Stinkhorns Spotted in Fields Paula Flynn Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Stinkhorns Spotted in Fields Paula Flynn Iowa State University Integrated Crop Management News Agriculture and Natural Resources 10-4-2004 Stinkhorns spotted in fields Paula Flynn Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cropnews Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons Recommended Citation Flynn, Paula, "Stinkhorns spotted in fields" (2004). Integrated Crop Management News. 1554. http://lib.dr.iastate.edu/cropnews/1554 The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/. Stinkhorns spotted in fields Abstract John Holmes, extension field crop specialist, reported that farmers are finding lots of stinkhorn mushrooms in soybean fields as they harvest. These fungi do not cause disease to plants or animals, but instead live a harmless existence on dead organic matter such as crop debris. They also are commonly found on decaying mulch. A stinkhorn begins life as an egg-like structure. Keywords Plant Pathology Disciplines Agricultural Science | Agriculture | Plant Pathology This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/1554 Stinkhorns spotted in fields John Holmes, extension field crop specialist, reported that farmers are finding lots of stinkhorn mushrooms in soybean fields as they harvest. These fungi do not cause disease to plants or animals, but instead live a harmless existence on dead organic matter such as crop debris. They also are commonly found on decaying mulch. A stinkhorn begins life as an egg­like structure. As the fungus develops, it expands into a 4­ to 8­inch tall mushroom­like body with a stalk and a slimy cap. The common name stinkhorn describes the putrid smell of the fungus.The odor attracts insects that then disperse the spores of the fungus on their bodies. Common stinkhorns found in Iowa include Mutinus caninus and Phallus impudicus. Mutinus caninus is the stinkhorn mushroom that has been recently spotted in fields. It is about 4 inches tall and has a pinkish­red stalk with a dark slimy spore mass on the tip. Phallus impudicus is about 8 inches tall with a cream­colored stalk covered at the tip by slimy dark spores, with an open depression on the very top. Stinkhorn (Mutinus caninus). Enlarge [1] Stinkhorn fungi (Mutinus caninus) near Alleman, Iowa. Enlarge [2] Some people mistake stinkhorns for morel mushrooms. While morels are considered edible and choice, one would definitely not want to eat a stinkhorn mushroom. The aroma alone would likely keep most people at a distance. If you would like to learn more about common mushrooms in Iowa, pick up a copy of the bulletin Mushrooms and Other Related Fungi, available for $1.50 from Iowa State University Extension. Ask for NCR 129. This article originally appeared on page 127 of the IC­492(21) ­­ October 4, 2004 issue. Source URL: http://www.ipm.iastate.edu/ipm/icm//ipm/icm/2004/10­4­2004/stinkhorns.html Links: [1] http://www.ent.iastate.edu/imagegal/fungi/mutinus.html [2] http://www.ent.iastate.edu/imagegal/fungi/mutinus2.html.
Recommended publications
  • Mushrooms Russia and History
    MUSHROOMS RUSSIA AND HISTORY BY VALENTINA PAVLOVNA WASSON AND R.GORDON WASSON VOLUME I PANTHEON BOOKS • NEW YORK COPYRIGHT © 1957 BY R. GORDON WASSON MANUFACTURED IN ITALY FOR THE AUTHORS AND PANTHEON BOOKS INC. 333, SIXTH AVENUE, NEW YORK 14, N. Y. www.NewAlexandria.org/ archive CONTENTS LIST OF PLATES VII LIST OF ILLUSTRATIONS IN THE TEXT XIII PREFACE XVII VOLUME I I. MUSHROOMS AND THE RUSSIANS 3 II. MUSHROOMS AND THE ENGLISH 19 III. MUSHROOMS AND HISTORY 37 IV. MUSHROOMS FOR MURDERERS 47 V. THE RIDDLE OF THE TOAD AND OTHER SECRETS MUSHROOMIC 65 1. The Venomous Toad 66 2. Basques and Slovaks 77 3. The Cripple, the Toad, and the Devil's Bread 80 4. The 'Pogge Cluster 92 5. Puff balls, Filth, and Vermin 97 6. The Sponge Cluster 105 7. Punk, Fire, and Love 112 8. The Gourd Cluster 127 9. From 'Panggo' to 'Pupik' 138 10. Mucus, Mushrooms, and Love 145 11. The Secrets of the Truffle 166 12. 'Gripau' and 'Crib' 185 13. The Flies in the Amanita 190 v CONTENTS VOLUME II V. THE RIDDLE OF THE TOAD AND OTHER SECRETS MUSHROOMIC (CONTINUED) 14. Teo-Nandcatl: the Sacred Mushrooms of the Nahua 215 15. Teo-Nandcatl: the Mushroom Agape 287 16. The Divine Mushroom: Archeological Clues in the Valley of Mexico 322 17. 'Gama no Koshikake and 'Hegba Mboddo' 330 18. The Anatomy of Mycophobia 335 19. Mushrooms in Art 351 20. Unscientific Nomenclature 364 Vale 374 BIBLIOGRAPHICAL NOTES AND ACKNOWLEDGEMENTS 381 APPENDIX I: Mushrooms in Tolstoy's 'Anna Karenina 391 APPENDIX II: Aksakov's 'Remarks and Observations of a Mushroom Hunter' 394 APPENDIX III: Leuba's 'Hymn to the Morel' 400 APPENDIX IV: Hallucinogenic Mushrooms: Early Mexican Sources 404 INDEX OF FUNGAL METAPHORS AND SEMANTIC ASSOCIATIONS 411 INDEX OF MUSHROOM NAMES 414 INDEX OF PERSONS AND PLACES 421 VI LIST OF PLATES VOLUME I JEAN-HENRI FABRE.
    [Show full text]
  • Mycology from the Library of Nils Fries
    CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries CENTRALANTIKVARIATET catalogue 82 MYCOLOGY from the library of nils fries stockholm mmxvi 15 centralantikvariatet österlånggatan 53 111 31 stockholm +46 8 411 91 36 www.centralantikvariatet.se e-mail: [email protected] bankgiro 585-2389 medlem i svenska antikvariatföreningen member of ilab grafisk form och foto: lars paulsrud tryck: eo grafiska 2016 Vignette on title page from 194 PREFACE It is with great pleasure we are now able to present our Mycology catalogue, with old and rare books, many of them beautifully illustrated, about mushrooms. In addition to being fine mycological books in their own right, they have a great provenance, coming from the libraries of several members of the Fries family – the leading botanist and mycologist family in Sweden. All of the books are from the library of Nils Fries (1912–94), many from that of his grandfather Theodor (Thore) M. Fries (1832–1913), and a few from the library of Nils’ great grandfather Elias M. Fries (1794–1878), “fa- ther of Swedish mycology”. All three were botanists and professors at Uppsala University, as were many other members of the family, often with an orientation towards mycology. Nils Fries field of study was the procreation of mushrooms. Furthermore, Nils Fries has had a partiality for interesting provenances in his purchases – and many international mycologists are found among the former owners of the books in the catalogue. Four of the books are inscribed to Elias M. Fries, and it is probable that more of them come from his collection. Thore M.
    [Show full text]
  • Naturstoffe Im Chemieunterricht: Chemie Mit Pilzen
    Neue experimentelle Designs zum Thema Naturstoffe im Chemieunterricht: Chemie mit Pilzen DISS,RTATI.N 0ur ,rlangung des akademischen Grades doctor rerum naturalium 1Dr. rer. nat.2 vorgelegt dem Rat der Chemisch -Geowissenschaftlichen Fakultt der Friedrich-Schiller-Universitt Jena von Jan-Markus Teuscher ge oren am 11.08.1972 in (arl-Mar)-Stadt Gutachter: 1: Prof. Dr. Volker Woest, Arbeitsgruppe Chemiedidaktik 2: Dr. Dieter Weiß, Institut für Organische und Makromolekulare Chemie Tag der öffentlichen Verteidigung: 25.05.2011 Inhaltsverzeichnis S e i t e 3 Inhaltsverzeichnis Abbildungsverzeichnis ............................................................................................................. 5 Tabellenverzeichnis .................................................................................................................. 5 1 Einleitung und Zielsetzung ................................................................................................. 7 2 Biologische Grundlage ....................................................................................................... 9 2.1 Betrachtung der Pilze im Wandel der Zeit .................................................................. 9 2.1.1 Vorgeschichtliche Zeit ......................................................................................... 9 2.1.2 Europäisches Altertum – Anfänge der Naturwissenschaft ................................... 9 2.1.3 Mittelalterliche Scholastik .................................................................................
    [Show full text]
  • <I>Clathrus Delicatus</I>
    ISSN (print) 0093-4666 © 2010. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON doi: 10.5248/114.319 Volume 114, pp. 319–328 October–December 2010 Development and morphology of Clathrus delicatus (Phallomycetidae, Phallaceae) from India S. Swapna1, S. Abrar1, C. Manoharachary2 & M. Krishnappa1* [email protected], [email protected] cmchary@rediffmail.com & *[email protected] 1Department of Post Graduate Studies and Research in Applied Botany Jnana Sahyadri, Kuvempu University, Shankaraghatta-577451, Karnataka, India 2Mycology and Plant Pathology Laboratory, Department of Botany Osmania University, Hyderabad-500007, Andhra Pradesh, India Abstract — During fieldwork, Clathrus delicatus was collected from the Muthodi forest range in the Bhadra Wildlife Sanctuary in the state of Karnataka, India. Although this species was previously recorded from India, these reports did not include detailed morphological descriptions. Here we describe C. delicatus and provide illustrations and notes on fruitbody development, which has not been well characterized in the past. Key words — Phallaceae, peridial suture, primordia, sporoma, volva-gel Introduction Members of Phallales, commonly called stinkhorns, produce foul-smelling fruitbodies that attract insects. Their distinctive odor is produced by a combination of chemicals such as hydrogen sulfide and methyl mercaptan (List & Freund 1968). Stinkhorns typically develop very quickly, often within few hours, with the spore bearing structures (receptacles) emerging from globose to ovoid structures called ‘myco-eggs’ (Lloyd 1906, Pegler et al. 1995). The order Phallales comprises 2 families, 26 genera, and 88 species (Kirk et al. 2008). Clathroid members of family Phallaceae form multipileate receptacles (Gäumann 1952) with beautiful and bright colored sporomata. Clathrus is unique in having latticed, hollow, spherical or stellate receptacles with slimy glebae (spore masses) borne on their inner surfaces (Pegler et al.
    [Show full text]
  • Immunopharmacological Evaluation of Phallus Impudicus Against Specific Protein Antigen
    MicroMedicine ISSN 2449-8947 RESEARCH ARTICLE Immunopharmacological evaluation of Phallus impudicus against specific protein antigen Amit Gupta 1*, Bharat Shinde 1,2 1 Department of Immunology and Virology, Vidya Pratishthan’s School of Biotechnology (VSBT, Research Centre affiliated to Savitribai Phule Pune University) Baramati, Maharashtra, India 2 Vidya Pratishthan’s (Principal) Arts, Science and Commerce College, Baramati, Maharashtra, India *Corresponding Author: Amit Gupta, Ass. Prof., Senior Scientist, E-mail: [email protected]; [email protected] ABSTRACT The objective of our study is to examined its immunopharmacological property of stinkhorn i.e. Phallus impudicus against hepatitis B vaccine containing surface antigen (HBsAg; 20 µg/ml) and weak antigen ovalbumin (OVA; 100 µg/well). For these studies, Phallus impudicus were macerated in liquid nitrogen to prepare fine powder and measured its protein content in presence and absence (using Tris HCl and ice cold acetone) of phosphate buffered saline Citation: Gupta A, Shinde B. (PBS) which is determined through Nanodrop method. In addition, aqueous Immunopharmacological evaluation of Phallus solution and protein of Phallus impudicus were used for determining antibody impudicus against specific protein antigen. MicroMed. 2016; 4(2): 55-59. (IgG) production through indirect Elisa and also examined Th1 (TNF alpha) and DOI: http://dx.doi.org/10.5281/zenodo.163673 Th2 (IL-4) cytokines in animal (especially Swiss mice) model studies. The results Received: August 19, 2016 showed that Phallus impudicus showed more protein content in case of Revised: September 20, 2016 aqueous solution containing PBS as compared to Tris HCl and ice cold acetone. In continuation of these studies, the results showed that aqueous solution Accepted: October 05, 2016 containing PBS and protein (using Tris HCl and ice cold acetone) showed Copyright: © 2016 Gupta A, et al.
    [Show full text]
  • Analysis of the Morphology and Growth of the Fungus Phallus Indusiatus Vent
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Analysis of the morphology and growth of the fungus Phallus indusiatus Vent. in Cocoa Plantation, Gaperta-Ujung Medan. Rama R Sitinjak* Faculty of Agrotechnology, Prima Indonesia University, Medan-Indonesia. ABSTRACT This research aimed to analyze the morphological characteristics and growth of the Phallus indusiatus Vent. which belong to the group Stinkhorn fungi. The method used is survey and description. This fungi grows individually, appear twice in one year on the ground that a pile of cocoa leaves that have died, during the heavy rainy season ends. The fungi was first found growing in the area of cocoa plantations in the village Gaperta-Ujung Medan, ie on August 6, 2013, around 9.00 am. Phallus indusiatus have major macroscopic morphological characteristics, namely the fruiting body has a height of ±19.13 cm, hood (cap or pileus) shaped brown cony and the side grooves with a width of ± 3 cm, and a height ± 2.6 cm, yellowish cream-colored gleba, has a white circular ring at the center of the stem, the stem (stalk or stipe) chewy white, cylindrical, cup (volva) gray that secrete mucus such as jellies, have a section that resembles roots (mycelium), has a coat or indusium such a network is creamy white and turned into golden yellow when wilting, that described from the bottom of the cap to the base of the stem. The process of growth and development of mushroom fruit body this happens starting from the egg stage (takes about 24 hours), and the budding stage, maturation stage, the stage of wilting (death) (third last stage of this only takes about 5 hours).
    [Show full text]
  • Global Warming and Mycoflora in the Baltic Region
    ACTA MYCOLOGICA Dedicated to Vol. 41 (1): 79-94 Prof Dr. ALINA SKIRGIEŁŁO, 2006 Warszawa, with motivation of her 95th birthday Global warming and mycoflora in the Baltic Region HANNS KREISEL Zur Schwedenschanze 4, D 17498 Potthagen, [email protected] Kreisel H.: Global warming and mycoflora in the Baltic Region. Acta Mycol. 41 (1): 79 94, 2006. The author discusses possible effects of global warming on distribution and ecology of larger fungi, and presents examples of suggested indicator species which apparently are spreading from south to north. Only Basidiomycetes are corncerned, while actually no case of non lichenized Ascomycetes is known. A continued monitoring of the mentioned species is recommended. Key words: mycoflora, Basidiomycetes, global warming, Baltic Region INTRODUCTION Global warming (climatic change) with its consequences for weather and local climate, rising sea level, retreat of glaciers and of polar ice calottes, and subsequent nature catastrophes, actually is much disputed in newspapers, journals, and book publications. Highly reputed specialists of climatology, oceanography, or physics, have investigated the phenomena (e. g. Rahmstorf, Schellnhuber 2006). Since the end of last Ice Age, some 15 000 years ago, climate in central and northern Europe is warming, and enormous ice calottes have retired from this re- gion, making possible a re-settelement of large areas by vegetation and fauna. This process was not continuous, but interrupted by phases of standstill alternating with phases of further warming. Nevertheless, the actual phase of relatively fast warming is regarded as man-made to a large extent, and therefore requires special attention by scientists. Also in mycology, we are contemporary witnesses of changes in distribution and ecology of fungi, and we should use the chance to observe and describe the corre- sponding evolutions.
    [Show full text]
  • Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus
    Researcher 2012;4(8) http://www.sciencepub.net/researcher Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus Arun Kumar Dutta1,2, Nilanjan Chakraborty1, Prakash Pradhan1,2 and Krishnendu Acharya1* 1. Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata- 700019. 2. West Bengal Biodiversity Board, Paribesh Bhawan, Salt Lake City, Kolkata- 700098 Email: [email protected] Abstract: Four members of Phallaceae were collected from different corners of West Bengal and among them three are reported to be new to India and one from West Bengal. A detailed macro and microscopic features of those members were presented in this paper. [Arun Kumar Dutta, Nilanjan Chakraborty, Prakash Pradhan and Krishnendu Acharya. Phallales of West Bengal, India. II. Phallaceae: Phallus and Mutinus. Researcher 2012;4(8):21-25]. (ISSN: 1553-9865). http://www.sciencepub.net/researcher. 5 Key words: Agaricomycetes, diversity, macrofungi, new record 1. Introduction 2. Materials and methods The diversity and galaxy of fungi and their natural The study materials were collected during the field beauty has prime place in the biological world. Studies trips of various forested regions of West Bengal on macrofungal diversity have been carried out by (2009–2011). The morphological and ecological several countries, and new species for the world features were noted and colour photographs were taken macrofungal flora have continuously been documented in the field. After the specimens were brought to the from all over the world. Macrofungi not only produce laboratory, microscopic features were determined by the well attracted variously colored fruiting bodies, but using Carl Zeiss AX10 Imager A1 phase contrast also play a significant role in day to day life of human microscope.
    [Show full text]
  • Mycology Praha
    ( ^ ™ 7 | ------ I VOLUM E 48 L ^ Z - L U r i A U G U S T 1 9 9 5 My c o l o g y 2 CZECH SCIENTIFIC SOCIETY FOR MYCOLOGY PRAHA JSAYCU nIar% ,0 O Mv J < ty/\YCX ISSN 0009-0476 N|š r % ° k ~ 1 \ I \ / I Vol. 48, No. 2, August 1995 CZECH MYCOLOGY formerly Česká mykologie published quarterly by the Czech Scientific Society for Mycology EDITORIAL BOARD Editor-in-Chief ZDENĚK POUZAR (Praha) Managing editor s JAROSLAV KLÁN (Praha) VLADIMÍR ANTONÍN (Brno) JIŘÍ KUNERT (Olomouc) OLGA FASSATIOVÁ (Praha) LUDMILA MARVANOVA (Brno) ROSTISLAV FELLNER (Praha) PETR PIKÁLEK (Praha) JOSEF HERINK (Mnichovo Hradiště) MIRKO SVRČEK (Praha) Czech Mycology is an international scientific journal publishing papers in all aspects of mycology. Publication in the journal is open to members of the Czech Scientific Society for Mycology and non-members. Contributions to: Czech Mycology, National Museum, Department of Mycology, Václavské nám. 68, 115 79 Praha 1, Czech Republic. Phone: 02/24230485 SUBSCRIPTION. Annual subscription is Kč 250,- (including postage). The annual sub­ scription for abroad is US $86,- or DM 136,- (including postage). The annual member­ ship fee of the Czech Scientific Society for Mycology (Kč 160,- or US $ 60,- for foreigners) includes the journal without any other additional payment. For subscriptions, address changes, payment and further information please contact The Czech Scientific Society for Mycology, P.O.Box 106, 111 21 Praha 1, Czech Republic. Copyright © The Czech Scientific Society for Mycology, Prague, 1995 No. 1 of the vol. 48 of Czech Mycology appeared in May 16, 1995 CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 48 August 1995 Number 2 Natural occurrence of entomopathogenic fungi on Aphids at an agricultural field site TOVE STEENBERG and J0RGEN E il e n b e r g Department of Ecology and Molecular Biology Royal Veterinary and Agricultural University Biilowsvej 13, 1870 Frb.
    [Show full text]
  • 36 Pacific Northwest Forest
    1975 USDA Forest Service General Technical Report PNW -36 115 PROPERTY OF: CASCADE HEAD EXPERIMENTAL FOREST AND SCENIC RESEARCH AREA OTIS, OREGON PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION Ii S nF PARTMENT OF AGRICULTURE FOREST SERVICE ABSTRACT Insects that feed on fungi are primary dispersal agents for many beneficial and pathogenic species. Nearly 300 references on the subject, published since the mid-19th century are listed in this bibliography. Keywords: Bibliography, insect vectors, mycophagy, spores. ABOUT THE AUTHOR Robert Fogel is research assistant with Department of Botany and Plant Pathology, Oregon State University, Corvallis, and collaborator with the Pacific Northwest Forest and Range Experiment Station. For well over a century, certain insects have been known to feed on fungal fruiting bodies. Spore-eating insects have been presumed to be vectors of the fungi eaten. Only recently, however, have spores been demonstrated to remain viable after passage through an insects digestive tract (Leach et al. 1934, Nuorteva and Laine 1972). These works have reawakened interest in the role of insect mycophagy in dissemination of pathogenic, mycorrhizal, and other fungi. References in this bibliography are intended to provide an entry into the insect mycophagy literature. For brevity, most papers cited by earlier reviewers are not listed individually in this bibliography; i.e., papers cited by Hingley (1971), Benick (1952), Graham (1967), Weber (1972b), and Weiss (1921). The few references that I could not personally verify are marked with an asterisk and are cited as found in secondary sources. The most frequently reported insect mycophagists are either Diptera, mainly Mycetophilidae or Phoridae, and Coleoptera, separable into bark beetles and other beetles.
    [Show full text]
  • DISTRIBUTION and ECOLOGY of the GASTEROMYCETE FUNGI - ORDERS Phallales and Sclerodermatales in the REPUBLIC of MACEDONIA
    Оригинален научен труд Original Scientific Article DISTRIBUTION AND ECOLOGY OF THE GASTEROMYCETE FUNGI - ORDERS Phallales AND Sclerodermatales IN THE REPUBLIC OF MACEDONIA Mitko KARADELEV1, Katerina RUSEVSKA1 & Kristina STOJKOSKA2 1Institute of Biology, Faculty of Natural Science and Mathematics, P.O. Box 162, Arhimedova 5, 1000 Skopje, the Repub- lic of Macedonia 2Macedonian mycological society, Mycological laboratory, Faculty of Natural Science and Mathematics, Arhimedova 5, P.O.Box 162, 1000 Skopje, the Republic of Macedonia ABSTRACT Karadelev M., Rusevska K. & Stojkoska K. (2008): Distribution and ecology of the Gasteromycete fungi - orders Phallales and Sclerodermatales in the Republic of Macedonia. Proceedings of the III Congress of Ecologists of the Republic of Macedonia with International Participation, 06-09.10.2007, Struga. Special issues of Macedo- nian Ecological Society, Vol. 8, Skopje. This is the first paper on systematic research on the gasteromycetes belonging to orders Phallales and Scle- rodermatales in the Republic of Macedonia. Within the researches in the Republic of Macedonia 15 species have been recorded: Clathrus ruber, Mutinus caninus, Phallus hadriani, P. impudicus, Astraeus hygrometricus, Pisoli- thus arhizus, Scleroderma areolatum, S. bovista, S. cepa, S. citrinum, S. meridionale, S. polyrhizum, S. septentri- onale, S. verrucosum and Sphaerobolus stellatus. The following four species are new for Macedonia: Phallus had- riani, Scleroderma bovista, S. cepa and S. polyrhizum. Two species are part of the Preliminary Red List of Macro- mycetes in the Republic of Macedonia - Clathrus ruber and Mutinus caninus. Pisolithus arhizus is a species from Appendix I of Bern Convention. Introduction ner1939; Sylejmani 1980; Tortić 1988; Karadelev et al., 2002b; Rusevska & Karadelev 2004) and Spha- Systematic research on orders Phallales and erobolus stellatus (Karadelev et al.
    [Show full text]
  • Botanische Jahrbücher Für Systematik, Pflanzengeschichte
    Litteraturbericlit. Nachdruck dieser Referate ist nicht gestattet. Huit, R.: Mossfloran i trakten mellan Aavasaksa och Pallas- t.unturi. En Studie öfver mossornas vaiidringssätt och dess inflytande pa frâgan om reliktfloror. — Acta Soc. pro fauna et flora Fennica t. III, n. I. — ii2 pag. 80. — Helsingfors 1886. Es wurde bisher allgemein angenommen, dass die Moose (wie andere Kryptogamen) ihrer kleinen leichten Sporen wegen ohne Schwierigkeit auf einmal durch Wind über große Strecken hin fortgeführt werden können. Ref. hat sich (Engler's Jahrbücher II, p. 40) gegen diese Meinung ausgesprochen und freut sich nun, seine Ansicht durch die vorliegende interessante Arbeit des ausgezeichneten Pflanzengeographen Finnlands be- kräftigt zu sehen. Verfasser beginnt mit einem Citate aus Wallace »Island Life«, wo die allgemeine Anschauung, dass Kryptogamen leicht über große Strecken wandern, hervor- gehoben wird. Er unterwirft nun diese Ansicht einer näheren Prüfung , indem er die Verbreitung der Moose im Lappmark von Kemi und im nördlichen Österbotten unter- sucht. Die Moossporen sind kleinerund leichter, als die vulkanischen Aschenteilchen, über deren weite Verbreitung durch Luftströmungen kein Zweifel waltet. Die Brutzellen und Rhizoiden der Moose können durch Flüsse über lange Strecken transportirt und an den Ufern, fern vom ursprünglichen Standorte wieder abgesetzt werden. Man sollte deshalb geneigt sein anzunehmen, dass Moose leicht über große Strecken hinweg wandern. Es giebt auch viele Moose, die eine sehr zerstreute Verbreitung zeigen. Verfasser nennt aus dem von ihm untersuchten Gebiete Beispiele, wo die verschiedenen Standorte einer und derselben Art mehrere hundert Kilometer von einander entfernt liegen. Untersucht man aber die Sache näher, dann zeigt es sich, dass selbst unter den Moosen plötzliche Wanderungen über große Strecken jedenfalls zu den sehr seltenen Aus- nahmen gehören.
    [Show full text]