Millikan Oil Drop Experiment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Millikan's Struggle with Theory
FEATURES Did the great experimentalist doctor his own findings to suit his beliefs? Perhaps not, as aclose look at his beliefs reveals. Millikan's struggle with theory Gerald Holton n 1916 Millikan published his experi by any other experimenter. rectly at the ordinates, he decided"simply I mental determination of the value of Several factors were responsible for the to cut the feet off"where those curves were Planck's constant, with remarkable preci success of the experiment, performed at trailing on too far. sion. Itwas later cited as part ofhis Nobel the Ryerson Laboratory ofthe University In short, a triumphant work by a su Prize award. But as a study of that paper ofChicago. First ofall, Millikan's use ofan perbly confident scientist, ofhighest im together with Millikan's subsequent com ingenious device he termed "a machine portance in its day, and richly deserving to ments over the years reveal, he initiallyre shop in vacuo;' assembled thanks to "the be cited as part of his Nobel Prize award fused to accept the interpretation of the skill and experience of the mechanician, in 1923, "for his work on the elementary theoretical meaning ofhis work, as seen Mr. Julius Pearson" .Essentially, the device charge ofelectricityandthe photoelectric from the perspective of a present-day allowed a rotating sharp knife, controlled effect". If historically minded scholars physicist.Yet, over time, Millikan adjusted from outside the evacuated glass contain look through that 1916 volume of the his view retroactively to accept the mean er by electromagnetic means, to clean off Physical Review inwhich Millikan's paper ing ofwhat he had done - namely to pro the surface of the metal used (sodium, appeared, they will notice that physics in vide crucial support for Einstein's heuris potassium, lithium) before exposing it to America at that time was still a mixed bag. -
Millikan Oil Drop Experiment
Experiment 4 1 Millikan Oil-Drop Experiment Physics 2150 Experiment 4 University of Colorado1 Introduction The fundamental unit of charge is the charge of an electron, which has the magnitude of 푒 = 1.60219 x 10-19 C. With the exception of quarks, all elementary particles observed in nature are found to have a charge equal to an integral multiple of the charge of an electron. (Quarks have charge 푒/3, but they are never observed as free particles). By convention, the symbol 푒 represents a positive charge, so the charge 푞 of an electron is 푞 = −푒. The first person to measure accurately the electron’s charge was the American physicist R. A. Millikan. Working at the University of Chicago in 1912, Millikan found that droplets of oil from a simple spray bottle usually carry a net charge of a few electrons. He built an apparatus in which tiny oil droplets fall between two horizontal capacitor plates while their motion is observed with a microscope. A voltage applied between the plates creates an electric field, which can exert an upward force on a charge droplet, counteracting the force of gravity. By studying the motion of a droplet in response to gravity, the electric field between the plates, and viscous drag due to the air, Millikan was able to calculate the charge on the droplet. He published data on 58 droplets and reported that the charge of an electron is 푒 = (1.592±0.003) x 10-19 C. Millikan’s value was a bit low (three 휎 below the accepted value) because he used a slightly inaccurate expression for the drag force due to air. -
Tournament-9 Round 12 Tossups 1
Tournament-9 Round 12 Tossups 1. This psychologist argued that "moving toward others," "moving against others," and "moving away from others" were the three unhealthy trends. She organized the Association for the Advancement of Psychoanalysis after being expelled from the New York Psychoanalytic Institute. She argued against the concept of the death instinct and libido in works such as Feminine Psychology and The Neurotic Personality of Our Time. (*) For 10 points, name this psychologist, who introduced the concept of womb envy. ANSWER: Karen Horney 030-09-6-12102 2. The magnitudes of constructs of this type are related to J-coupling constants in proton NMR spectroscopy, according to the Karplus equations. One construct of this type is also known as the "dihedral" type, and applies when four or more atoms are bonded in a straight chain. For a central molecule with two sigma bonds, the magnitude of a construct of this type (*) decreases by one-third when a lone pair is present, which is the major difference between a linear and a bent molecule. For 10 points, name these figures important in molecular geometry, which come in "bond" and "torsional" varieties, and are typically measured in degrees. ANSWER: angles [or torsional angles; or bond angles; or dihedral angles] 026-09-6-12103 3. This deity trips a figure named Lit and kicks him into a pyre. This deity, assisted by some items given by Grid, defeats Geirrod, but fails to wrestle Eli, who is really Old Age. This deity cannot pick up the cat of (*) Utgard-Loki, but does make Thialfi into his apprentice. -
1.3.4 Atoms and Molecules Name Symbol Definition SI Unit
1.3.4 Atoms and molecules Name Symbol Definition SI unit Notes nucleon number, A 1 mass number proton number, Z 1 atomic number neutron number N N = A - Z 1 electron rest mass me kg (1) mass of atom, ma, m kg atomic mass 12 atomic mass constant mu mu = ma( C)/12 kg (1), (2) mass excess ∆ ∆ = ma - Amu kg elementary charge, e C proton charage Planck constant h J s Planck constant/2π h h = h/2π J s 2 2 Bohr radius a0 a0 = 4πε0 h /mee m -1 Rydberg constant R∞ R∞ = Eh/2hc m 2 fine structure constant α α = e /4πε0 h c 1 ionization energy Ei J electron affinity Eea J (1) Analogous symbols are used for other particles with subscripts: p for proton, n for neutron, a for atom, N for nucleus, etc. (2) mu is equal to the unified atomic mass unit, with symbol u, i.e. mu = 1 u. In biochemistry the name dalton, with symbol Da, is used for the unified atomic mass unit, although the name and symbols have not been accepted by CGPM. Chapter 1 - 1 Name Symbol Definition SI unit Notes electronegativity χ χ = ½(Ei +Eea) J (3) dissociation energy Ed, D J from the ground state D0 J (4) from the potential De J (4) minimum principal quantum n E = -hcR/n2 1 number (H atom) angular momentum see under Spectroscopy, section 3.5. quantum numbers -1 magnetic dipole m, µ Ep = -m⋅⋅⋅B J T (5) moment of a molecule magnetizability ξ m = ξB J T-2 of a molecule -1 Bohr magneton µB µB = eh/2me J T (3) The concept of electronegativity was intoduced by L. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Moremore Millikan’S Oil-Drop Experiment
MoreMore Millikan’s Oil-Drop Experiment Millikan’s measurement of the charge on the electron is one of the few truly crucial experiments in physics and, at the same time, one whose simple directness serves as a standard against which to compare others. Figure 3-4 shows a sketch of Millikan’s apparatus. With no electric field, the downward force on an oil drop is mg and the upward force is bv. The equation of motion is dv mg Ϫ bv ϭ m 3-10 dt where b is given by Stokes’ law: b ϭ 6a 3-11 and where is the coefficient of viscosity of the fluid (air) and a is the radius of the drop. The terminal velocity of the falling drop vf is Atomizer (+) (–) Light source (–) (+) Telescope Fig. 3-4 Schematic diagram of the Millikan oil-drop apparatus. The drops are sprayed from the atomizer and pick up a static charge, a few falling through the hole in the top plate. Their fall due to gravity and their rise due to the electric field between the capacitor plates can be observed with the telescope. From measurements of the rise and fall times, the electric charge on a drop can be calculated. The charge on a drop could be changed by exposure to x rays from a source (not shown) mounted opposite the light source. (Continued) 12 More mg Buoyant force bv v ϭ 3-12 f b (see Figure 3-5). When an electric field Ᏹ is applied, the upward motion of a charge Droplet e qn is given by dv Weight mg q Ᏹ Ϫ mg Ϫ bv ϭ m n dt Fig. -
Millikan Oil Drop Experiment
Agenda 1. Measuring of the charge of electron. 2. Robert Millikan and his oil drop experiment 3. Theory of the experiment 4. Laboratory setup 5. Data analysis 2/17/2014 2 Measuring of the charge of the electron 1. Oil drop experiment. Robert A. Millikan.. (1909). e=1.5924(17)×10−19 C 2. Shot noise experiment. First proposed by Walter H. Schottky 3. In terms of the Avogadro constant and Faraday constant 풆 = 푭 ; F- Faraday constant, NA - Avagadro constant. Best 푵푨 uncertainty ~1.6 ppm. ퟐ풆 풉 4. From Josephson (푲 = ) and von Klitzing 푹 = constants 푱 풉 푲 풆ퟐ 5. Recommended by NIST value 1.602 176 565(35) 10-19 C 2/17/2014 3 Robert Millikan. Oil drop experiment The Nobel Prize in Physics 1923. Robert A. Millikan "for his work on the elementary charge of electricity and on the photoelectric effect". ROBERT ANDREWS MILLIKAN 1868-1953 22nd of March, 1868, Morrison, Ill University of Chicago 2/17/2014 4 Robert Millikan. Oil drop experiment ROBERT ANDREWS MILLIKAN 1868-1953 Diagram and picture of apparatus 2/17/2014 5 Oil drop experiment. Measurement of the magnitude of the electron charge! Motivation: Demonstrate that the electron charge is quantized! Measure the charge of an electron to ±3% Picture of the PASCO setup 2/17/2014 6 Oil drop experiment. atomizer Oil drops ∅~1m telescope + V Vg d 500V - 흆풂풊풓 Forces on the oil drop: 1) Gravity + buoyant force (air displaced by oil drop) 2) Drag force of the oil drop in the air 2/17/2014 7 Oil drop experiment. -
An Introduction to Mass Spectrometry
An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 [email protected] http://science.widener.edu/~svanbram revised: September 2, 1998 © Copyright 1997 TABLE OF CONTENTS INTRODUCTION ........................................................... 4 SAMPLE INTRODUCTION ....................................................5 Direct Vapor Inlet .......................................................5 Gas Chromatography.....................................................5 Liquid Chromatography...................................................6 Direct Insertion Probe ....................................................6 Direct Ionization of Sample ................................................6 IONIZATION TECHNIQUES...................................................6 Electron Ionization .......................................................7 Chemical Ionization ..................................................... 9 Fast Atom Bombardment and Secondary Ion Mass Spectrometry .................10 Atmospheric Pressure Ionization and Electrospray Ionization ....................11 Matrix Assisted Laser Desorption/Ionization ................................ 13 Other Ionization Methods ................................................13 Self-Test #1 ...........................................................14 MASS ANALYZERS .........................................................14 Quadrupole ............................................................15 -
Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H. -
Electric Charge
Electric Charge • Electric charge is a fundamental property of atomic particles – such as electrons and protons • Two types of charge: negative and positive – Electron is negative, proton is positive • Usually object has equal amounts of each type of charge so no net charge • Object is said to be electrically neutral Charged Object • Object has a net charge if two types of charge are not in balance • Object is said to be charged • Net charge is always small compared to the total amount of positive and negative charge contained in an object • The net charge of an isolated system remains constant Law of Electric Charges • Charged objects interact by exerting forces on one another • Law of Charges: Like charges repel, and opposite charges attract • The standard unit (SI) of charge is the Coulomb (C) Electric Properties • Electrical properties of materials such as metals, water, plastic, glass and the human body are due to the structure and electrical nature of atoms • Atoms consist of protons (+), electrons (-), and neutrons (electrically neutral) Atom Schematic view of an atom • Electrically neutral atoms contain equal numbers of protons and electrons Conductors and Insulators • Atoms combine to form solids • Sometimes outermost electrons move about the solid leaving positive ions • These mobile electrons are called conduction electrons • Solids where electrons move freely about are called conductors – metal, body, water • Solids where charge can’t move freely are called insulators – glass, plastic Charging Objects • Only the conduction -
Eastern Kentucky University Department of Physics and Astronomy Physics 406W TBD Advanced Physics Laboratory Writing Intensive CRN: TBD 3 Credit Hours
Eastern Kentucky University Department of Physics and Astronomy Physics 406W TBD Advanced Physics Laboratory Writing Intensive CRN: TBD 3 Credit Hours Course Time and Location: NSB3165 Instructor: Dr. Marco Ciocca Office: NSB 3162 Phone: 622-6172 Email: [email protected] Office Hours: MWF 10-11 AM or any other times in which I am in my office. Feel free to stop by! Catalog Description: PHY 406W Advanced Physics Laboratory. (3) A. Prerequisites: ENG 102, 105(B), or HON 102; PHY 132, 202, or departmental approval. Experiments in mechanics, optics, electricity, and nuclear physics. Computer simulations of physical situations. Measurement and data analysis techniques, including error analysis. Credit will not be awarded to students who have credit for PHY 406. 5 Lec/Lab. Experiments will be performed with the basic laboratory goals of a) How measurements are made. b) How data is analyzed, including how data is graphed, and c) How to draw quantitative conclusions from data in tabular and graphical form. d) Indicate the reliability and confidence in the data acquired through an appropriate error analysis. e) Demonstrate a good grasp of a-d by communicating effectively in writing. Last Date to withdraw from full semester classes: as per University policy. Textbook: “An Introduction to Error Analysis” 2nd edition by John R. Taylor. For the experiments we’ll use handouts. You must have a 3-ring binder or folder to keep you handout neatly. You will need a flash drive to keep your results. You will need loose-leaf sheet for your 3-ring binder so your sketches, table and any information you jot down during an experiment can be recorded. -
Quantifying the Quantum Stephan Schlamminger Looks at the Origins of the Planck Constant and Its Current Role in Redefining the Kilogram
measure for measure Quantifying the quantum Stephan Schlamminger looks at the origins of the Planck constant and its current role in redefining the kilogram. child on a swing is an everyday mechanical constant (h) with high precision, measure a approximation of a macroscopic a macroscopic experiment is necessary, force — in A harmonic oscillator. The total energy because the unit of mass, the kilogram, can this case of such a system depends on its amplitude, only be accessed with high precision at the the weight while the frequency of oscillation is, at one-kilogram value through its definition of a mass least for small amplitudes, independent as the mass of the International Prototype m — as of the amplitude. So, it seems that the of the Kilogram (IPK). The IPK is the only the product energy of the system can be adjusted object on Earth whose mass we know for of a current continuously from zero upwards — that is, certain2 — all relative uncertainties increase and a voltage the child can swing at any amplitude. This from thereon. divided by a velocity, is not the case, however, for a microscopic The revised SI, likely to come into mg = UI/v (with g the oscillator, the physics of which is described effect in 2019, is based on fixed numerical Earth’s gravitational by the laws of quantum mechanics. A values, without uncertainties, of seven acceleration). quantum-mechanical swing can change defining constants, three of which are Meanwhile, the its energy only in steps of hν, the product already fixed in the present SI; the four discoveries of the Josephson of the Planck constant and the oscillation additional ones are the elementary and quantum Hall effects frequency — the (energy) quantum of charge and the Planck, led to precise electrical the oscillator.