A Summary of the Different Classes of Stellar Pulsators

Total Page:16

File Type:pdf, Size:1020Kb

A Summary of the Different Classes of Stellar Pulsators A Summary of the Different Classes of Stellar Pulsators A summary of all the classes of pulsating stars and their main properties as described in Chapter 2 is given in the tables below. This list originated from a combination of observational discoveries, measured stellar properties, and theoretical developments. Observers who found a new type of pulsator either named it after the prototype or gave the class a name according to the ob- served characteristics of the oscillations. Several pulsators, or even groups of pulsators, were afterwards found to originate from the same physical mech- anism and were thus merged into one and the same class. We sort this out here in Tables A.1 and A.2 in order to avoid further confusion on pulsating star nomenclature. The effective temperature and luminosity indicated in Tables A.1 and A.2 should be taken as rough indications only of the borders of instability strips. Often the theory is not sufficiently refined to consider these boundaries as final. Moreover, there is overlap between various classes where so-called hy- brid pulsators, whose oscillations are excited in two different layers and/or by two different mechanisms, occur. Finally, new discoveries are being made frequently, which then drive new theoretical developments possibly leading to new instability regions. The results from the future observing facilities as described in Chapter 8 will surely lead to new classes and/or subclasses with lower amplitudes compared to what is presently achievable. In the tables below, F stands for fundamental radial mode, FO for first radial overtone and S for strange mode oscillations. Several classes undergo (quasi-)periodicities with different time scales due to outbursts, cyclic variabil- ity, rotational modulation, differential rotation, activity, binarity, etc., besides oscillations. We list here only the period and amplitude ranges for the oscil- latory behaviour. Exceptions to the listed ranges are possible. The various names for each class as they occur in the literature are listed; the left column was the authors’ choice, dominantly based on papers in the literature which discuss the physical cause of the oscillations. For a full description of the variability characteristics, we refer to Chapter 2 and the numerous references listed there. 679 Table A.1. The names and basic properties of main sequence, giant and compact pulsators. Class name Other names Mode Period Amplitudes Amplitudes log Teff (K) log L/L adopted here in the literature Type Ranges (brightness) (velocity) approx. range approx. range Solar-like main sequence p 3to10min few ppm < 50 cm s−1 [3.70, 3.82] [−0.5, 1.0] pulsator red giants p few hours few 10 ppm few m s−1 [3.65, 3.70] [−0.5, 2.0] γ Dor slowly pulsating F g 8h to5d < 50 mmag < 5kms−1 [3.83, 3.90] [0.7, 1.1] δ Sct SX Phe (Pop. II) p 15 min to 8 h <0.3 mag < 10 km s−1 [3.82, 3.95] [0.6, 2.0] roAp — p 5to22min < 10mmag < 10 km s−1 [3.82, 3.93] [0.8, 1.5] SPB 53 Per g 0.5 to 5 d < 50 mmag < 15 km s−1 [4.05, 4.35] [2.0, 4.0] β Cep β CMa, ζ Oph (SpT O) p&g 1to12h(p) < 0.1mag < 20 km s−1 [4.25, 4.50] [3.2, 5.0] 53 Per few days (g) < 0.01 mag < 10 km s−1 pulsating Be λ Eri, SPBe p&g 0.1 to 5 d < 20 mmag < 20 km s−1 [4.05, 4.50] [2.0, 5.0] pre-MS pulsator pulsating T Tauri p 1to8h < 5 mmag pulsating Herbig Ae/Be p 1to8h < 5 mmag pulsating T Tauri g 8h to5d < 5 mmag p-mode sdBV EC14026, V361 Hya p 80 to 800 s < 0.1mag [4.20, 4.50] [1.2, 2.2] g-mode sdBV PG1716+426, g 0.5 to 3 h < 0.01 mag [4.40, 4.60] [1.2, 2.6] Betsy star, lpsdBV PNNV ZZ Lep, [WCE] g 5h to5d < 0.3mag GW Vir DOV, PG1159 g 5to80min < 0.2mag [4.80, 5.10] [1.5, 3.5] DBV V777 Her g 2to16min < 0.2mag [4.40, 4.60] [−1.0, 0.7] DAV ZZ Ceti g 0.5 to 25 min < 0.2mag [3.95, 4.15] [−2.6, −2.2] Table A.2. The names and basic properties of supergiant pulsators. Class name Other names Mode Period Amplitudes Amplitudes log Teff (K) log L/L adopted here in literature Type Ranges (brightness) (velocity) approx. range approx. range RR Lyr RRab F ∼ 0.5d < 1.5mag < 30 km s−1 [3.78, 3.88] [1.4, 1.7] RRc FO ∼ 0.3d < 0.5mag < 10 km s−1 RRd F+FO 0.3 to 0.5 d < 0.2mag < 10 km s−1 Type II Cepheid WVir F 10 to 30 d < 1mag < 30 km s−1 [3.70, 3.90] [2.0, 4.0] BL Her F 1to5d < 1mag < 30 km s−1 RV Tauri RVa, RVb F? 30 to 150 d < 3mag < 30 km s−1 [3.60, 3.90] [3.2, 4.2] Type I Cepheid — F 1to50d < 1mag < 30 km s−1 [3.55, 3.85] [2.0, 5.5] s-Cepheid FO < 20 d < 0.1mag < 10 km s−1 Mira SRa, SRb l =0 > 80 d < 8mag [3.45, 3.75] [2.5, 4.0] SRc l =0 > 80 d < 1mag SRd l =0 < 80 d < 1mag PVSG (SpT A) α Cyg g,S? 10 to 100 d < 0.3mag < 20 km s−1 [3.45, 4.00] [2.5, 4.5] PVSG (SpT B) SPBsg g 1to10d < 0.3mag < 20 km s−1 [4.00, 4.50] [4.3, 5.8] LBV SDor g,S 2to40d < 0.1mag [3.80, 4.20] [5.5, 6.5] WR WC, WN g,S 1h to 5 d < 0.2mag [4.40, 4.70] [4.5, 6.0] HdC RCrB g? 40 to 100 d < 0.05 mag < 10 km s−1 [3.50, 4.20] [3.5, 4.5] eHe PV Tel S ∼20 d V652 Her g,S? ∼0.1 d V2076 Oph g,S? 0.5 to 8 d B Properties of Legendre Functions and Spherical Harmonics B.1 Properties of Legendre Functions We provide here some basic properties of the Legendre functions, which are essential to the understanding of nonradial oscillations. The following expres- sions are mainly taken from Abramowitz & Stegun (1964) and Whittaker & Watson (1927). The Legendre function are solutions of the differential equation: d2P m dP m m2 (1 − x2) l − 2x l + l(l +1)− P m =0, (B.1) dx2 dx 1 − x2 l or, equivalently, d dP m m2 (1 − x2) l + l(l +1)− P m =0. (B.2) dx dx 1 − x2 l In the special case of m = 0, we are dealing with the Legendre polynomials: 0 Pl(x)=Pl (x). Explicit expressions for the first few cases are: P0(x)=1, P1(x)=x, 1 − − 2 1/2 P1 (x)= (1 x ) , (B.3) 2 P2(x)=1/2(3x − 1) , 1 − − 2 1/2 P2 (x)= 3(1 x ) , 2 − 2 P2 (x)=3(1 x ) . General expressions, valid for m>0, are: 1 dl(x2 − 1)l P (x)= , (B.4) l 2ll! dxl 683 684 B Properties of Legendre Functions and Spherical Harmonics dmP (x) P m(x)=(−1)m(1 − x2)m/2 l , (B.5) l dxm (2m)!2−m P m(x)=(−1)m (1 − x2)m/2 . (B.6) m m! Note that Eq. (B.4)showsthatPl(x) is a polynomial of degree l.Also, Eq. (B.6)showsthat (2m)!2−m P m(cos θ)=(−1)m sinm θ (B.7) m m! The Legendre function for negative azimuthal order is obtained from the one for positive m as (l − m)! P −m(cos θ)= P m(cos θ) . (B.8) l (l + m)! l The Legendre functions are easily computed from the following recursion re- lations: − m m − m (l m +1)Pl+1(x)=(2l +1)xPl (x) (l + m)Pl−1(x) , (B.9) P m+1(x)= (B.10) l " # − 2 −1/2 − m − m (1 x ) (l m)xPl (x) (l + m)Pl−1(x) , m 2 dPl m m (1 − x ) = lxP (x) − (l + m)P − (x) , (B.11) dx l l 1 dP dP − x l − l 1 = lP (x) . (B.12) dx dx l The following integral expression defines the orthogonality and normaliza- tion of the Legendre functions: 1 m m (n + m)! Pl (x)Pl (x)dx = δll − . (B.13) −1 (l +1/2)(l m)! The Legendre functions have the following asymptotic expansion, for fixed m ≥ 0andlargel: Γ (l + m +1) π −1/2 1 π mπ P m(cos θ)= sin θ cos l + θ − + l Γ (l +3/2) 2 2 4 2 +O(l−1) (B.14) m For arbitrary, large l, m an approximate asymptotic representation of Pl is m 2 − 2 −1/4 Pl (cos θ) Alm cos Θlm cos θ cos[Ψlm(θ)] , cos θ ∈ [− cos Θlm, cos Θlm] , (B.15) for a suitable amplitude Alm and a rapidly varying phase function Ψlm;here B.2 Properties of Spherical Harmonics 685 −1 Θlm =sin [m/ l(l +1)] (B.16) (e.g. Gough & Thompson 1990).1 Thus the Legendre function is confined between turning-point latitudes ±(π/2−Θlm); in particular, as also illustrated in Fig. B.1,modeswithm ±l are confined very near the equator.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Central Coast Astronomy Virtual Star Party May 15Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party May 15th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon 4 days after new, which is excellent for star gazing! *Image credit: all astrophotography images are courtesy of NASA & ESO unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1. Canes Venatici (The Hunting Dogs) 2. Boötes (the Herdsman) 3. Coma Berenices (Hair of Berenice) 4. Virgo (the Virgin) Central Coast Astronomy CentralCoastAstronomy.org Page 2 Canes Venatici (the Hunting Dogs) Canes Venatici, The Hunting Dogs, a modern constellation created by Polish astronomer Johannes Hevelius in 1687.
    [Show full text]
  • Multi-Periodic Photospheric Pulsations and Connected Wind Structures in HD 64760
    A&A 447, 325–341 (2006) Astronomy DOI: 10.1051/0004-6361:20053847 & c ESO 2006 Astrophysics Multi-periodic photospheric pulsations and connected wind structures in HD 64760 A. Kaufer1,O.Stahl2,R.K.Prinja3, and D. Witherick3, 1 European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 Landessternwarte Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 3 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK Received 18 July 2005 / Accepted 17 October 2005 ABSTRACT We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD 64760 (B0.5 Ib) designed to probe the deep-seated origin of spatial wind structure in massive stars. This new study is based on high-resolution echelle spectra obtained with the Feros instrument at ESO La Silla. 279 spectra were collected over 10 nights between February 14 and 24, 2003. From the period analysis of the line-profile variability of the photospheric lines we identify three closely spaced periods around 4.810 h and a splitting of ±3%. The velocity – phase diagrams of the line-profile variations for the distinct periods reveal characteristic prograde non-radial pulsation patterns of high order corresponding to pulsation modes with l and m in the range 6−10. A detailed modeling of the multi-periodic non-radial pulsations with the Bruce and Kylie pulsation-model codes (Townsend 1997b, MNRAS, 284, 839) favors either three modes with l = −m and l = 8, 6, 8 or m = −6andl = 8, 6, 10 with the second case maintaining the closely spaced periods in the co-rotating frame.
    [Show full text]
  • Binocular Universe: You're My Hero! December 2010
    Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger.
    [Show full text]
  • A Wild Animal by Magda Streicher
    deepsky delights Lupus a wild animal by Magda Streicher [email protected] Image source: Stellarium There is a true story behind this month’s constellation. “Star friends” as I call them, below in what might be ‘ground zero’! regularly visit me on the farm, exploiting “What is that?” Tim enquired in a brave the ideal conditions for deep-sky stud- voice, “It sounds like a leopard catching a ies and of course talking endlessly about buck”. To which I replied: “No, Timmy, astronomy. One winter’s weekend the it is much, much more dangerous!” Great Coopers from Johannesburg came to visit. was our relief when the wrestling match What a weekend it turned out to be. For started disappearing into the distance. The Tim it was literally heaven on earth in the altercation was between two aardwolves, dark night sky with ideal circumstances to wrestling over a bone or a four-legged study meteors. My observatory is perched lady. on top of a building in an area consisting of mainly Mopane veld with a few Baobab The Greeks and Romans saw the constel- trees littered along the otherwise clear ho- lation Lupus as a wild animal but for the rizon. Ascending the steps you are treated Arabians and Timmy it was their Leopard to a breathtaking view of the heavens in all or Panther. This very ancient constellation their glory. known as Lupus the Wolf is just east of Centaurus and south of Scorpius. It has no That Saturday night Tim settled down stars brighter than magnitude 2.6.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Opacity Effects on Pulsations of Main-Sequence A-Type Stars
    atoms Article Opacity Effects on Pulsations of Main-Sequence A-Type Stars Joyce A. Guzik * ID , Christopher J. Fontes and Chris Fryer ID Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (C.J.F.); [email protected] (C.F.) * Correspondence: [email protected] Received: 10 April 2018; Accepted: 11 May 2018 ; Published: 4 June 2018 Abstract: Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars. For these stars, the pulsations are driven in the region of the opacity bump of Fe-group elements at ∼200,000 K in the stellar envelope. Here we explore effects of opacity enhancements for the somewhat cooler main-sequence A-type stars, in which p-mode pulsations are driven instead in the second helium ionization region at ∼50,000 K. We compare models using the new LANL OPLIB vs. LLNL OPAL opacities for the AGSS09 solar mixture. For models of two solar masses and effective temperature 7600 K, opacity enhancements have only a mild effect on pulsations, shifting mode frequencies and/or slightly changing kinetic-energy growth rates. Increased opacity near the bump at 200,000 K can induce convection that may alter composition gradients created by diffusive settling and radiative levitation. Opacity increases around the hydrogen and 1st He ionization region (∼13,000 K) can cause additional higher-frequency p modes to be excited, raising the possibility that improved treatment of these layers may result in prediction of new modes that could be tested by observations.
    [Show full text]
  • Eclipsing Systems with Pulsating Components (Types Β Cep, Δ Sct, Γ Dor Or Red Giant) in the Era of High-Accuracy Space Data
    galaxies Review Eclipsing Systems with Pulsating Components (Types b Cep, d Sct, g Dor or Red Giant) in the Era of High-Accuracy Space Data Patricia Lampens Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium; [email protected] Abstract: Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions Kepler or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) Citation: Lampens, P.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • An Asteroseismic Study of the Beta Cephei Star 12 Lacertae: Multisite
    Mon. Not. R. Astron. Soc. 000, 1–15 (2002) Printed 31 October 2018 (MN LATEX style file v2.2) An asteroseismic study of the β Cephei star 12 Lacertae: multisite spectroscopic observations, mode identification and seismic modelling M. Desmet1⋆, M. Briquet1†, A. Thoul2‡, W. Zima1, P. De Cat3, G. Handler4, I. Ilyin5, E. Kambe6, J. Krzesinski7, H. Lehmann8, S. Masuda9, P. Mathias10, D. E. Mkrtichian11, J. Telting12, K. Uytterhoeven13, S. L. S. Yang14 and C. Aerts1,15 1 Institute of Astronomy - KULeuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Institut d’Astrophysique et de G´eophysique de l’Universit´ede Li`ege, 17, All´ee du 6 Aoˆut, 4000 Li`ege, Belgium 3 Koninklijke Sterrenwacht van Belgi¨e, Ringlaan 3, 1180 Brussel, Belgium 4 Institut f¨ur Astronomie, Universist¨at Wien, T¨urkenschanzstrasse 17, 1180 Wien, Austria 5 Astrophysical Institute Potsdam, An der Sternwarte 16 D-14482 Potsdam, Germany 6 Okayama Astrophysical Observatory, National Astronomical Observatory, Kamogata, Okayama 719-0232, Japan 7 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 8 Karl-Schwarzschild-Observatorium, Th¨uringer Landessternwarte, 7778 Tautenburg, Germany 9 Tokushima Science Museum, Asutamu Land Tokushima, 45 - 22 Kibigadani, Nato, Itano-cho, Itano-gun, Tokushima 779-0111, Japan 10 UNS, CNRS, OCA, Campus Valrose, UMR 6525 H. Fizeau, F-06108 Nice Cedex 2, France 11 Astronomical Observatory of Odessa National University, Marazlievskaya, 1v, 65014 Odessa, Ukraine 12 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain 13 Instituto de Astrof´ısica de Canarias, Calle Via L´actea s/n, 38205 La Laguna (TF, Spain) 14 Department of Physics and Astronomy, Universtity of Victoria, Victoria, BC V8W 3P6, Canada 15 Department of Astrophysics, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands Accepted 2008.
    [Show full text]