Models of Regular Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Models of Regular Galaxies DISSERTATIONEN ASTRO N OMI AE UNIVERSITATIS TAKTUENSIS 6 MODELS OF REGULAR GALAXIES b y PEETER TENJES TARTU 1993 DISSERTATIONEN ASTRONOMIAE UNIVERSITATIS TARTUEN 6 MODELS OF REGULAR GALAXIES by PEETER TENJES Supervisors: Prof. J. Einasto, Dr. Sei. M. Jõeveer, C&nd. Sei. Offieiöi opponents: В. Sundelius, Ph. D. (Göteborg) A. Chernin, Dr. Sei (Moscow) E. Saar, Dr. Sei. (T&rtv,) The Thesis will be defended on February 1993 at in the Council Hall of Ты-tu University, Ülikooli 18, EE2400 Tartu, Estonia. Secretary of the Council Ü. Uus The author was boro in 1956 in Türi, Estonia. In 1978 he graduated from the University of Tartu as a theoretical physicist and started work at the Chair of General Physics of the same University. In 1980 he started work at Tfextu Aetrophysical Observatory in the work group of extragalactic studies. Address of the author*. Institute of Astrophysics and Atmospheric Physics, ЕЁ2444 Tõravere, Estonia CONTENTS C H A P T E R I INTRODUCTION AND SUMMARY .................. 6 1 The structure of galaxies ............................................. .................. 3 2 Summary ...................... ....................................................................... 9 CHAPTER 3 THE ANDROMEDA GALAXY MSI ................ 15 1 Introduction . , .............. ..................................................................... 15 2 Analysis of observational data ........................................................ 16 3 Subsystems in M31 ................................................................. .......... 19 4 Best-approximation process ........................................................... 24 4.1 General parameter* of the approximation process ............. 24 4.2 Description of the fitting process ......................... ................. 25 4.3 Coupling of parameters...................... .............................. 28 4 3.1 Spheroidal components ......................... ............. .......... 29 4.3.2 Disk like components and the massive corona ........... 20 5 Results .......................... .................................................................... 32 6 Discussion ............................................................... ........................... 36 Appendix A: model construction...................................... 38 Appendix B: normalizing parameters............................................. 40 Appendix C: tbe 3-component m odel........................... 41 C H A P T E R 3 S T A R F O R M A T IO N IN M S I ................................. 4S 1 Introduction с.............................................................— ................ 48 2 An analysis of observational data ............................................... 49 3 Results ............................................................................. ......... ... 51 4 Discussion ........................................................................................... 53 C H A P T E R 4 THE ELLIPTICAL GALAXY M87 .................... 56 1 Introduction ..... .......... .................... .......... .................. .................56 2 Analysis of observational d a t a ......................................................... 57 3 Model construction .................................. ........................................ ...60 4 Subsystems in M87 ....... ....................................................................61 4.1 The nucleus ....... .........................................................................62 4.2 The k l o ...................... ........... ......................................................64 4.3 The bulge ................................................................................... ..66 4.4 The massive corona .................. .............................................66 5 Best-approximation model .................................................................68 в Discussion ......................................... ........................ ..........................69 CHAPTER 5 THE GALAXY M81 .................... ........................... T5 1 Introduction ......................................................................... ......... 75 2 Observations and data reduction............. ........................................75 3 An analysis of observational d ata.......................................................78 4 Subsystems in MSI ............. ............................... ............................. ...80 5 Description of the fitting process ................................... ..................84 6 Results and discussion ...................... .............................................. ...88 CHAPTER 6 REVIEW OF CONSTRUCTED MODELS ....... »2 1 Introduction ........................................................................................ .. 92 2 Overview of the model components . ............................................ 92 3 Description of the modelling ............................... .................... ......... 94 4 Results ..................................................................................................95 CHAPTER 7 PHYSICAL PROPERTIES OF GALACTIC P O P U L A T IO N S ......................................................................... 101 1 Introduction ...................................................................................... 101 2 The mass-to-light ratios for spheroidal and disk subsystems ... 101 3 The mean mass-to-light ratio of visible matter ........................... 103 CHAPTER 8 INTRINSIC SHAPE OF ELLIPTICAL G ALAXIES ...................................................................... 107 1 Introduction ....................................................................................... 107 2 Meihod ............................................................................................... 103 3 Results ................................................................................................. 14 4 Conclusions ........................................................................................ 120 S U M M A R Y (IN ESTO N IAN ) ............................................................... 124 LIST OF PUBLICATIONS ................................ .................................. 128 C H A P T E R 1 INTRODUCTION AND SUMMARY 1 The structure of galaxies One of the outstanding problems in modem astronomy is the investigation of the disfributior of mase in galaxies, the decomposing of the galaxy into subsys­ tems of ordinary and dark matter, and a study of their relationship. The struc­ ture of visible populations and the distribution of dark matter with respect to the visible one allows us to choose between various galaxy formation scenarios artd to clarify the nature o f dark matter in more detail. Simple one-component models, baeed on the radial light profiles, have not so far provided a strong test of theories of galaxy formation, since several evolution scenarios can be proposed that yield equally good fits to these observations (Gott 1977). Better results can be obtained by multiple-component models which incorporate the presence of physically different populations in galaxies. A useful diagnostic of galactic structure and evolution, at. least for spheroidal systems, is provided by the structure of isophot.es and the metaffidty gradients that are often obeerved in elliptical galaxies and spiral bulgee (Kormendy & Djorgovski 1Я89). The importance of the measurement of colours in galaxies is that they supply infor­ mation on the link between the chemical and dynamical evolution of galaxies end yield dues about how chemical evolution proceeded as stars formed in the history of a galaxy. Models of galaxy formation involving dissipative or dissi- pationless collapse or mergers (Larson 1990) predict relations between colour distribution and stellar density. Also, scenarios of galaxy formation, in which mergers play an important role, predict core-haio colour differences аз opposed to smooth continous gradients. During the collapse of the protogalaxy and the continuing star formation morphology' of galaxies was established. The form of a galaxy depends on dynamical properties of the collapsing matter and on the star formation process. The star formation products in different eras differ from each other physically, having different spatial distribution, chemical composition, as well as different kinematic properties that maintain the spatial distributions. Therefore, while studying the structure of stellar populations in galaxies it is possible to obtain quantitative information to understand the formation and evolution processes. The most effective tool for the analysis of the structure of stellar systems is construction of models. Ar appropriate empirical model of the galaxy should represent distribution of various structural constituents (globular clusters, gas, etc.), kinematical data, changes in chemical composition etc. 6 Decomposition of ft galaxy into subsystems on the basis of observations is complicated. Due to the large number of free parameters there may not be a unique solution to the problem. But when comparing the values of the parameters during the modelling also with the structure of other galaxies and with the models of chemical evolution (Tinsley 1980, Traat 1990), it is possible to avoid obviously nonphysical solutions. The modelling techniques of spiril galaxies have been well elaborated, The problem of the mass distribution in external galaxies was first formulated and solved by Öpik (1922) and Babcock (1938,
Recommended publications
  • Short-Term Dynamical Interactions Among Extrasolar Planets Gregory
    Short-Term Dynamical Interactions Among Extrasolar Planets Gregory Laughlin l, John E. Chambers 1 'NASA Ames Research Center, Moffett Field, CA 94035 Received .; accepted 2 ABSTRACT We show that short-term perturbations among massive planets in multiple planet systemscan result in radial velocity variations of the central star which differ substantially from velocity variations derivedassumingthe planets are exe- cuting independent Keplerian motions. We discusstwo alternate fitting methods which can lead to an improved dynamical description of multiple planet sys- tems. In the first method, the osculating orbital elementsare determined via a Levenberg-Marquardt minimization schemedriving an N-body integrator. The secondmethod is an improved analytic model in which orbital elements such as the periods and longitudes of periastron are allowed to vary according to a simple model for resonantinteractions betweenthe planets. Both of these meth- ods can potentially determine the true massesfor the planets by eliminating the sin i degeneracy inherent in fits that assume independent Keplerian motions. As more radial velocity data is accumulated from stars such as GJ 876, these meth- ods should allow for unambiguous determination of the planetary masses and relative inclinations. Subject headings: stars: planetary systems 1. Introduction Several thousand nearby stars are now being surveyed for periodic radial velocity variations which indicate the presence of extrasolar planets (Marcy, Cochran & Mayor 2000). In the past year, the pace of discovery has increased, and there are now nearly sixty extrasolar planets known. Recently, systems with more than one planet have been found, and four (v Andromedae, -3- GJ 876, HD 83443,and HD 168443)are now known.
    [Show full text]
  • SIAC Newsletter April 2015
    April 2015 The Sidereal Times Southeastern Iowa Astronomy Club A Member Society of the Astronomical League Club Officers: Minutes March 19, 2015 Executive Committee President Jim Hilkin Vice President Libby published, Bill seconded, ship. Payment can be Vice President Libby Snipes Treasurer Vicki Philabaum Snipes called the meeng and the moon passed. made at a club meeng Secretary David Philabaum Chief Observer David Philabaum to order at 6:33 pm with Vicki gave the Treasurer's or by mailing them to PO Members-at-Large Claus Benninghoven the following members in report stang that the Box 14, West Burlington, Duane Gerling Blake Stumpf aendance: Carl Snipes , current balance in the IA 52655. John moved to Board of Directors Paul Sly, Chuck Block, checking account is approve the Treasurer's Chair Judy Hilkin Vice Chair Ray Reineke Claus Benninghoven, $1,914.04. She also stat- report, seconded by Secretary David Philabaum Members-at-Large Duane Gerling, Bill Stew- ed that she will be send- Chuck, and the moon Frank Libe Blake Stumpf art, Ray Reineke, John ing out noces reminding passed. Dave reported Jim Wilt Toney, and Dave & Vicki people when it is me to that the only groups on Audit Committee Dean Moberg (2012) Philabaum. Lavon Worley renew their member- the schedule at this me JT Stumpf (2013) John Toney (2014) from the conservaon ships. Dues remain $20 are the county Dark Newsletter board was also in aend- per year for a single Wings camps this sum- Karen Johnson ance. John moved to ap- membership and $30 per mer. Libby reported that
    [Show full text]
  • Dark Matter 101
    DARK MATTER 101 DARK MATTER 101 From production to detection David G. Cerdeno˜ CONTENTS 1 Motivation for dark matter 1 1.1 Motivation for Dark Matter 1 1.1.1 Galactic scale 2 1.1.2 Galaxy Clusters 3 1.1.3 Cosmological scale 4 1.2 Dark Matter properties 5 1.2.1 Neutral 5 1.2.2 Nonrelativistic 5 1.2.3 NonBaryonic 6 1.2.4 Long-lived 6 1.2.5 Collisionless 7 2 Freeze Out of Massive Species 9 2.1 Cosmological Preliminaries 9 2.2 Time evolution of the number density 12 2.2.1 Freeze out of relativistic species 15 2.2.2 Freeze out of non-relativistic species 16 2.2.3 WIMPs 17 2.3 Computing the DM annihilation cross section 17 2.3.1 Special cases 18 v vi CONTENTS 3 Direct DM detection 23 3.1 Preliminaries 23 3.1.1 DM flux 23 3.1.2 Kinematics 23 3.2 The master formula for direct DM detection 24 3.2.1 The scattering cross section 24 3.2.2 The importance of the threshold 25 3.2.3 Velocity distribution function 26 3.2.4 Energy resoultion 26 3.3 Exponential spectrum 26 3.4 Annual modulation 26 3.5 Directional detection 27 3.6 Coherent neutrino scattering 27 3.7 Inelastic 27 4 Neutrinos 29 4.1 Preliminaries - copied form internet 29 References 31 CHAPTER 1 MOTIVATION FOR DARK MATTER The existence of a vast amount of dark matter (DM) in the Universe is supported by many astrophysical and cosmological observations.
    [Show full text]
  • Csillagászati Évkönyv Az 1955
    302268 CSILLAGÁSZATI ÉVKÖNYV AZ 1955. ÉVRE Tartalomjegyzékből: E. Schatzman: Kritikai megjegyzések Európában és Amerikában elterjedt kozmogóniai elméletekről.7 — Dezső Lóránt: A napfogyatkozások geometriája — Izsák Imre: Hogyan mérték meg a Hold és a Nap távolságát.— Voroncov-Veljaminov: Asztrofizika. »MŰVELT NÉP« TÜDOMÁNYOS ÉS ISMERETTERJESZTŐ KIADÓ CSILLAGASZATI ÉVKÖNYV AZ 1955. ÉVRE SZERKESZTETTE: A TÁRSADALOM ÉS TERMÉSZETTUDOMÁNYI ISMERETTERJESZTŐ TÁRSULAT CSILLAGÁSZATI SZAKOSZTÁLYA »MŰ VÉLT NÉP« ' TUDOMÁNYOS é s ismeretterjesztő k i a d ó BUDAPEST, 1955 A kiadásért felel a Művelt Nép Könyvkiadó igazgatója Felelős szerkesztő: Neu Piroska Műszaki felelős: Löblin Imre t Kézirat beérkezett: 1954. XII. 2. Imprimálva: 1955. II. 15. Terjedelem: 14 (A 5) ív Példányszám: 15oo Ez a könyv a MNOSZ 5601-54 és 5602-50Á szabvány szerint készült Budapesti Szikra Nyomda, V., Honvéd-u. 10. —■ 4667 — Felelős vezető: Lengyel Lajos igazgató CSILLAGÁSZATI ADATOK AZ 1955. ÉVRE » A közép-európai zónaidőben megadott értékekhez a nyári időszámítás tartama alatt 1 órát kell hozzáadni, hogy a Magyarországon használt időadatokat nyerjük. Összeállította: Mersits József tudományos munkaerő a Magyar Tudományos Akadémia Csillagvizsgáló Intézeténél l* I. J A N U Á R Közép-európai zónaidőben Budapesten A NAP A HOLD A A HOLD hete nyug­ nyug­ napja fényváltozásai Dátum A hét napjai : Az év hányadik kel Az év Az év hányadik kel delel szik szik h m h m h m h m h m h m 1 Sz 1 i 7 32 11 47 16 03 10 42 _ _ D 21 29 2 v ■ 2 7 32 11 48 16 05 11 07 0 20 3 H 2 3 7 32 11 48 16 06 11 35 1 38 4 K 4 7 32 11 49 16 06 12 10 2 57 5 Sz 5 7 32 11 49 16 07 12 55 4 15 6 Cs 6 7 32 11 50 16 08 13 53 5 28 7 P 7 7 32 11 50 16 09 15 02 6 30 '8 Sz 8 7 31 11 51 16 10 16 19 7 19 © 13 34 9 V 9 7 31 11 51 16 12 17 38 7 57 10 H 3.
    [Show full text]
  • ´Etoiles Variables
    Diplˆome d’E´tudes Approfondies en Astrophysique et G´eophysique ETOILES´ VARIABLES R. Scuflaire Institut d’Astrophysique et de G´eophysique Universit´e de Li`ege 1999–2000 i Avertissement Les pr´esentes notes ne pr´etendent pas couvrir de fa¸con exhaustive et de fa¸con d´etaill´ee tous les types d’´etoiles variables. Elles d´ecrivent seulement quelques types ´evoqu´esdans le cours de Stabilit´eStellaire organis´e`al’Institut d’Astrophysique et de G´eophysique de l’Universit´ede Li`ege dans le cadre du D.E.A. en Astrophysique et G´eophysique. La plupart des types d´ecrits ici appartiennent `ala classe des variables intrins`eques. Les choix effectu´esse justifient par la signification particuli`ere de ces variables vis-`a-vis de la th´eorie de l’´evolution stellaire, par la compr´ehension que nous avons des m´ecanismes de variabilit´e et par les liens entretenus avec la th´eorie de la stabilit´estellaire. Nous avons utilis´enombre de figures tir´ees de la litt´erature pour illustrer le cours. Les r´ef´erences de ces emprunts figurent `ala fin de chaque chapitre. ii iii Table des mati`eres 1 Introduction 1 1.1 Nomenclature des ´etoiles variables . 2 1.2 Classification spectrale des ´etoiles . 2 1.3 Populations stellaires . 2 1.4 Evolution stellaire . 3 2 Classification des ´etoiles variables 5 2.1 Variables pulsantes . 6 2.2 Variables en rotation . 7 2.3 Variables´eruptives ............................... 8 2.4 Variables cataclysmiques . 8 2.5 Diagrammes HR des ´etoiles variables . 8 3 Variables de type RR Lyr (RR) 13 4 Variables de type δ Cep (DCEP) 19 5 Variables de type W Vir (CW) 25 6 Variables de type RV Tau (RV) 29 7 Variables de type Mira (M) 31 8 Variables semi-r´eguli`eres (SR) et irr´eguli`eres (L) 37 9 Variables des types δ Sct (DSCT) et SX Phe (SXPHE) 39 10 Variables de type β Cep (BCEP) 45 11 Etoiles B `araies variables 49 iv 12 Variables compactes 55 13 Oscillations solaires 59 13.1 L’oscillation `a5 minutes .
    [Show full text]
  • Modern Physics
    REVIEWS OF MODERN PHYSICS VoLUME 29, NuMBER 4 OcroBER, 1957 Synthesis of the Elements in Stars* E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM: A. FOWLER, AND F. HOYLE Kellogg Radiation1Laboratory, California Institute of Technology, and M aunt Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3) but perhaps "The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2) TABLE OF CONTENTS Page I. Introduction ...............................................................· ............... 548 A. Element Abundances and Nuclear Structure. 548 B. Four Theories of the Origin of the Elements ............................................... 550 C. General Features of Stellar Synthesis ..................................................... 550 II. Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them ...............· ..................... · ................................. 551 A. Modes of Element Synthesis ............................................................. 551 B. Method of Assignment of Isotopes among Processes (i) to (viii) .............................. 553 C. Abundances and Synthesis Assignments Given in the Appendix. 555 D. Time-Scales for Different Modes of Synthesis .............................................. 556 III. Hydrogen Burning, Helium Burning, the a Process,
    [Show full text]
  • Annual Report Volume 21 Fiscal 2018
    ISSN 1346-1192 Annual Report of the National Astronomical Observatory of Japan Volume 21 Fiscal 2018 Cover Caption This image shows the galaxy cluster MACS J1149.5+2223 taken with the NASA/ESA Hubble Space Telescope and the inset image is the galaxy MACS1149-JD1 located 13.28 billion light- years away observed with ALMA. Here, the oxygen distribution detected with ALMA is depicted in green. Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, W. Zheng (JHU), M. Postman (STScI <http://www.stsci.edu/>), the CLASH Team, Hashimoto et al. Postscript Publisher National Institutes of Natural Sciences National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588, Japan TEL: +81-422-34-3600 FAX: +81-422-34-3960 https://www.nao.ac.jp/ Printer Kyodo Telecom System Information Co., Ltd. 4-34-17 Nakahara, Mitaka-shi, Tokyo 181-0005, Japan TEX: +81-422-46-2525 FAX: +81-422-46-2528 Annual Report of the National Astronomical Observatory of Japan Volume 21, Fiscal 2018 Preface Saku TSUNETA Director General I Scientific Highlights April 2018 – March 2019 001 II Status Reports of Research Activities 01. Subaru Telescope 048 02. Nobeyama Radio Observatory 053 03. Mizusawa VLBI Observatory 056 04. Solar Science Observatory (SSO) 061 05. NAOJ Chile Observatory (NAOJ ALMA Project / NAOJ Chile) 064 06. Center for Computational Astrophysics (CfCA) 067 07. Gravitational Wave Project Office 070 08. TMT-J Project Office 072 09. JASMINE Project Office 075 10. RISE (Research of Interior Structure and Evolution of Solar System Bodies) Project Office 077 11. Solar-C Project Office 078 12.
    [Show full text]
  • Saul J. Adelman
    SAUL J. ADELMAN Department of Physics 1434 Fairfield Avenue The Citadel Charleston, SC 29407 Charleston, SC 29409 (843) 766-5348 (843) 953-6943 CURRENT POSITION: Professor of Physics, The Citadel (Aug. 22, 1989 - to date) PAST POSITIONS: Associate Professor of Physics, The Citadel (Aug. 23, 1983 to Aug. 21, 1989) NRC-NASA Research Associate, NASA Goddard Space Flight Center (Aug. 1, 1984 - July 31, 1986) Assistant Professor of Physics, The Citadel (Aug. 21, 1978 - Aug. 22, 1983) Assistant Professor of Astronomy, Boston University (Sept. 1, 1974 - Aug. 31, 1978) NAS/NRC Postdoctoral Resident Research Associate, NASA Goddard SpaceFlight Center (Aug. 1, 1972 - Aug. 31, 1974) EDUCATION: Ph.D. in Astronomy, California Institute of Technology, June 1972; Thesis: A Study of Twenty- One Sharp-lined Non-Variable Cool Peculiar A Stars, December 1971 (Dissertation Abstracts International 33, 543-13, number 77-22, 597) B.S. in Physics with high honors and high honors in physics, University of Maryland, June 1966 ACADEMIC HONORS: Phi Beta Kappa Phi Kappa Phi Sigma Pi Sigma Sigma Xi Summer Institute in Space Physics at Columbia University 1965 NDEA Title IV Fellowship 1966-69 ARCS Foundation Fellowship 1970-71 Citadel Development Foundation Faculty Fellowship 1987-93 Faculty Achievement Award 1989, 1997 Governor’s Award for Excellence in Scientific Research at a Primarily Undergraduate Institution 2011 OBSERVING EXPERIENCE: Guest Investigator, Dominion Astrophysical Observatory 1984-2016 Guest Investigator, Hubble Space Telescope 2003-05, 2011-16 Participant
    [Show full text]
  • The Constellation Andromeda - from the Naked Eye to the Hubble Space Telescope
    II SUMMER SCHOOL IN ASTRONOMY The Constellation Andromeda - From the naked eye to the Hubble Space Telescope Marija Borisov PhD Nada Pejovic Introduction Andromeda (The Chained Maiden) is a large and bright constellation of the northern hemisphere. Andromeda is nearly circumpolar, so it can be observed in the northern hemisphere almost during the whole year, but it can best be seen from September to February. Andromeda is easy to find because of the surrounding constellations. The W shape of Cassiopeia lies just above Andromeda, and the Great Square of Pegasus adjoi ns AdAndrome da. Map of the constellation There is plenty to see in this fall constellation. The Constellation Andromeda contains many notable galaxies and other deep sky objects. Here are presented the most significant and itinteres ting aspects of Andromeda constellation as well as the impact of the Hubble Space telescope on astronomical research. Mythology Andromeda is a constellation named for the princess Andromeda. She was a daughter of King Cepheus and Queen Cassiopeia CiCasiope ia bdbragged that she was more btiflbeautiful than the Nereid’s, the nymph-daughters of Poseidon. As a punishment to her mother, Andromeda was chained to a cliff for the monster Cetus, but Perseus rescued her. With his miraculous weapons, Perseus killed the monster and married Andromeda. The Andromeda Galaxy ( M31 or NGC224; in older texts - the Andromeda Nebula) The Great Andromeda Galaxyy( (M31) is one of the most distant objects visible by the naked eye It is a beautiful spiral galaxy much like the Milky Way Object Name: M31, NGC224 Object Description: Spiral Galaxy Position (J2000): R.A.
    [Show full text]
  • The Extended Disc and Halo of the Andromeda Galaxy Observed with Spitzer-IRAC
    MNRAS 459, 1403–1414 (2016) doi:10.1093/mnras/stw652 Advance Access publication 2016 March 20 The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC Masoud Rafiei Ravandi,1‹ Pauline Barmby,1,2‹ Matthew L. N. Ashby,3 Seppo Laine,4 T. J. Davidge,5 Jenna Zhang,3 Luciana Bianchi,6 Arif Babul7 and S. C. Chapman8 1Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada 2Centre for Planetary Science and Exploration, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada 3Harvard–Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA 4Spitzer Science Center, MS 314-6, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA 5Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 6Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218, USA 7 Department of Physics and Astronomy, Elliott Building, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada Downloaded from 8Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada Accepted 2016 March 14. Received 2016 March 14; in original form 2015 December 15 http://mnras.oxfordjournals.org/ ABSTRACT We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 h of observations by Spitzer-IRAC at 3.6 and 4.5 μm. This survey extends previous observations to the outer disc and halo, covering total lengths of 4◦.4 and 6◦.6 along the minor and major axes, respectively.
    [Show full text]
  • A Summary of the Different Classes of Stellar Pulsators
    A Summary of the Different Classes of Stellar Pulsators A summary of all the classes of pulsating stars and their main properties as described in Chapter 2 is given in the tables below. This list originated from a combination of observational discoveries, measured stellar properties, and theoretical developments. Observers who found a new type of pulsator either named it after the prototype or gave the class a name according to the ob- served characteristics of the oscillations. Several pulsators, or even groups of pulsators, were afterwards found to originate from the same physical mech- anism and were thus merged into one and the same class. We sort this out here in Tables A.1 and A.2 in order to avoid further confusion on pulsating star nomenclature. The effective temperature and luminosity indicated in Tables A.1 and A.2 should be taken as rough indications only of the borders of instability strips. Often the theory is not sufficiently refined to consider these boundaries as final. Moreover, there is overlap between various classes where so-called hy- brid pulsators, whose oscillations are excited in two different layers and/or by two different mechanisms, occur. Finally, new discoveries are being made frequently, which then drive new theoretical developments possibly leading to new instability regions. The results from the future observing facilities as described in Chapter 8 will surely lead to new classes and/or subclasses with lower amplitudes compared to what is presently achievable. In the tables below, F stands for fundamental radial mode, FO for first radial overtone and S for strange mode oscillations.
    [Show full text]
  • 219Th Meeting of the American Astronomical Society
    219TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 8-12 JANUARY 2012 AUSTIN, TX All scientific sessions will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez Street Austin, TX 78701-4121 EXHIBITORS ..................... 4 AAS Paper Sorters ATTENDEE SERVICES .......................... 9 Tom Armstrong, Blaise Canzian, Thayne Curry, Shantanu Desai, Aaron Evans, Nimish P. Hathi, SCHEDULE .....................15 Jason Jackiewicz, Sebastien Lepine, Kevin Marvel, Karen Masters, J. Allyn Smith, Joseph Tenn, SATURDAY .....................25 Stephen C. Unwin, Gerritt Vershuur, Joseph C. Weingartner, Lee Anne Willson SUNDAY..........................28 Session Numbering Key MONDAY ........................36 90s Sunday TUESDAY ........................91 100s Monday WEDNESDAY .............. 146 200s Tuesday 300s Wednesday THURSDAY .................. 199 400s Thursday AUTHOR INDEX ........ 251 Sessions are numbered in the Program Book by day and time. Please note, posters are only up for the day listed. Changes after 7 December 2011 are only included in the online program materials. 1 AAS Officers & Councilors President (6/2010-6/2013) Debra Elmegreen Vassar College Vice President (6/2009-6/2012) Lee Anne Willson Iowa State Univ. Vice President (6/2010-6/2013) Nicholas B. Suntzeff Texas A&M Univ. Vice President (6/2011-6/2014) Edward B. Churchwell Univ. of Wisconsin Secretary (6/2010-6/2013) G. Fritz Benedict Univ. of Texas, Austin Treasurer (6/2008-6/2014) Hervey (Peter) Stockman STScI Education Officer (6/2006-6/2012) Timothy F. Slater Univ. of Wyoming Publications Board Chair (6/2011-6/2015) Anne P. Cowley Arizona State Univ. Executive Officer (6/2006-Present) Kevin Marvel AAS Councilors Richard G. French Wellesley College (6/2009-6/2012) James D.
    [Show full text]