Cryopreservation of <I>Thymus Moroderi</I> by Droplet Vitrification

Total Page:16

File Type:pdf, Size:1020Kb

Cryopreservation of <I>Thymus Moroderi</I> by Droplet Vitrification CryoLetters 31 (1), 14-23 (2010) © CryoLetters, [email protected] CRYOPRESERVATION OF Thymus moroderi BY DROPLET VITRIFICATION Ana Marco-Medina1, José Luis Casas1*, Rony Swennen2 and Bart Panis2 1Laboratory of Plant Biotechnology, Institute of Biodiversity CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicant, Crta. San Vicente del Raspeig s/n. E-03690 San Vicente del Raspeig, Alicante (Spain). 2Laboratory of Tropical Crop Improvement, Division of Plant Biotechnics, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium *Corresponding author e-mail: [email protected] Abstract Thymus moroderi Pau ex Martínez (Labiatae) was successfully cryopreserved using the droplet vitrification method. After 20 min in loading solution at room temperature, shoot tips were dehydrated with PVS2 at 0ºC for 30 min and immersed into LN. For thawing, shoot-tips were transferred into recovery solution for 15 min. A test of different recovery media revealed that the best results were obtained when the medium was supplement with 0.275 M BA. Keywords: cryopreservation, droplet vitrification, hyperhydration, in vitro conservation, Thymus moroderi INTRODUCTION Thyme species are well-known as medicinal, ornamental and aromatic plants and also used in pottery, cosmetics and perfumery. Many cultivars have been obtained as a result of cultivation (22). Thymus is widely distributed in the Old World. The Mediterranean region and more specifically the West Mediterranean area is considered as the centre of origin of this genus. Only species of two sections (sect. Sephyllum and sect. Hyphodromi subsect. Serpyllastrum) occur outside the Mediterranean area. Seven sections grow in the Iberian Peninsula and Northwestern Africa, five of them are endemic. In the Iberian Peninsula 35 species are found, 24 of which are endemic to that area (23). Interest in its use in folk medicine and its chemical components have resulted in uncontrolled harvesting, such that their populations are decreasing considerably. A continuously growing demand for thyme products is not likely to be supported by natural populations, which are threatened by destructive gathering and insufficient/irregular rainfall in traditional source areas (30). In vitro propagation methods for a limited number of species of Thymus have been already reported. These species are T. vulgaris (30), T. piperella (31) or T. mastichina (7, 20). In the present work we have focused on Thymus moroderi Pau ex Martinez, a species endemic to southeastern Spain characterised by deep purple bracts (23) and highly preferred in the 14 liqueur industry and folk medicine (1). This species is included in the Spanish red list of vascular plants (4) as near threatened according to the IUCN categories. In order to establish a cryopreservation protocol for this species, we decided to focus on the droplet vitrification method (26). This procedure is a combination of the droplet freezing method established by Schäfer-Menuhr et al. (36), and vitrification using the plant vitrification solutions designed by Sakai et al. (32). The main advantage of this technique compared to “normal” vitrification procedures is that it results in extremely high cooling and warming rates due to the very small volumes of cryoprotective medium in which the explants are placed (33). Droplet-vitrification is a very recent technique which until now has been applied to a few species such as papaya (2), Prunus (5), pelargonium (9), Chrysanthemum (11), yams (19), asparagus (21), banana (26), sweet potato (28) and taro (35). To our knowledge, this is the first report of cryopreservation of a member of Thymus species. MATERIAL AND METHODS Plant material All cryopreservation experiments were conducted with apical shoot tips excised from in vitro-grown plantlets of T. moroderi. To establish in vitro cultures, shoots collected from field-grown plants (El Pinaret, San Vicente del Raspeig, Alicante, Spain) were washed thoroughly with tap water and surface-sterilized by dipping in 500 mg l-1 benomyl 15 min, followed by 30 s in 70% ethanol and a further 15-min period in sodium hypochlorite 10% (v/v) solution. After rinsing 6 times with distilled and sterilized water in the laminar air flow cabinet, nodal segments were cultured on MS (24) medium with 30 g l-1 sucrose and solidified with 7 g l-1 plant agar. Medium pH was adjusted to 5.8 before autoclaving. Plantlets were grown at 25 ± 1°C, under an incident radiant flux of 40 mol m-2 s-1 and a 16 h-photoperiod. Explants from two clones differing in their age in vitro and in the number of subcultures were used. Clone 1 had been cultured in vitro for one year with a subculture every 6-8 weeks, while clone 2 was cultured for nearly 4 months under in vitro conditions. Cryopreservation Cryopreservation was executed according to the droplet vitrification protocol developed for in vitro banana shoots (26). Excised 1-mm shoot tips were placed on solid MS medium (in a Petri dish wrapped with aluminium foil, to keep shoot tips in the dark) until all shoot tips were excised. Then, the shoot tips were placed in 30 ml plastic vials containing 3 ml of loading solution (LS: 0.4 M sucrose and 2 M glycerol in MS medium, pH adjusted to 5.8 followed by filter sterilization) (25) at room temperature. After 20 minutes the LS was removed with a Pasteur pipette and replaced by ice-cooled PVS2 (32). The vials were maintained on ice. Shoot tip dehydration with PVS2 was assayed for 0, 30, 60, 90, 120 and 180 min. The PVS2 solution consisted of 30% glycerol, 15% ethylene glycol, 15% DMSO and 0.4 M sucrose in MS medium, pH adjusted to 5.8 and filter sterilized. After PVS2 treatment, droplets (of about 15 l) of this solution containing shoot tips were placed onto sterile aluminium foil strips (0.5 x 2 cm in length) using a Pasteur pipette and then placed onto small Petri dishes on top of a cooling block (to keep the temperature of the strip around 0°C). Each aluminium strip containing 10 shoot tips was plunged (with the help of a sterile forceps) into a polystyrene box containing liquid nitrogen (LN). Samples remained in LN for at least 30 min. 15 Thawing For thawing, the aluminium foil strips were transferred with a sterile forceps to the recovery solution (1.2 M sucrose in MS medium, pH adjusted to 5.8 and filter sterilized) (32) at room temperature for 15 min. For this, the aluminium strips were stirred rapidly with a forceps in the recovery solution for rapid thawing thus releasing the shoot tips. After that, the shoot tips were transferred onto a sterile filter paper disc that was placed on top of a solid hormone-free MS medium containing 0.3 M sucrose and maintained in the dark for 24 h. Shoot tips were then transferred to regeneration medium (MS supplemented with 2.22 M BA) in which they were maintained one week in the dark before being transferred to light conditions (a 16 h light / 8 h dark photoperiod and a 50 µmol m-2 s-1 illumination provided by 36 W Osram cool-white fluorescent tubes.) Three replicates with ten shoot tips each were used for each PVS2 exposure time. Controls refer to replicates carried out in the same conditions as freezing experiments but without immersion in liquid nitrogen. Recovery media For recovery, shoot tips were initially transferred to MS medium containing 2.22 M BA, 3% sucrose, 0.25% Gelrite™ and cultivated at 25 ± 2ºC in the light conditions indicated above. Due to a high incidence of hyperhydration in cryopreserved and recovering shoot-tips, different concentrations of BA (ranging from 0.275 to 2.22 M) and some combinations of BA with 0.25 M IBA (indol butyric acid) were tested. Additionally, 0.7% plant agar was used instead of 0.25% Gelrite™. During the optimization of the recovery medium, 30-min PVS2 dehydration was always applied. All experiments were repeated three times using 10 shoot tips for every medium. Three-four weeks after plating on MS supplemented with growth regulators, the surviving explants were transferred onto hormone-free MS medium for further outgrowth. Assessment of survival and statistical analysis Survival was defined as shoot tips remaining green 2 weeks after thawing, while regrowth was defined as further development of apices into shoots 4 weeks after rewarming. Both survival and regrowth rates were expressed relative to the total number of shoot tips treated. Results are presented as mean percentages with standard error of mean (SE). Statistical differences between mean values of post-thaw survival and regeneration were assessed by analysis of variance (ANOVA) with Duncan’s multiple range test (P<0.05). The original percentage data were transformed by arcsin transformation (y’= arcsin y ½, y = original percentage/100). The analysis was made with SPSS 15.0 for Windows, SPSS. Inc., Chicago, IL. RESULTS Effect of length of PVS2 treatment without freezing In a first set of experiments, the toxicity of different exposure times of PVS2 (after a 20 min treatment with loading solution) towards large (2 mm) and small (0.5-1 mm) shoot tips of T. moroderi was evaluated without freezing. It has been generally accepted that an appropriate explant size for cryopreservation measures between 0.5 and 2 mm in length and consists of 16 the apical dome plus a couple of leaf primordia (39). It is observed that shoot tips of T. moroderi withstand relatively long dehydration times with PVS2 (Fig. 1). For the larger shoot-tips a reduction in survival was only obtained after 60 min treatment while smaller shoot tips appeared to be more sensitive. Here, a reduction in survival was already obtained after 15 min PVS2 treatment. Surprisingly, considerable survival was still obtained after 90 min of PVS2 exposure at 0°C and this for both shoot tip sizes.
Recommended publications
  • Curriculum Vitae Número De Hojas Que Contiene: 23
    Plan Nacional de I+D Curriculum vitae Número de hojas que contiene: 23 Nombre: RAMÓN MORALES VALVERDE Fecha: 9-III-2009 Firma: El arriba firmante declara que son ciertos los datos que figuran en este curriculum, asumiendo, en caso contrario, las responsabilidades que pudieran derivarse de las inexactitudes que consten en el mismo. APELLIDOS: MORALES VALVERDE NOMBRE: Ramón D.N.I.: 2180591F FECHA DE NACIMIENTO: 14-IX-1950 SEXO: Varón Nº FUNCIONARIO: 0218059102 A5404 DIRECCION PARTICULAR: Travesía de Somosierra 11, 2ºB. 28761 Tres Cantos, Madrid. TELÉFONO: (0034) 918045129 SITUACIÓN PROFESIONAL ACTUAL ORGANISMO: Consejo Superior de Investigaciones Científicas (CSIC) FACULTAD, ESCUELA o INSTITUTO: Real Jardín Botánico DEPT./SECC./UNIDAD ESTR.: Biodiversidad y Conservación DIRECCION POSTAL: Plaza de Murillo, 2. E-28014 Madrid TELÉFONO: (0034) 914203017 ext. 213 FAX: (0034) 914200157 CORREO ELECTRONICO: [email protected] ESPECIALIZACION (CODIGO UNESCO): 241720 CATEGORIA PROFESIONAL Y FECHA DE INICIO: Científico titular, 1-II-1987 PLANTILLA : DEDICACION: A TIEMPO COMPLETO : Además le han sido concedidos 2 SEXENIOS y 4 QUINQUENIOS dentro de su actividad científica. LÍNEAS DE INVESTIGACIÓN Sistemática de plantas vasculares, labiadas, etnobotánica alimentaria, plantas medicinales. FORMACIÓN ACADÉMICA Licenciado en Ciencias Biológicas Universidad Complutense de Madrid, julio de 1976 Doctor en Ciencias Biológicas Universidad Complutense de Madrid, marzo de 1985 TESIS DOCTORAL : Taxonomía del género Thymus L. [excluida la sección Serpyllum (Miller) Bentham] en la Península Ibérica. CALIFICACIÓN: Apto cum laude. DIRECTOR DE TESIS: Ginés López González ACTIVIDADES ANTERIORES DE CARÁCTER CIENTÍFICO O PROFESIONAL FECHAS PUESTO INSTITUCIÓN 1-IX-1978 a 31-VIII-1981 Becario predoctoral Real Jardín Botánico, CSIC Enero-1977 a Enero-1987 Profesor titular de Ciencias Colegio privado San Juan de Naturales y Matemáticas (BUP) Dios, Ciempozuelos, Madrid.
    [Show full text]
  • Shost. with Their Antioxidant Potentials
    Turkish Journal of Biology Turk J Biol (2017) 41: 754-764 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1704-9 Accumulation of phenolics in natural and micropropagated plantlets of Thymus pseudopulegioides Klokov & Des.-Shost. with their antioxidant potentials 1 2 3 4,5 5,6, Mustafa GÜNAYDIN , Abdul Hafeez LAGHARI , Ersan BEKTAŞ , Münevver SÖKMEN , Atalay SÖKMEN * 1 Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, Turkey 2 National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan 3 Espiye Vocational School, Giresun University, Espiye, Giresun, Turkey 4 Department of Bioengineering, Konya Food and Agriculture University, Konya, Turkey 5 Department of Plant Production and Technologies, Konya Food and Agriculture University, Konya, Turkey 6 College of Science, King Saud University, Riyadh, Saudi Arabia Received: 05.04.2017 Accepted/Published Online: 13.06.2017 Final Version: 10.11.2017 Abstract: Thymus pseudopulegioides plantlets were propagated in vitro via direct organogenesis by using Murashige and Skoog (MS) media containing kinetin, thidiazuron, and 6-benzyladenine (BA) individually. Methanol extracts obtained both from plantlets and wild plants were analyzed for their total phenolics and flavonoid contents, then quantified by HPLC. The highest total phenolic (8.83 mg/g as gallic acid equivalent) and total flavonoid (0.92 mg/mL as rutin equivalent) values were from the MS media supplemented with 1.0 mg/L kinetin and 0.5 mg/L BA, respectively. The plantlets grown in those media also showed remarkable antioxidant activities with an IC50 value of 4.77 µg/mL in DPPH and 100% inhibition in β-carotene assays, respectively.
    [Show full text]
  • Ethnobotanical Review of Wild Edible Plants in Spain
    Blackwell Publishing LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2006? 2006 View metadata, citation and similar papers1521 at core.ac.uk brought to you by CORE 2771 Original Article provided by Digital.CSIC EDIBLE WILD PLANTS IN SPAIN J. TARDÍO ET AL Botanical Journal of the Linnean Society, 2006, 152, 27–71. With 2 figures Ethnobotanical review of wild edible plants in Spain JAVIER TARDÍO1*, MANUEL PARDO-DE-SANTAYANA2† and RAMÓN MORALES2 1Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca El Encín, Apdo. 127, E-28800 Alcalá de Henares, Madrid, Spain 2Real Jardín Botánico, CSIC, Plaza de Murillo 2, E-28014 Madrid, Spain Received October 2005; accepted for publication March 2006 This paper compiles and evaluates the ethnobotanical data currently available on wild plants traditionally used for human consumption in Spain. Forty-six ethnobotanical and ethnographical sources from Spain were reviewed, together with some original unpublished field data from several Spanish provinces. A total of 419 plant species belonging to 67 families was recorded. A list of species, plant parts used, localization and method of consumption, and harvesting time is presented. Of the seven different food categories considered, green vegetables were the largest group, followed by plants used to prepare beverages, wild fruits, and plants used for seasoning, sweets, preservatives, and other uses. Important species according to the number of reports include: Foeniculum vulgare, Rorippa nasturtium-aquaticum, Origanum vulgare, Rubus ulmifolius, Silene vulgaris, Asparagus acutifolius, and Scolymus hispanicus. We studied data on the botanical families to which the plants in the different categories belonged, over- lapping between groups and distribution of uses of the different species.
    [Show full text]
  • Application of Essential Oils in Food Systems
    Application of Essential Oils in Food Systems Edited by Juana Fernández-López and Manuel Viuda-Martos Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Application of Essential Oils in Food Systems Application of Essential Oils in Food Systems Special Issue Editors Juana Fern´andez-L´opez Manuel Viuda-Martos MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Juana Fernandez-L´ opez´ Manuel Viuda-Martos Miguel Hernandez´ University Universidad Miguel Hern´andez Spain Spain Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) from 2017 to 2018 (available at: http://www.mdpi.com/journal/foods/ special issues/Application Essential Oils) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-047-7 (Pbk) ISBN 978-3-03897-048-4 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Diversidad En Labiadas Mediterráneas Y Macaronésicas
    Portugaliae Acta Biol. 19: 31-48. Lisboa, 2000 DIVERSIDAD EN LABIADAS MEDITERRÁNEAS Y MACARONÉSICAS Ramón Morales Real Jardín Botánico, CSIC. Plaza de Murillo, 2. E-28014 MADRID Morales, R. (2000). Diversidad en labiadas mediterráneas y macaronésicas. Portugaliae Acta Biol. 19: 31-48. En la región mediterránea viven unas 1.000 especies de labiadas correspondientes a 48 géneros, de los cuales, 10 solo se encuentran en la parte asiática, 2 son endemismos de Marruecos y Argelia, 2 de Macaronesia y otros 2 europeos. Los géneros más importantes en cuanto a número de especies son Teucrium (141), Stachys (133), Salvia (131), Thymus (114) y Sideritis (87), que suman más de la mitad del número total de especies. En la Península Ibérica e Islas Baleares viven 290 especies de labiadas, que corresponden a 36 géneros. Solamente Teucrium (66), Sideritis (49) y Thymus (37) suman 152 especies, más de la mitad, con 45, 36 y 24 endemismos respectivamente, 105 en total. Otros 97 especies corresponden a 11 géneros medianos en cuanto a número de especies (5-16 en dicha área geográfica). Los 22 géneros restantes (1-4 especies) suman 41 especies. En la región macaronésica viven 31 géneros y 115 especies. Los géneros Bystropogon (7) y Cedronella (1) son endemismos, lo mismo que todas las especies de Micromeria (17) y Sideritis (26), debido a un proceso de radiación adaptativa en las islas macaronésicas. En total 62 endemismos macaronésicos y de ellos 52 especies de las Islas Canarias. Palabras clave: Lamiaceae, región mediterránea, biodiversidad. Morales, R. (2000). Diversity in Mediterranean and Macaronesian labiate. Portugaliae Acta Biol.
    [Show full text]
  • Effect of Macronutrients, Cytokinins and Auxins, on in Vitro Organogenesis of Thymus Vulgaris L
    American Journal of Plant Sciences, 2019, 10, 1482-1502 https://www.scirp.org/journal/ajps ISSN Online: 2158-2750 ISSN Print: 2158-2742 Effect of Macronutrients, Cytokinins and Auxins, on in Vitro Organogenesis of Thymus vulgaris L. Zineb Nejjar El Ansari1*, Amina El Mihyaoui1, Ibtissam Boussaoudi1, Rajae Benkaddour1, Ouafaa Hamdoun1, Houda Tahiri2, Alain Badoc3, Aicha El Oualkadi2, Ahmed Lamarti1 1Laboratory of Plant Biotechnology, Biology Department, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco 2Genetic Improvement of Plants Laboratory /National Institute of Agronomic Research (INRA), Tangier, Morocco 3Axe MIB (Molécules d’Intérêt Biologique), Unité de Recherche (Enologie EA 4577, USC 1366 INRA), UFR des Sciences Pharmaceutiques, Université de Bordeaux, ISVV (Institut des Sciences de la Vigne et du Vin), Bordeaux, France How to cite this paper: El Ansari, Z.N., El Abstract Mihyaoui, A., Boussaoudi, I., Benkaddour, R., Hamdoun, O., Tahiri, H., Badoc, A., El The present study reports an efficient protocol for in vitro propagation of Oualkadi, A. and Lamarti, A. (2019) Effect Thymus vulgaris L., an aromatic and medicinal plant in Morocco. Initially, of Macronutrients, Cytokinins and Auxins, we performed in vitro multiplication of Thymus vulgaris explants existing in on in Vitro Organogenesis of Thymus vulga- ris L. American Journal of Plant Sciences, the laboratory and obtained from micropropagation by shoot tip culture. Af- 10, 1482-1502. terwards, we have evaluated the effect of six macronutrients. After that, seven https://doi.org/10.4236/ajps.2019.109105 cytokinins (Kin, BAP, 2iP, DPU, Adenine, Zeatine and TDZ) in three differ- ent concentrations (0.46, 0.93, 2.32 µM) have been evaluated to optimize cul- Received: August 3, 2019 Accepted: September 6, 2019 tures multiplication and elongation.
    [Show full text]
  • Conservation of Thymus Pallidus Cosson Ex Batt. by Shoot Tip and Axillary Bud in Vitro Culture
    J Plant Biotechnol (2020) 47:53–65 ISSN 1229-2818 (Print) DOI:https://doi.org/10.5010/JPB.2020.47.1.053 ISSN 2384-1397 (Online) Research Article Conservation of Thymus pallidus Cosson ex Batt. by shoot tip and axillary bud in vitro culture Zineb Nejjar El Ansari ・ Ibtissam Boussaoudi ・ Rajae Benkaddour ・ Ouafaa Hamdoun ・ Mounya Lemrini ・ Patrick Martin ・ Alain Badoc ・ Ahmed Lamarti Received: 2 February 2020 / Revised: 22 March 2020 / Accepted: 24 March 2020 ⓒ Korean Society for Plant Biotechnology Abstract Here, we describe an efficient and rapid protocol Keywords Auxins, Cytokinins, Gibberellic acid, Macro- for the micropropagation of Thymus pallidus Cosson ex Batt., nutrients, Micropropagation, Thymus pallidus a very rare medicinal and aromatic plant in Morocco. After seed germination, we tested the effect of different macro- nutrients, cytokinins alone or in combination with gibberellic Introduction acid (GA3) or auxins, on T. pallidus plantlet growth. We found Thymus pallidus Cosson ex. Batt is a medicinal and aromatic that Margara macronutrients (N30K) had the best effect on the in vitro development of the plantlets. The addition of 0.93 plant found exclusively in Morocco, Algeria and Spain (The Euro + Med Plant Base 2019). In Morocco, it is encountered µM/L 1,3-diphenylurea (DPU), 0.46 µM/L adenine (Ad), and in Tagmoute, north of Taliouine, Siroua mountains, Ourika and 0.46 and 0.93 μM/L kinetin (Kin) resulted in the best shoot the central Anti Atlas (Bellakhdar 1997; Fennane and Ibn- multiplication and elongation. In addition, the combination of Tattou 1998). The leaves of this species are greenish and 0.46 µM/L Kin, DPU, or Ad with gibberellic acid, in particular, petiolate, with a full-margin branch (Bennouna et al.
    [Show full text]
  • Curriculum Vitae Número De Hojas Que Contiene: 32
    Plan Nacional de I+D Curriculum vitae Número de hojas que contiene: 32 Nombre: RAMÓN MORALES VALVERDE Fecha: 11-IV-2011 Firma: El arriba firmante declara que son ciertos los datos que figuran en este curriculum, asumiendo, en caso contrario, las responsabilidades que pudieran derivarse de las inexactitudes que consten en el mismo. APELLIDOS: MORALES VALVERDE NOMBRE: Ramón D.N.I.: 2180591F FECHA DE NACIMIENTO: 14-IX-1950 SEXO: Varón Nº FUNCIONARIO: 0218059102 A5404 DIRECCION PARTICULAR: Travesía de Somosierra 11, 2ºB. 28761 Tres Cantos, Madrid. TELÉFONO: (0034) 918045129 SITUACIÓN PROFESIONAL ACTUAL ORGANISMO: Consejo Superior de Investigaciones Científicas (CSIC) FACULTAD, ESCUELA o INSTITUTO: Real Jardín Botánico DEPT./SECC./UNIDAD ESTR.: Biodiversidad y Conservación DIRECCION POSTAL: Plaza de Murillo, 2. E-28014 Madrid TELÉFONO: (0034) 914203017 ext. 213 FAX: (0034) 914200157 CORREO ELECTRONICO: [email protected] ESPECIALIZACION (CODIGO UNESCO): 241720 CATEGORIA PROFESIONAL Y FECHA DE INICIO: Científico titular, 1-II-1987 PLANTILLA DEDICACION: A TIEMPO COMPLETO Además le han sido concedidos 2 SEXENIOS y 5 QUINQUENIOS dentro de su actividad científica. LÍNEAS DE INVESTIGACIÓN Sistemática de plantas vasculares, labiadas, etnobotánica alimentaria, plantas medicinales. FORMACIÓN ACADÉMICA Licenciado en Ciencias Biológicas Universidad Complutense de Madrid, julio de 1976 Doctor en Ciencias Biológicas Universidad Complutense de Madrid, marzo de 1985 TESIS DOCTORAL : Taxonomía del género Thymus L. [excluida la sección Serpyllum (Miller) Bentham] en la Península Ibérica. CALIFICACIÓN: Apto cum laude. DIRECTOR DE TESIS: Ginés López González ACTIVIDADES ANTERIORES DE CARÁCTER CIENTÍFICO O PROFESIONAL FECHAS PUESTO INSTITUCIÓN 1-IX-1978 a 31-VIII-1981 Becario predoctoral Real Jardín Botánico, CSIC Enero-1977 a Enero-1987 Profesor titular de Ciencias Colegio privado San Juan de Naturales y Matemáticas (BUP) Dios, Ciempozuelos, Madrid.
    [Show full text]
  • Composición Química Del Aceite Esencial De Thymus Piperella L. Y Su Variabilidad Estacional
    UNIVERSITAT POLITÈCNICA DE VALÈNCIA ESCOLA TÈCNICA SUPERIOR D´ENGINYERIA AGRONÒMICA I DEL MEDI NATURAL Composición química del aceite esencial de Thymus Piperella L. y su variabilidad estacional Trabajo de fin de grado en Ciencia y Tecnología de los Alimentos Curso 2018/2019 Autora: Natalia Escrivà Todolí Tutor: Dr. Juan Antonio Llorens Molina Directora experimental: Dra. Sandra Vacas González Valencia, 22 de febrero de 2019 Composición química del aceite esencial de Thymus Piperella L. y su variabilidad estacional Autora: Natalia Escrivà Todolí Trabajo Final de Grado Tutor: D. Juan Antonio Llorens Molina Realizado en: Valencia Fecha: Febrero, 2019 RESUMEN Thymus Piperella L. es una planta silvestre considerada un endemismo valenciano y conocida popularmente como pebrella. Una de sus utilidades más populares es como aromatizante y saborizante de los alimentos por su olor característico, utilizándose para el aliño de las aceitunas y condimento para algunos embutidos y gazpachos. Observando la composición de su aceite esencial, normalmente nos podemos encontrar como compuestos mayoritarios timol, carvacrol, p-cimeno y ɣ-terpineno, que pueden utilizarse como agentes antimicrobianos por su efecto inhibidor frente a determinadas bacterias que pueden afectar a la conservación de algunos alimentos. Uno de los principales factores de variabilidad en el rendimiento y composición de los aceites esenciales es el relacionado con los cambios estacionales, derivados del desarrollo vegetativo de la planta. En este sentido, y sobre todo cuando se pasa de la recolección al cultivo de las plantas aromáticas, el conocimiento de estas variaciones es imprescindible para optimizar la obtención de aceite esencial, así como la actividad biológica derivada de su composición.
    [Show full text]
  • Thymus Vulgaris L.)
    Available online: www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Notulae Botanicae Horti AcademicPres Not Bot Horti Agrobo, 2018, 46(2):525-532. DOI:10.15835/nbha46211020 Agrobotanici Cluj-Napoca Original Article Micropropagation and Composition of Essentials Oils in Garden Thyme ( Thymus vulgaris L.) Danuta KULPA 1*, Aneta WESOŁOWSKA 2, Paula JADCZAK 1 1West Pomeranian University of Technology, Department of Plant Genetics, Breeding and Biotechnology, Slowackiego 17, 71-434, Szczecin, Poland; [email protected] (*corresponding author); [email protected] 2West Pomeranian University of Technology, Department of Organic and Physical Chemistry, Aleja Piastów 42, 71-065 Szczecin, Poland; aneta.wesoł[email protected] Abstract Thymus vulgaris L. is an important aromatic plant, because of the synthesis and production of its essential oils for the pharmaceutical and cosmetic industries. In this study, we developed a micropropagation protocol for T. vulgaris ‘Słoneczko’ and evaluated the potential of micropropagated plants for essential oil production with industrial application. The seeds were soaked for 10 min in 10% sodium hypochlorite (NaOCl) solution. Then, each seed was put into a 20 ml test tube filled with 5ml of Murashige and Skoog (MS) medium. Half of the cultures were subjected to light intensity which was maintained at 40 µEm −2 s−1 , and the other half was cultured in the dark. Shoot explants were multiplied in vitro using MS medium supplemented with BAP, 2iP or KIN. The results obtained indicate that the cytokinin which had the most positive impact on plant development at the multiplication stage was 5 mg dm−3 2iP.
    [Show full text]
  • Ethnobotanical Review of Wild Edible Plants in Spain
    Blackwell Publishing LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2006? 2006 1521 2771 Original Article EDIBLE WILD PLANTS IN SPAIN J. TARDÍO ET AL Botanical Journal of the Linnean Society, 2006, 152, 27–71. With 2 figures Ethnobotanical review of wild edible plants in Spain JAVIER TARDÍO1*, MANUEL PARDO-DE-SANTAYANA2† and RAMÓN MORALES2 1Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca El Encín, Apdo. 127, E-28800 Alcalá de Henares, Madrid, Spain 2Real Jardín Botánico, CSIC, Plaza de Murillo 2, E-28014 Madrid, Spain Received October 2005; accepted for publication March 2006 This paper compiles and evaluates the ethnobotanical data currently available on wild plants traditionally used for human consumption in Spain. Forty-six ethnobotanical and ethnographical sources from Spain were reviewed, together with some original unpublished field data from several Spanish provinces. A total of 419 plant species belonging to 67 families was recorded. A list of species, plant parts used, localization and method of consumption, and harvesting time is presented. Of the seven different food categories considered, green vegetables were the largest group, followed by plants used to prepare beverages, wild fruits, and plants used for seasoning, sweets, preservatives, and other uses. Important species according to the number of reports include: Foeniculum vulgare, Rorippa nasturtium-aquaticum, Origanum vulgare, Rubus ulmifolius, Silene vulgaris, Asparagus acutifolius, and Scolymus hispanicus. We studied data on the botanical families to which the plants in the different categories belonged, over- lapping between groups and distribution of uses of the different species. Many wild food plants have also been used for medicinal purposes and some are considered to be poisonous.
    [Show full text]
  • Review Article Medical Ethnobotany in Europe: from Field Ethnography to a More Culturally Sensitive Evidence-Based CAM?
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 156846, 17 pages doi:10.1155/2012/156846 Review Article Medical Ethnobotany in Europe: From Field Ethnography to a More Culturally Sensitive Evidence-Based CAM? Cassandra L. Quave,1 Manuel Pardo-de-Santayana,2 and Andrea Pieroni3 1 Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107, Atlanta, GA 30322, USA 2 Departamento de Biolog´ıa (Botanica),´ Universidad Autonoma´ de Madrid, c/Darwin 2, Campus de Cantoblanco, E-28049 Madrid, Spain 3 University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12060 Bra/Pollenzo, Italy Correspondence should be addressed to Cassandra L. Quave, [email protected] Received 2 April 2012; Accepted 13 May 2012 Academic Editor: Fabio Firenzuoli Copyright © 2012 Cassandra L. Quave et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. European folk medicine has a long and vibrant history, enriched with the various documented uses of local and imported plants and plant products that are often unique to specific cultures or environments. In this paper, we consider the medicoethnobotanical field studies conducted in Europe over the past two decades. We contend that these studies represent an important foundation for understanding local small-scale uses of CAM natural products and allow us to assess the potential for expansion of these into the global market. Moreover, we discuss how field studies of this nature can provide useful information to the allopathic medical community as they seek to reconcile existing and emerging CAM therapies with conventional biomedicine.
    [Show full text]