Quantifying the Quantum Stephan Schlamminger Looks at the Origins of the Planck Constant and Its Current Role in Redefining the Kilogram

Total Page:16

File Type:pdf, Size:1020Kb

Quantifying the Quantum Stephan Schlamminger Looks at the Origins of the Planck Constant and Its Current Role in Redefining the Kilogram measure for measure Quantifying the quantum Stephan Schlamminger looks at the origins of the Planck constant and its current role in redefining the kilogram. child on a swing is an everyday mechanical constant (h) with high precision, measure a approximation of a macroscopic a macroscopic experiment is necessary, force — in A harmonic oscillator. The total energy because the unit of mass, the kilogram, can this case of such a system depends on its amplitude, only be accessed with high precision at the the weight while the frequency of oscillation is, at one-kilogram value through its definition of a mass least for small amplitudes, independent as the mass of the International Prototype m — as of the amplitude. So, it seems that the of the Kilogram (IPK). The IPK is the only the product energy of the system can be adjusted object on Earth whose mass we know for of a current continuously from zero upwards — that is, certain2 — all relative uncertainties increase and a voltage the child can swing at any amplitude. This from thereon. divided by a velocity, is not the case, however, for a microscopic The revised SI, likely to come into mg = UI/v (with g the oscillator, the physics of which is described effect in 2019, is based on fixed numerical Earth’s gravitational by the laws of quantum mechanics. A values, without uncertainties, of seven acceleration). quantum-mechanical swing can change defining constants, three of which are Meanwhile, the its energy only in steps of hν, the product already fixed in the present SI; the four discoveries of the Josephson of the Planck constant and the oscillation additional ones are the elementary and quantum Hall effects frequency — the (energy) quantum of charge and the Planck, led to precise electrical the oscillator. Boltzmann and Avogadro measurements involving In 1901, the idea of energy quantization constants. Any experiment the Planck constant and the was put forward by Max Planck1. The year that can be used in the present elementary charge5. For the product before, Planck had published an article SI to measure the Planck of voltage and current UI, the wherein he predicted the spectral shape constant from known elementary charge cancels out; it only of black-body radiation (the radiation calibration masses can be depends on the Planck constant, two emitted from a perfect absorber). However, operated backwards in microwave frequencies, f1 and f2, used better experimental evidence became the revised SI: it for the Josephson voltage standard, and a available, with which Planck’s initial would measure known numerical factor r, which depends SIMONE BRAUNER theory was discrepant. So he attempted mass based on on the experimental setup. Hence, the mass another calculation and used an ‘audacious a fixed, defined can be expressed as m = hrf1f2/gv. assumption’: energy quantization. A black value of h. Such an Replacing a century-old artefact with a body can be described as a distribution experiment translates set of fundamental constants and recipes to of oscillators, the energy of which Planck between the quantum and the obtain the unit of mass from these constants required to be the product of an integer, macroscopic world3. and the Kibble balance brings the SI closer a new constant h, and the oscillator’s One experiment that connects h to the to a system of units that is “for all time, for frequency. Using elementary combinatorics kilogram involves a balance invented in all people”. ❐ and Boltzmann’s entropy equation, he 1975 by Bryan Kibble4. At the heart of the managed to obtain an equation for the Kibble balance, formerly known as the watt STEPHAN SCHLAMMINGER is at the spectral shape of the black-body radiation balance, is a coil in a magnetic field that can Physical Measurement Laboratory at that matched the experimental observations operate as both a motor and a generator. the National Institute of Standards and perfectly. From the published spectral For the former, a current I is passed through Technology, 100 Bureau Drive, Gaithersburg, data and his theory, Planck estimated a the coil, resulting in a force F. For the latter, Maryland 20899-8171, USA. value of 6.55 × 10–34 J s for h. Today, the the coil is swept with velocity v through the e-mail: [email protected] accepted value for the Planck constant field, producing an induced voltageU at is 6.626070040 × 10–34 J s, with a relative the coil’s terminals. Kibble realized that due References uncertainty of 1.2 × 10–8. to the symmetry in Maxwell’s equations, 1. Planck, M. Ann. D. Phys. 4, 553–563 (1901). 2. SI Brochure: The International System of Units (SI) 8th edn The unit of the Planck constant, J s, can the quotient of force and current, F/I, is (BIPM, 2014); http://www.bipm.org/en/publications/si-brochure/ 2 –1 be written as kg m s . This equivalence identical to the quotient of voltage and coil 3. Haddad, D. et al. Metrologia 53, A83–A85 (2016). hints at an interesting idiosyncrasy in velocity, U/v, if the velocity and force point 4. Kibble, B. P. in Atomic Masses and Fundamental Constants Vol. 5 (eds Sanders, J. H. & Wapstra, A. H.) 545–551 the present version of the International in the same direction. This principle enables (Springer, 1976). System of Units (SI): to measure a quantum one to equate both quotients and hence 5. Piquemal, F. Nat. Phys. 12, 284 (2016). 618 NATURE PHYSICS | VOL 13 | JUNE 2017 | www.nature.com/naturephysics ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • An Atomic Physics Perspective on the New Kilogram Defined by Planck's Constant
    An atomic physics perspective on the new kilogram defined by Planck’s constant (Wolfgang Ketterle and Alan O. Jamison, MIT) (Manuscript submitted to Physics Today) On May 20, the kilogram will no longer be defined by the artefact in Paris, but through the definition1 of Planck’s constant h=6.626 070 15*10-34 kg m2/s. This is the result of advances in metrology: The best two measurements of h, the Watt balance and the silicon spheres, have now reached an accuracy similar to the mass drift of the ur-kilogram in Paris over 130 years. At this point, the General Conference on Weights and Measures decided to use the precisely measured numerical value of h as the definition of h, which then defines the unit of the kilogram. But how can we now explain in simple terms what exactly one kilogram is? How do fixed numerical values of h, the speed of light c and the Cs hyperfine frequency νCs define the kilogram? In this article we give a simple conceptual picture of the new kilogram and relate it to the practical realizations of the kilogram. A similar change occurred in 1983 for the definition of the meter when the speed of light was defined to be 299 792 458 m/s. Since the second was the time required for 9 192 631 770 oscillations of hyperfine radiation from a cesium atom, defining the speed of light defined the meter as the distance travelled by light in 1/9192631770 of a second, or equivalently, as 9192631770/299792458 times the wavelength of the cesium hyperfine radiation.
    [Show full text]
  • Non-Einsteinian Interpretations of the Photoelectric Effect
    NON-EINSTEINIAN INTERPRETATIONS ------ROGER H. STUEWER------ serveq spectral distribution for black-body radiation, and it led inexorably ~o _the ~latantl~ f::se conclusion that the total radiant energy in a cavity is mfimte. (This ultra-violet catastrophe," as Ehrenfest later termed it, was point~d out independently and virtually simultaneously, though not Non-Einsteinian Interpretations of the as emphatically, by Lord Rayleigh.2) Photoelectric Effect Einstein developed his positive argument in two stages. First, he derived an expression for the entropy of black-body radiation in the Wien's law spectral region (the high-frequency, low-temperature region) and used this expression to evaluate the difference in entropy associated with a chan.ge in volume v - Vo of the radiation, at constant energy. Secondly, he Few, if any, ideas in the history of recent physics were greeted with ~o~s1dere? the case of n particles freely and independently moving around skepticism as universal and prolonged as was Einstein's light quantum ms1d: a given v~lume Vo _and determined the change in entropy of the sys­ hypothesis.1 The period of transition between rejection and acceptance tem if all n particles accidentally found themselves in a given subvolume spanned almost two decades and would undoubtedly have been longer if v ~ta r~ndomly chosen instant of time. To evaluate this change in entropy, Arthur Compton's experiments had been less striking. Why was Einstein's Emstem used the statistical version of the second law of thermodynamics hypothesis not accepted much earlier? Was there no experimental evi­ in _c?njunction with his own strongly physical interpretation of the prob­ dence that suggested, even demanded, Einstein's hypothesis? If so, why ~b1ht~.
    [Show full text]
  • 1.3.4 Atoms and Molecules Name Symbol Definition SI Unit
    1.3.4 Atoms and molecules Name Symbol Definition SI unit Notes nucleon number, A 1 mass number proton number, Z 1 atomic number neutron number N N = A - Z 1 electron rest mass me kg (1) mass of atom, ma, m kg atomic mass 12 atomic mass constant mu mu = ma( C)/12 kg (1), (2) mass excess ∆ ∆ = ma - Amu kg elementary charge, e C proton charage Planck constant h J s Planck constant/2π h h = h/2π J s 2 2 Bohr radius a0 a0 = 4πε0 h /mee m -1 Rydberg constant R∞ R∞ = Eh/2hc m 2 fine structure constant α α = e /4πε0 h c 1 ionization energy Ei J electron affinity Eea J (1) Analogous symbols are used for other particles with subscripts: p for proton, n for neutron, a for atom, N for nucleus, etc. (2) mu is equal to the unified atomic mass unit, with symbol u, i.e. mu = 1 u. In biochemistry the name dalton, with symbol Da, is used for the unified atomic mass unit, although the name and symbols have not been accepted by CGPM. Chapter 1 - 1 Name Symbol Definition SI unit Notes electronegativity χ χ = ½(Ei +Eea) J (3) dissociation energy Ed, D J from the ground state D0 J (4) from the potential De J (4) minimum principal quantum n E = -hcR/n2 1 number (H atom) angular momentum see under Spectroscopy, section 3.5. quantum numbers -1 magnetic dipole m, µ Ep = -m⋅⋅⋅B J T (5) moment of a molecule magnetizability ξ m = ξB J T-2 of a molecule -1 Bohr magneton µB µB = eh/2me J T (3) The concept of electronegativity was intoduced by L.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • An Introduction to Mass Spectrometry
    An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 [email protected] http://science.widener.edu/~svanbram revised: September 2, 1998 © Copyright 1997 TABLE OF CONTENTS INTRODUCTION ........................................................... 4 SAMPLE INTRODUCTION ....................................................5 Direct Vapor Inlet .......................................................5 Gas Chromatography.....................................................5 Liquid Chromatography...................................................6 Direct Insertion Probe ....................................................6 Direct Ionization of Sample ................................................6 IONIZATION TECHNIQUES...................................................6 Electron Ionization .......................................................7 Chemical Ionization ..................................................... 9 Fast Atom Bombardment and Secondary Ion Mass Spectrometry .................10 Atmospheric Pressure Ionization and Electrospray Ionization ....................11 Matrix Assisted Laser Desorption/Ionization ................................ 13 Other Ionization Methods ................................................13 Self-Test #1 ...........................................................14 MASS ANALYZERS .........................................................14 Quadrupole ............................................................15
    [Show full text]
  • Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
    Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]
  • 1. Physical Constants 1 1
    1. Physical constants 1 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 1998 by B.N. Taylor (NIST). Based mainly on the “1986 Adjustment of the Fundamental Physical Constants” by E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard- deviation uncertainties in the last digits; the corresponding uncertainties in parts per million (ppm) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). Since the 1986 adjustment, new experiments have yielded improved values for a number of constants, including the Rydberg constant R∞, the Planck constant h, the fine- structure constant α, and the molar gas constant R,and hence also for constants directly derived from these, such as the Boltzmann constant k and Stefan-Boltzmann constant σ. The new results and their impact on the 1986 recommended values are discussed extensively in “Recommended Values of the Fundamental Physical Constants: A Status Report,” B.N. Taylor and E.R. Cohen, J. Res. Natl. Inst. Stand. Technol. 95, 497 (1990); see also E.R. Cohen and B.N. Taylor, “The Fundamental Physical Constants,” Phys. Today, August 1997 Part 2, BG7. In general, the new results give uncertainties for the affected constants that are 5 to 7 times smaller than the 1986 uncertainties, but the changes in the values themselves are smaller than twice the 1986 uncertainties.
    [Show full text]
  • Millikan Oil Drop Experiment
    (revised 1/23/02) MILLIKAN OIL-DROP EXPERIMENT Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The charge of the electron is measured using the classic technique of Millikan. Mea- surements are made of the rise and fall times of oil drops illuminated by light from a Helium{Neon laser. A radioactive source is used to enhance the probability that a given drop will change its charge during observation. The emphasis of the experiment is to make an accurate measurement with a full analysis of statistical and systematic errors. Introduction Robert A. Millikan performed a set of experiments which gave two important results: (1) Electric charge is quantized. All electric charges are integral multiples of a unique elementary charge e. (2) The elementary charge was measured and found to have the value e = 1:60 19 × 10− Coulombs. Of these two results, the first is the most significant since it makes an absolute assertion about the nature of matter. We now recognize e as the elementary charge carried by the electron and other elementary particles. More precise measurements have given the value 19 e = (1:60217733 0:00000049) 10− Coulombs ± × The electric charge carried by a particle may be calculated by measuring the force experienced by the particle in an electric field of known strength. Although it is relatively easy to produce a known electric field, the force exerted by such a field on a particle carrying only one or several excess electrons is very small. For example, 14 a field of 1000 volts per cm would exert a force of only 1:6 10− N on a particle × 12 bearing one excess electron.
    [Show full text]
  • Electric Charge
    Electric Charge • Electric charge is a fundamental property of atomic particles – such as electrons and protons • Two types of charge: negative and positive – Electron is negative, proton is positive • Usually object has equal amounts of each type of charge so no net charge • Object is said to be electrically neutral Charged Object • Object has a net charge if two types of charge are not in balance • Object is said to be charged • Net charge is always small compared to the total amount of positive and negative charge contained in an object • The net charge of an isolated system remains constant Law of Electric Charges • Charged objects interact by exerting forces on one another • Law of Charges: Like charges repel, and opposite charges attract • The standard unit (SI) of charge is the Coulomb (C) Electric Properties • Electrical properties of materials such as metals, water, plastic, glass and the human body are due to the structure and electrical nature of atoms • Atoms consist of protons (+), electrons (-), and neutrons (electrically neutral) Atom Schematic view of an atom • Electrically neutral atoms contain equal numbers of protons and electrons Conductors and Insulators • Atoms combine to form solids • Sometimes outermost electrons move about the solid leaving positive ions • These mobile electrons are called conduction electrons • Solids where electrons move freely about are called conductors – metal, body, water • Solids where charge can’t move freely are called insulators – glass, plastic Charging Objects • Only the conduction
    [Show full text]
  • Determination of Planck's Constant Using the Photoelectric Effect
    Determination of Planck’s Constant Using the Photoelectric Effect Lulu Liu (Partner: Pablo Solis)∗ MIT Undergraduate (Dated: September 25, 2007) Together with my partner, Pablo Solis, we demonstrate the particle-like nature of light as charac- terized by photons with quantized and distinct energies each dependent only on its frequency (ν) and scaled by Planck’s constant (h). Using data obtained through the bombardment of an alkali metal surface (in our case, potassium) by light of varying frequencies, we calculate Planck’s constant, h to be 1.92 × 10−15 ± 1.08 × 10−15eV · s. 1. THEORY AND MOTIVATION This maximum kinetic energy can be determined by applying a retarding potential (Vr) across a vacuum gap It was discovered by Heinrich Hertz that light incident in a circuit with an amp meter. On one side of this gap upon a matter target caused the emission of electrons is the photoelectron emitter, a metal with work function from the target. The effect was termed the Hertz Effect W0. We let light of different frequencies strike this emit- (and later the Photoelectric Effect) and the electrons re- ter. When eVr = Kmax we will cease to see any current ferred to as photoelectrons. It was understood that the through the circuit. By finding this voltage we calculate electrons were able to absorb the energy of the incident the maximum kinetic energy of the electrons emitted as a light and escape from the coulomb potential that bound function of radiation frequency. This relationship (with it to the nucleus. some variation due to error) should model Equation 2 According to classical wave theory, the energy of a above.
    [Show full text]
  • 1. Physical Constants 101
    1. Physical constants 101 1. PHYSICAL CONSTANTS Table 1.1. Reviewed 2010 by P.J. Mohr (NIST). Mainly from the “CODATA Recommended Values of the Fundamental Physical Constants: 2006” by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 80 (2008) 633. The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the corresponding fractional uncertainties in parts per 109 (ppb) are given in the last column. This set of constants (aside from the last group) is recommended for international use by CODATA (the Committee on Data for Science and Technology). The full 2006 CODATA set of constants may be found at http://physics.nist.gov/constants. See also P.J. Mohr and D.B. Newell, “Resource Letter FC-1: The Physics of Fundamental Constants,” Am. J. Phys, 78 (2010) 338. Quantity Symbol, equation Value Uncertainty (ppb) speed of light in vacuum c 299 792 458 m s−1 exact∗ Planck constant h 6.626 068 96(33)×10−34 Js 50 Planck constant, reduced ≡ h/2π 1.054 571 628(53)×10−34 Js 50 = 6.582 118 99(16)×10−22 MeV s 25 electron charge magnitude e 1.602 176 487(40)×10−19 C = 4.803 204 27(12)×10−10 esu 25, 25 conversion constant c 197.326 9631(49) MeV fm 25 conversion constant (c)2 0.389 379 304(19) GeV2 mbarn 50 2 −31 electron mass me 0.510 998 910(13) MeV/c = 9.109 382 15(45)×10 kg 25, 50 2 −27 proton mass mp 938.272 013(23) MeV/c = 1.672 621 637(83)×10 kg 25, 50 = 1.007 276 466 77(10) u = 1836.152 672 47(80) me 0.10, 0.43 2 deuteron mass md 1875.612 793(47) MeV/c 25 12 2 −27 unified atomic mass unit (u) (mass C atom)/12 = (1 g)/(NA mol) 931.494 028(23) MeV/c = 1.660 538 782(83)×10 kg 25, 50 2 −12 −1 permittivity of free space 0 =1/μ0c 8.854 187 817 ..
    [Show full text]