phallales recorded from São Tomé. Cryptogamie, Mycologie, 34 (1): 3–13.

246 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL. http://dx.doi.org/10.7872/crym.v34.iss1.2013.3 Dring, D.M. (1964) Gasteromycetes of West Tropical Africa. Mycological Papers 98: 1–60. Dring, D.M. & Rose, A.C. (1977) Additions to West African phalloid fungi. Kew Bulletin 31: 741–51. http://dx.doi.org/10.2307/4119427 Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. http://dx.doi.org/10.2307/2408678 Fischer, E. (1886) Zur Entwicklungsgeschichte der Fruchtkörper einiger Phalloideen. Annales du Jardin Botanique de Buitenzorg 6: 1–51. Fischer, E. (1898) Phallineae. In: Engler, A. & Prantl, K. (Eds.) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere der Nutzpflanzen. Vol. 1. Wilhelm Engelmann, Leipzig, pp. 276–295. Fischer, E. (1900) Untersuchungen zur vergleichenden Entwicklungsgeschichte und Systematik der Phalloideen. Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss 36 (2): 1–84. Fischer, E. (1927) Phalloideen aus Surinam. Annales Mycologici 25: 470–473. Fries, E.M. (1849) Summa Vegetabilium Scandinaviae. Sectio posterior 2: 259–572. Available from: http://www.biodiversitylibrary.org/ bibliography/47008 Gray, S.F. (1821) A natural arrangement of British plants, according to their relations to each other, as pointed out by Jussieu, De Candolle, Brown, &c. including those cultivated for use; with an introduction to botany, in which the terms newly introduced are explained; illustrated by figures. Vol. 1. Baldwin, Cradock & Joy, London, 824 pp. Grgurinovic, A.C. (1997) Larger Fungi of South Australia. Botanic Gardens of Adelaide and State Herbarium and Flora and Fauna of South Australia Handbooks Committee, Adelaide, 765 pp. Hennings, P. (1895) Fungi camerunenses I. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 22: 72– 111. [in German] Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Systematic Biology 42:182–192. http://dx.doi.org/10.2307/2992540 Hosaka, K., Bates, S.T., Beever, R.E., Castellano, M.A., Colgan Iii, W., Dominguez, L.S., Nouhra, E.R., Geml, J., Giachini, A.J., Kenney, S.R., Simpson, N.B., Spatafora, J.W. & Trappe, J.M. (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98: 949–959. http://dx.doi.org/10.3852/mycologia.98.6.949 Kawamura, S. (1929) On some new Japanese fungi. 1. A new parasitic on . Journal of Japanese Botany 4: 291–296. Kirk, P.M., Cannon, P.F., David, J.C. & Stalpers, J.A. (2008) Ainsworth & Bisby’s Dictionary of the fungi. 10th ed. CAB International, Wallinford, 771 pp. Kobayasi, Y. (1937) Fungi Austro-Japoniae et Micronesiae. I. The Botanical Magazine 51: 749–758. http://dx.doi.org/10.15281/jplantres1887.51.749 Kornerup, A. & Wanscher, J.H. (1978) Methuen Handbook of Colours. 3 Ed. Eyre Methuen, London, 252 pp. Kretzer, A.M. & Bruns, T.D. (1999) Use of atp6 in fungal phylogenetics: An example from the Boletales. Molecular Phylogenetics and Evolution 13 (3): 483–492. http://dx.doi.org/10.1006/mpev.1999.0680 Léveillé, J.H. (1855) Iconographie des Champignons de Paulet. Paris, 135 pp. Linnaeus, C. (1753) Species Plantarum. Laurentius Salvius, Stockholm, 1200 pp. Liu, B. (1984) The Gasteromycetes of China. Beih. Nova Hedwigia 74: 1–235. Lloyd, C.G. (1908) Mycological Notes nº 31. The Phalloids of Japan. Writings 2: 397–412. Lloyd, C.G. (1909) Mycological Notes nº 4. Synopsis of the Know Phalloids. Mycology Writings 4: 1–96. Magnago, A.C., Trierveiler-Pereira, L. & Neves, M.A. (2013) Phallales (Agaricomycetes, Fungi) from the tropical Atlantic Forest of Brazil. The Journal of the Torrey Botanical Society 140 (2): 236–244. http://dx.doi.org/10.3159/TORREY-D-12-00054.1 Massee, G. (1891) New or imperfectly known gasteromycetes. Grevillea 19: 94–98. Meijer, A.A.R. (2006) Preliminary list of the macromycetes from the Brazilian State of Paraná. Bol. Mus. Bot. Munic. 68: 1–55. MINISTÉRIO DO MEIO AMBIENTE (2004) Plano de Manejo da Floresta Nacional do Araripe. Brasília, Brasil. 314 pp. Möller A. (1895) Brasilische Pilzblumen. Heft 7 der botanischen Mitteilungen aus den Tropen, herausgegeben von A. F. W. Schimper, Jena (G. Fischer), 152 pp. http://dx.doi.org/10.5962/bhl.title.2748 Montagne, J.F.C. (1856) Sylloge generum specierumque cryptogamarum quas in varii operibus descriptas iconibusque illustrates, nunc ad diagnosum reductase, non nullasque novas interjectas ordine systematico disposuit. Sumptibus J.-B. Ballière, Paris, 498 pp. a new phalloid from Brazil Phytotaxa 236 (3) © 2015 Magnolia Press • 247 http://dx.doi.org/10.5962/bhl.title.5403 Nylander, J.A.A. (2004) MrModelTest v2. Program distributed by the editor. Pegler, D.N, Læssøe, T. & Spooner, B.M. (1995) British , earthstars, and stinkhorns. London, Royal Botanic Gardens, Kew, 255 pp. Penzig, O. (1899) Ueber Javanische phalloideen. Annales du Jardin Botanique de Buitenzorg 16: 133–173. Rafinesque-Schmaltz, C.S. (1808) Essential generic and specific characters of some new genusses (sic) and species of plants observed in the United States of America, in 1803 and 1804. Medical Repository 5: 356–363. Rick, J. (1929) Phalloideas Riograndenses. Egatea 14: 299–305. Rick, J. (1961) Basidiomycetes Eubasidii no Rio Grande do Sul, Brasilia. Iheringia 9: 451–480. Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. http://dx.doi.org/10.1093/sysbio/sys029 Saccardo, P.A. (1888) Sylloge fungorum omnium hucusque cognitorum: Gasteromyceteae, Phycomyceteae, Myxomyceteae, Ustilagineae et Uredineae. Vol 7. 882 pp. Sawada, E. (1931) Materials of the Formosan fungi (29). Transactions of the Natural History Society of Formosa 21: 330–338. Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W. & Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109 (16): 6241– 6246. http://dx.doi.org/10.1073/pnas.1117018109 Silva, B.D.B., Cabral, T.S., Marinho, P., Ishikawa, N.K. & Baseia, I.G. (2013) Two new species of (Geastraceae, Basidiomycota) found in Brazil. Nova Hedwigia 96 (3–4): 445–456. http://dx.doi.org/10.1127/0029-5035/2013/0089 Spegazzini, C. (1887) Las trufas argentinas (Tuberaceae argentinae). Anales de la Sociedad Científica Argentina 24: 120–127. Swofford, D.L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599. http://dx.doi.org/10.1093/molbev/msm092 Thiers, B. (2015) Index Herbariorum: A global directory of public herbaria and associated Staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/ih/ (accessed 1 April 15) Trierveiler-Pereira, L., Gomes-Silva, A.C. & Baseia, I.G. (2011) Observations on gasteroid Agaricomycetes. Mycotaxon 118 (5): 273– 282. Trierveiler-Pereira, L., Silveira, R.M.B. & Hosaka, K. (2014) Multigene phylogeny of the Phallales (Phallomycetidae, Agaricomycetes) focusing on some previously unrepresented genera. Mycologia 106 (5): 904–911. http://dx.doi.org/10.3852/13-188 Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. The Journal of Bacteriology 172 (8): 4238–4246. Zeller, S.M. (1944) A white variety of Mutinus caninus. Mycologia 36 (3): 263–265. http://dx.doi.org/10.2307/3754822

248 • Phytotaxa 236 (3) © 2015 Magnolia Press DA SILVA ET AL.