Modern Physics

Total Page:16

File Type:pdf, Size:1020Kb

Modern Physics REVIEWS OF MODERN PHYSICS VoLUME 29, NuMBER 4 OcroBER, 1957 Synthesis of the Elements in Stars* E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM: A. FOWLER, AND F. HOYLE Kellogg Radiation1Laboratory, California Institute of Technology, and M aunt Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3) but perhaps "The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2) TABLE OF CONTENTS Page I. Introduction ...............................................................· ............... 548 A. Element Abundances and Nuclear Structure. 548 B. Four Theories of the Origin of the Elements ............................................... 550 C. General Features of Stellar Synthesis ..................................................... 550 II. Physical Processes Involved in Stellar Synthesis, Their Place of Occurrence, and the Time-Scales Associated with Them ...............· ..................... · ................................. 551 A. Modes of Element Synthesis ............................................................. 551 B. Method of Assignment of Isotopes among Processes (i) to (viii) .............................. 553 C. Abundances and Synthesis Assignments Given in the Appendix. 555 D. Time-Scales for Different Modes of Synthesis .............................................. 556 III. Hydrogen Burning, Helium Burning, the a Process, and Neutron Production ..................... 559 A. Cross-Section Factor and Reaction Rates .................................................. 559 B. Pure Hydrogen Burning ................... ; ............................................... 562 C. Pure Helium Burning ................................................................... 565 D. a Process ................................... :· ........................................... 567 E. Succession of Nuclear Fuels in an Evolving Star ....... , ................................... 568 F. Burning of Hydrogen and Helium with Mixtures of Other Elements; Stellar Neutron Sources .... 569 IV. e Process. 577 V. s and r Processes: General Considerations. 580 A. "Shielded" and "Shielding" Isobars and the s, r, p Processes ................................. 580 B. Neutron-Capture Cross Sections ........... , .............................................. 581 C. General Dynamics of the s and r Processes . 583 VI. Details of the s Process . 583 *Supported in part by the joint program of the Office of Naval Research and the U. S. Atomic Energy Commission. 547 'Cqpyrlght © 1957 by the American Physical Society 548 BURBIDGE, BURBIDGE, FOWLER, AND HOYLE VII. Details of the r Process . 587 A. Path of the r Process ................................................................... 588 B. Calculation of the r-Process Abundances .................................................. 593 C. Time for the r Process: Steady Flow and Cycling. 596 D. Freezing of the r-Process Abundances ........................................... ·.......... 597 VIII. Extension and Termination of the r Process and s Process ..................................... 598 A. Synthesis of the Naturally Radioactive Elements .......................................... 598 B. Extension and Termination of the r Process .............................................. 598 C. Age of the Elements and of the Galaxy .................................................. 605 D. Termination of the s Process; the Abundances of Lead, Bismuth, Thorium, and Uranium ...... 608 IX. p Process ................................................................................ 615 X. x Process ................................................................................ 618 A. Observational Evidence for Presence of Deuterium, Lithium, Beryllium, and Boron in our Galaxy 618 B. Nuclear Reactions which Destroy Deuterium, Lithium, Beryllium, and Boron ................. 618 C. Synthesis of Deuterium, Lithium, Beryllium, and Boron . 618 D. Preservation of Lithium in Stars ......................................................... 620 XI. Variations in Chemical Composition among Stars, and Their Bearing on the Various Synthesizing Processes. 620 A. Hydrogen Burning and Helium Burning ................................................... 621 B. a Process .............................................................................. 626 C. Synthesis of Elements in the Iron Peak of the Abundance Curve, and the Aging Effect as It Is Related to This and Other Types of Element Synthesis . 626 D. s Process .............................................................................. 627 E. r Process ....................................................... ~ ...................... 629 F. p Process .............................................................................. 629 G. x Process .............................................................................. 629 H. Nuclear Reactions and Element Synthesis in Surfaces of Stars. 629 XU. General Astrophysics . 630 A. Ejection of Material from Stars and the Enrichment of the Galaxy in Heavy Elements ......... 63Q B. Supernova Outbursts. 633 C. Supernova Light Curves. 635 D. Origin of the r-Process Isotopes in the Solar System ....................................... 639 XIII. Conclusion . 639 Acknowledgments. 641 Appendix. 641 Bibliography. 647 I. INTRODUCTION of known nuclear species is almost 1200, with some 327 A. Element Abundances and Nuclear Structure of this number known to occur in nature. In spite of this, the situation is not as complex as it might seem. AN inhabits a universe composed of a great Research in "classical" nuclear physics since 1932 has M variety of elements and their isotopes. In Table shown that all nuclei consist of two fundamental build­ I,1 a count of the stable and radioactive elements and ing blocks. These are the proton and the neutron which isotopes is listed. Ninety elements are found terrestrially are called nucleons in this context. As long as energies and one more, technetium, is found in stars; only pro­ below the meson production threshold are not exceeded, methium has not been found in nature. Some 272 stable all "prompt" nuclear processes can be described as the and 55 naturally radioactive isotopes occur on the earth. shuffling and reshuffling of protons and neutrons into In addition, man has been able to produce artificially the variety of nucleonic packs called nuclei. Only in the the neutron, technetium, promethium, and ten trans­ slow beta-decay processes is there any interchange be­ manic elements. The number of radioactive isotopes he tween protons and neutrons at low energies, and even has produced now numbers 871 and this number is there, as in the prompt reactions, the number of nu­ gradually increasing. cleons remains constant. Only at very high energies Each isotopic form of an element contains a nucleus can nucleons be produced or annihilated. Prompt with its own characteristic nuclear properties which are nuclear processes plus the slow beta reactions make different from those of all other nuclei. Thus the total it possible in principle to transmute any one type of SYNTHESIS OF ELEMENTS IN STARS 549 TABLE 1,1. Table of elements and isotopes [compiled from Chart of the Nuclides (Knolls Atomic Power Laboratory, April, 1956)]. H Elements Isotopes 10 Stable 81 Stable 272 He Radioactive: Radioactive: Natural (Z~83) 1• Natural (A <206) 11d (Z>83) 9b . (A~206) 44 Natural: Natural: Stable and Radioactive 91 Stable and Radioactive 327 Radioactive: Radioactive: Artificial (Z ~ 83) 1• Artificial (A <206) 702 (Z>83) 10 (A~206) 169 Total 102 Total 1198 Neutron 1 Neutron 1 103 1199 N•82 N=l26 • Tc, observed in S-type stars. b Including At and Fr produced in weak side links of natural radioactivity e Pm, not observed in nature. d Including H•, Cl•, and Tc••. -2 nuclear material into any other even at low energies of interaction. With this relatively simple picture of the structure 100 .150 and interactions of the nuclei of the elements in mind, ATOMIC WEIGHT it is natural to attempt to explain their origin by a FIG. 1,1. Schematic curve of atomic abundances as a function synthesis or buildup starting with one or the other or of atomic weight based on the data of Suess and Urey (Su56). Suess and· Urey have employed relative isotopic abundances to both of the fundamental building blocks. The following determine the slope and general trend of the curve. There is still question can be asked: What has been the history of considerable spread of the individual abundances about the curve the matter, on which we can make observations, which illustrated, but the general features shown are now fairly well established. These features are outlined in Table 1,2. Note the produced the elements and isotopes of that matter in overabundances relative to their neighbors of the alpha-particle the abundance distribution which observation yields? nuclei A= 16, 20, · · ·40, the peak at the iron group nuclei, and the This history is hidden in the abundance distribution of twin peaks at A= 80 and 90, at 130 and 138, and at 194 and 208. the elements. To attempt to understand the sequence of events leading to the formation of the elements it is the sun were :first derived by Russell (Ru29) and the necessary to study the so-called universal or cosmic most recent work is due to Goldberg, Aller, and Miiller abundance curve. (Go57). Accurate relative isotopic abundances
Recommended publications
  • A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena
    World Journal of Nuclear Science and Technology, 2018, 8, 11-22 http://www.scirp.org/journal/wjnst ISSN Online: 2161-6809 ISSN Print: 2161-6795 A Suggestion Complementing the Magic Numbers Interpretation of the Nuclear Fission Phenomena Faustino Menegus F. Menegus V. Europa, Bussero, Italy How to cite this paper: Menegus, F. Abstract (2018) A Suggestion Complementing the Magic Numbers Interpretation of the Nu- Ideas, solely related on the nuclear shell model, fail to give an interpretation of clear Fission Phenomena. World Journal of the experimental central role of 54Xe in the asymmetric fission of actinides. Nuclear Science and Technology, 8, 11-22. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The repre- https://doi.org/10.4236/wjnst.2018.81002 sentation of the natural isotopes, in the Z-Neutron Excess plane, suggests the Received: November 21, 2017 importance of the of the Neutron Excess evolution mode in the fragments of Accepted: January 23, 2018 the asymmetric actinide fission and in the fragments of the β-delayed fission Published: January 26, 2018 of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is Copyright © 2018 by author and directed by the 50 and 82 neutron magic numbers. The present isotope repre- Scientific Research Publishing Inc. sentation offers a frame for the interpretation of the post fission evaporation This work is licensed under the Creative of neutrons, higher for the AL compared to the AH fragments, a tenet in nuc- Commons Attribution International License (CC BY 4.0). lear fission.
    [Show full text]
  • Po and Pb in the Terrestrial Environment
    Current Advances in Environmental Science (CAES) 210Po and 210Pb in the Terrestrial Environment Bertil R.R. Persson Medical Radiation Physics, Lund University S-22185 LUND, Sweden [email protected] Abstract- The natural sources of 210Po and 210Pb in the meat at high northern latitudes. This was, however, of terrestrial environment are from atmospheric deposition, soil natural origin and no evidence of significant contributions and ground water. The uptake of radionuclides from soil to of 210Po from the atomic bomb test was found. The most plant given as the soil transfer factor, varies widely between significant radionuclides in the fallout from the atmospheric various types of crops with an average about ± atomic bomb-test of importance for human exposure were The atmospheric deposition of 210Pb and 210Po also affect the 137Cs and 90Sr [4]. activity concentrations in leafy plants with a deposition th 210 210 transfer factor for Pb is in the order of 0.1-1 (m2.Bq-1) plants During the 1960 century the presence of Pb and and for root fruits it is < 0.003, Corresponding values for 210Po 210Po was extensively studied in human tissues and are about a factor 3 higher. particularly in Arctic food chains [4-20]. The activity concentration ratios between milk and various types of forage for 210Pb were estimated to ± and for In December of 2006, former Russian intelligence 210Po to ±By a daily food intake of 16 kg dry matter operative Alexander Litvinenko died from ingestion of a 210 210 per day the transfer coefficient Fm. for Pb was estimated to few g of Po.
    [Show full text]
  • Isotopic Analyses of Barium in Meteorites and in Terrestrial
    •'OO•,NALO• GEO•'IIYSlCALRESXAaCX VOL. ?4, NO. IS, JULY IS, 1969 Isotopic Analysesof Barium in Meteorites and in Terrestrial Samples O. EUGSTER,F. TERA,AND G. J. WASSERBURG Charles Arms Laboratory o• the Division o• Geological Sciences Cali•Jrnia Institute o• Technology,Pasadena, California 91109 Isotopic compos•tien and concentration of barium in six stone meteorites and the silicate inclusionsof two iron meteorites and three terrestrial sampleswere measured by use of a 'double spike' isotopic dilution technique in order to correct for laboratory fractionation. Any differencesbetween the abundancesof the isotopesin meteoritic and terrestrial Ba were found to be less than 0.1% for all isotopes.The per cent abundancesof Ba found in our work for Ba '•s, Ba•, Ba•% Ba '•, Ba TM,Ba •', and Ba'•ø are 71.699, 11.232, 7.853, 6.592, 2.417, 0.1012, and 0.1058, respectively. Because of the higher precision, these abundancesshould replace the currently accepted values. These results show the variations in the Ba isotopesreported by S. Umemoto (1962) to be unsubstantiated. INTRODUCTION Umemoto [1962] reported that the isotopic A comparison.of the isotopiccomposition of compositionof Ba in the Bruderheimchondrite and in the Pasamonte and Nuevo Laredo various elements in terrestrial samples,me- achondrites were distinct from terrestrial Ba teorites, and other materials of the solar system is of fundamental importance in determin- and showeda pattern of uniform fractionation relative to terrestrial Ba. The enrichments ob- ing the early history of the solar system and the mechanismsof nucleosynthesis.In ad- servedby him correspondto a 2% enrichment dition to effectsthat are a product of either in the ratio Ba•ø/Ba• compared with ter- long-lived natural activity or cosmic-rayinter- restrial materials.
    [Show full text]
  • Nuclear Models: Shell Model
    LectureLecture 33 NuclearNuclear models:models: ShellShell modelmodel WS2012/13 : ‚Introduction to Nuclear and Particle Physics ‘, Part I 1 NuclearNuclear modelsmodels Nuclear models Models with strong interaction between Models of non-interacting the nucleons nucleons Liquid drop model Fermi gas model ααα-particle model Optical model Shell model … … Nucleons interact with the nearest Nucleons move freely inside the nucleus: neighbors and practically don‘t move: mean free path λ ~ R A nuclear radius mean free path λ << R A nuclear radius 2 III.III. ShellShell modelmodel 3 ShellShell modelmodel Magic numbers: Nuclides with certain proton and/or neutron numbers are found to be exceptionally stable. These so-called magic numbers are 2, 8, 20, 28, 50, 82, 126 — The doubly magic nuclei: — Nuclei with magic proton or neutron number have an unusually large number of stable or long lived nuclides . — A nucleus with a magic neutron (proton) number requires a lot of energy to separate a neutron (proton) from it. — A nucleus with one more neutron (proton) than a magic number is very easy to separate. — The first exitation level is very high : a lot of energy is needed to excite such nuclei — The doubly magic nuclei have a spherical form Nucleons are arranged into complete shells within the atomic nucleus 4 ExcitationExcitation energyenergy forfor magicm nuclei 5 NuclearNuclear potentialpotential The energy spectrum is defined by the nuclear potential solution of Schrödinger equation for a realistic potential The nuclear force is very short-ranged => the form of the potential follows the density distribution of the nucleons within the nucleus: for very light nuclei (A < 7), the nucleon distribution has Gaussian form (corresponding to a harmonic oscillator potential ) for heavier nuclei it can be parameterised by a Fermi distribution.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • 6. Potential for Human Exposure
    CESIUM 125 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Cesium has been identified in at least 8 of the 1,636 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2003). It was reported that 134Cs has been found in at least 3 of the 1,636 current or former NPL sites and 137Cs has been detected in at least 23 of the 1,636 current or former NPL sites. However, the number of sites evaluated for cesium is not known. The frequency of these sites can be seen in Figures 6-1, 6-2, and 6-3. Of these sites, none are located in the Commonwealth of Puerto Rico. Naturally-occurring cesium and cesium minerals consist of only one stable isotope, 133Cs. Cesium occurs in the earth's crust at low concentrations. Granites contain an average cesium concentration of about 1 ppm and sedimentary rocks contain about 4 ppm (Burt 1993). Higher concentrations are found in lepidolite, carnallite, muscovite, beryl, spodumene, potassium feldspars, leucite, petalite, and related minerals. The most important source of commercial cesium is the mineral pollucite, which usually contains about 5–32% Cs2O (Burt 1993). The largest deposits of pollucite are located in Manitoba, Canada and account for about two-thirds of the world’s known supply. Smaller deposits are located in Zimbabwe, Namibia, Brazil, Scandinavia, Czechoslovakia, and the United States. Continental dust and soil erosion are the main emission sources of naturally occurring cesium present in the environment. Cesium is also released to the environment as a result of human activities.
    [Show full text]
  • Spallation, Fission, and Neutron Capture Anomalies in Meteoritic Krypton and Xenon
    mitte etwas bei. Man wird also erwarten, daß die des Verfahrens wurde für den Bogen (a) überprüft. Flügel der aus Achsennähe emittierten Linien durch Dazu wurde das gemessene Temperatur- und Elek- die Randzonen unbeeinflußt bleiben. tronendichteprofil des Bogens durch je ein Treppen- Wendet man an Stelle der Halbwertsbreite eine profil mit fünf Stufen ersetzt. Für jede Stufe wurde 7 Vergleichsgröße an, die mehr im Linienflügel liegt nach die Kontur der Hv-Linie berechnet. Aus der Überlagerung der Strahlung der verschiedenen Zo- — z. B. den Wellenlängenabstand (Z — H) zwischen nen erhält man die entsprechenden „side-on"-Profile den beiden Punkten, zwischen welchen die Intensität der Linie. Ein Vergleich mit den Ausgangsprofilen von 1/2 auf 1/10 der Maximalintensität abgenom- zeigte, daß die unter Verwendung von (Z — H) be- men hat —, so kann man erwarten, daß die Elek- stimmte Elektronendichte in der Bogenmitte um etwa tronendichte unter der gemachten Voraussetzung auch 20% zu klein ist. (Der aus der Halb wertsbreite er- ohne AßEL-Inversion in guter Näherung gefunden haltene Wert dagegen hätte einen Fehler von 40%.) werden kann. Dies wirkt sich bei der Temperaturbestimmung nach Die in Abb. 3 dargestellten Elektronendichteprofile Verfahren b) so aus, daß die Temperaturwerte in wurden auf die beschriebene Weise mit Hilfe der der Bogenachse zu klein ausfallen; am Rande da- Vergleichsgröße (Z — H) ermittelt. Die Genauigkeit gegen ist die Methode genau. Spallation, Fission, and Neutron Capture Anomalies in Meteoritic Krypton and Xenon K. MARTI *, P. EBERHARDT, and J. GEISS Physikalisches Institut, University of Berne, Switzerland (Z. Naturforschg. 21 a, 398—113 [1966]; received 19 November 1965) Measurements of the Kr and Xe concentrations and isotopic compositions in five meteorites are reported.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Volume 75 Nos 3 & 4 April 2016 News Note
    Volume 75 Nos 3 & 4 April 2016 In this issue: News Note – Galaxy alignment on a cosmic scale News Note – Presentation of EdinburghMedal Port Elizabeth Peoples’ Observatory Updated Biographical Index to MNASSA and JASSA EDITORIAL Mr Case Rijsdijk (Editor, MNASSA ) BOARD Mr Auke Slotegraaf (Editor, Sky Guide Africa South ) Mr Christian Hettlage (Webmaster) Prof M.W. Feast (Member, University of Cape Town) Prof B. Warner (Member, University of Cape Town) MNASSA Mr Case Rijsdijk (Editor, MNASSA ) PRODUCTION Dr Ian Glass (Assistant Editor) Ms Lia Labuschagne (Book Review Editor) Willie Koorts (Consultant) EDITORIAL MNASSA, PO Box 9, Observatory 7935, South Africa ADDRESSES Email: [email protected] Web page: http://mnassa.saao.ac.za MNASSA Download Page: www.mnassa.org.za SUBSCRIPTIONS MNASSA is available for free download on the Internet ADVERTISING Advertisements may be placed in MNASSA at the following rates per insertion: full page R400, half page R200, quarter page R100. Small advertisements R2 per word. Enquiries should be sent to the editor at [email protected] CONTRIBUTIONS MNASSA mainly serves the Southern African astronomical community. Articles may be submitted by members of this community or by those with strong connections. Else they should deal with matters of direct interest to the community . MNASSA is published on the first day of every second month and articles are due one month before the publication date. RECOGNITION Articles from MNASSA appear in the NASA/ADS data system. Cover picture: An image of the deep radio map covering the ELAIS-N1 region, with aligned galaxy jets. The image on the left has white circles around the aligned galaxies; the image on the right is without the circles.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2008/0232532 A1 Larsen Et Al
    US 20080232532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0232532 A1 Larsen et al. (43) Pub. Date: Sep. 25, 2008 (54) APPARATUS AND METHOD FOR Related U.S. Application Data GENERATION OF ULTRA LOW MOMENTUM NEUTRONS (60) Provisional application No. 60/676,264, filed on Apr. 29, 2005. Provisional application No. 60/715,622, filed on Sep. 9, 2005. (76) Inventors: Lewis G. Larsen, Chicago, IL (US); Alan Widom, Brighton, MA (US) Publication Classification (51) Int. Cl. Correspondence Address: H05H 3/06 (2006.01) COOK, ALEX, MCFARRON, MANZO, (52) U.S. Cl. .............................................................. 376/108 CUMMINGS & MEHLER LTD (57) ABSTRACT SUTE 28SO Method and apparatus for generating ultra low momentum 2OO WESTADAMS STREET neutrons (ULMNS) using Surface plasmon polariton elec CHICAGO, IL 60606 (US) trons, hydrogen isotopes, Surfaces of metallic Substrates, col Appl. No.: 11/912,793 lective many-body effects, and weak interactions in a con (21) trolled manner. The ULMNs can be used to trigger nuclear PCT Filed: Apr. 28, 2006 transmutation reactions and produce heat. One aspect of the (22) present invention effectively provides a “transducer mecha (86) PCT NO.: PCT/US06/16379 nism that permits controllable two-way transfers of energy back-and-forth between chemical and nuclear realms in a S371(c)(1), Small-scale, low-energy, Scalable condensed matter system at (2), (4) Date: Oct. 26, 2007 comparatively modest temperatures and pressures. 1222222 Patent Application Publication Sep. 25, 2008 Sheet 1 of 8 US 2008/0232532 A1 Patent Application Publication Sep. 25, 2008 Sheet 3 of 8 US 2008/0232532 A1 & N.
    [Show full text]