Studies in Ancient Greek and Chinese Cosmology Dirk L. Couprie

Total Page:16

File Type:pdf, Size:1020Kb

Studies in Ancient Greek and Chinese Cosmology Dirk L. Couprie Historical & Cultural Astronomy Series Editor: Wayne Orchiston Dirk L. Couprie When the Earth Was Flat Studies in Ancient Greek and Chinese Cosmology Historical & Cultural Astronomy Historical & Cultural Astronomy Series Editor: WAYNE ORCHISTON, Adjunct Professor, Astrophysics Group, University of Southern Queensland, Toowoomba, Queensland, Australia ([email protected]) Editorial Board: JAMES EVANS, University of Puget Sound, USA MILLER GOSS, National Radio Astronomy Observatory, USA JAMES LEQUEUX, Observatoire de Paris, France SIMON MITTON, St. Edmund’s College Cambridge University, UK MARC ROTHENBERG, AAS Historical Astronomy Division Chair, USA VIRGINIA TRIMBLE, University of California Irvine, USA XIAOCHUN SUN, Institute of History of Natural Science, China GUDRUN WOLFSCHMIDT, Institute for History of Science and Technology, Germany More information about this series at http://www.springer.com/series/15156 Dirk L. Couprie When the Earth Was Flat Studies in Ancient Greek and Chinese Cosmology Dirk L. Couprie Department of Philosophy Faculty of Philosophy and Arts, University of West Bohemia Pilsen, Czech Republic Amsterdam, The Netherlands ISSN 2509-310X ISSN 2509-3118 (electronic) Historical & Cultural Astronomy ISBN 978-3-319-97051-6 ISBN 978-3-319-97052-3 (eBook) https://doi.org/10.1007/978-3-319-97052-3 Library of Congress Control Number: 2018951782 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To the memory of my brother Jan (1924–2012), who could calculate in the dozenal system This book was supported by the Czech Grant Agency Project, GACR 15-08890S. Foreword Whether or not there was an actual relationship between early Chinese thought and early Greek thought is difficult to determine. But we can really claim that there is analogical relationship between early Chinese thought and early Greek thought. Even with regard to the concepts of Yin and Yang which have been regarded by most scholars for a long time and up to now as very peculiar Chinese ideas, we can find that there is analogical relationship with the concepts of the hot and the cold and the dry and the wet in early Greek thought.1 Therefore, I strongly believe that, if we systematically and profoundly try to do comparative research into early Chinese thought and early Greek thought, we should meet many surprising discoveries. And this will help us not only to find many comparable thoughts between the two, but also to solve the puzzles which have remained for understanding because of the lost and the lack of documents on either side. Dirk L. Couprie’s new book, When the Earth Was Flat: Studies in Ancient Greek and Chinese Cosmology, is a great attempt in this aspect. In this volume, he continues the research of his earlier work, Heaven and Earth in Ancient Greek Cosmology, and makes a detailed and deep study of flat earth cosmology. While in the previous book he paid more attention to how spherical earth cosmology replaced flat earth cosmology and was accepted in early Greek thought, in the new book he devotes much more discussion to the question of how flat earth cosmology has explained all kinds of puzzles of astronomy. It is precisely in this context that he devotes an independent and special part to the study of Chinese flat earth cosmology, called the gai tian system, which was contained in an ancient Chinese work, Zhou Bi Suan Jing. He makes use of his extensive knowledge of ancient astronomy when studying its thoughts related to flat earth cosmology deeply and professionally, so that although I am a Chinese person, I become a layman with respect to him regarding this Chinese ancient work. But, I dare say, it is by his new book that he illustrates how a comparative research between early Chinese thought and early 1See Nie Minli (2016). ix x Foreword Greek thought may provide useful material to remedy the deficiency of literature on both sides. I got acquainted with Dirk Couprie in Thessaloniki, Greece, in July 2014, when I attended the Fourth Conference of International Association for Presocratic Studies. In that conference, Dirk Couprie read his paper, “The Paths of The Celestial Bodies According to Anaximenes,” and my paper was “Yin and Yang, and the Hot and the Cold.” In my paper, I compared the cosmological concepts of the hot and the cold in Pre-Socratics with the concepts of the Yin and Yang in Pre-Qin and paid special attention to the analogies between Lao Tzu and Anaximander. I did not anticipate that this paper would arouse the interest of Dirk Couprie. We had an intense discussion about Anaximenes’s cosmology and ancient Chinese cosmology such as the gai tian system and the hun tian system, the former of which claims the idea of flat earth and the latter the idea of spherical heavens. I felt shy that as a Chinese person, I could not provide him with more knowledge than he already possessed about ancient Chinese cosmology. After that meeting, we met again in February 2016 at the 10th London Ancient Science Conference. At that conference, we talked about Anaximander’s cosmology, especially about the puzzle in this sentence, “a kind of sphere of flame from this was formed round the air surrounding the earth” (Ps.-Plutarch Strom.2;DK 12 A 10). He told me that he intended to publish a book about flat earth cosmology based on the comparative study of early Greek cosmology and early Chinese cosmology. Now, I receive the last draft of his new book, When the Earth Was Flat: Studies in Ancient Greek and Chinese Cosmology, which is just what he promised in 2016. I believe this work will be a new beginning in the comparative studies of ancient Western thought and ancient Chinese thought, which tells us about the similarities and differences between their cosmologies. Dirk Couprie tends to stress the differ- ences. In my opinion, however, to inquire for the similarities will give us even more inspired ideas than to inquire for the differences. Renmin University of China in Beijing, Nie Minli Beijing, China Reference Nie Minli, “Yin and Yang, and the Hot and the Cold,” in Frontiers of Philosophy in China, Volume 11, Number 1, March 2016, pp. 73–87. Spherical Versus Flat Corey McCorkle, Yayoi (2005), Middelheim Park, Antwerp. What do we see here? A sphere, or a disk as flat as the paper on which it is printed? xi xii Spherical Versus Flat Eratosthenes said: The earth is a sphere. The sun is very far away, so that its rays reach the earth parallel to each other. At noon at the summer solstice in Alexan- dria, the angle of the shadow line from the top of the gnomon is seven degrees, but a gnomon in Syene casts no shadow. Therefore, I can calculate that the circumference of the earth is about fifty times the distance between Alexandria and Syene. Anaxagoras could have argued: The earth is flat. At noon at the summer solstice in Alexandria, the shadow is about one-eighth of the length of a gnomon. When I extend the line from the end of the shadow to the top of the gnomon upward, the point where it crosses the perpendicular in Syene is the place where the sun stands. Therefore, I can calculate that the distance of the sun is no more than about eight times the distance between Alexandria and Syene. Aristotle said: during a lunar eclipse, the shape of the shadow of the earth on the moon is always curved. This proves that the earth is a sphere. Anaxagoras could have argued: The earth is flat. The line between the light and the dark parts of the moon during an eclipse is always curved. This proves that an eclipse of the moon cannot be caused by the shadow of the earth. There must be invisible heavenly bodies between us and the moon that cause lunar eclipses. Ptolemy said: The earth must be spherical, because on a flat earth, it would be the same time everywhere, and the heavenly bodies would rise and set for all people at the same time. Chinese astronomers argued: The earth is flat. The celestial bodies orbit in a flat plane parallel to the earth’s surface. The sun shines successively on different parts of the earth, causing the differences in time. Acknowledgements In the field of ancient cosmology, I learned most from Dmitri Panchenko, whose thoughtful and inspiring articles always opened new horizons of interpretation.
Recommended publications
  • Models for Earth and Maps
    Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis.
    [Show full text]
  • Anaximander and the Problem of the Earth's Immobility
    Binghamton University The Open Repository @ Binghamton (The ORB) The Society for Ancient Greek Philosophy Newsletter 12-28-1953 Anaximander and the Problem of the Earth's Immobility John Robinson Windham College Follow this and additional works at: https://orb.binghamton.edu/sagp Recommended Citation Robinson, John, "Anaximander and the Problem of the Earth's Immobility" (1953). The Society for Ancient Greek Philosophy Newsletter. 263. https://orb.binghamton.edu/sagp/263 This Article is brought to you for free and open access by The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in The Society for Ancient Greek Philosophy Newsletter by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact [email protected]. JOHN ROBINSON Windham College Anaximander and the Problem of the Earth’s Immobility* N the course of his review of the reasons given by his predecessors for the earth’s immobility, Aristotle states that “some” attribute it I neither to the action of the whirl nor to the air beneath’s hindering its falling : These are the causes with which most thinkers busy themselves. But there are some who say, like Anaximander among the ancients, that it stays where it is because of its “indifference” (όμοιότητα). For what is stationed at the center, and is equably related to the extremes, has no reason to go one way rather than another—either up or down or sideways. And since it is impossible for it to move simultaneously in opposite directions, it necessarily stays where it is.1 The ascription of this curious view to Anaximander appears to have occasioned little uneasiness among modern commentators.
    [Show full text]
  • You Can Only Use a Planar Surface So Far, Before the Equidistance Assumption Creates Large Errors
    You can only use a planar surface so far, before the equidistance assumption creates large errors Distance error from Kiester to Warroad is greater than two football fields in length So we assume a spherical Earth P. Wormer, wikimedia commons Longitudes are great circles, latitudes are small circles (except the Equator, which is a GC) Spherical Geometry Longitude Spherical Geometry Note: The Greek letter l (lambda) is almost always used to specify longitude while f, a, w and c, and other symbols are used to specify latitude Great and Small Circles Great circles splits the Small circles splits the earth into equal halves earth into unequal halves wikipedia geography.name All lines of equal longitude are great circles Equator is the only line of equal latitude that’s a great circle Surface distance measurements should all be along a great circle Caliper Corporation Note that great circle distances appear curved on projected or flat maps Smithsonian In GIS Fundamentals book, Chapter 2 Latitude - angle to a parallel circle, a small circle parallel to the Equatorial great circle Spherical Geometry Three measures: Latitude, Longitude, and Earth Radius + height above/ below the sphere (hp) How do we measure latitude/longitude? Well, now, GNSS, but originally, astronomic measurements: latitude by north star or solar noon angles, at equinox Longitude Measurement Method 1: The Earth rotates 360 degrees in a day, or 15 degrees per hour. If we know the time difference between 2 points, and the longitude of the first point (Greenwich), we can determine the longitude at our current location. Method 2: Create a table of moon-star distances for each day/time of the year at a reference location (Greenwich observatory) Measure the same moon-star distance somewhere else at a standard or known time.
    [Show full text]
  • Paths Between Points on Earth: Great Circles, Geodesics, and Useful Projections
    Paths Between Points on Earth: Great Circles, Geodesics, and Useful Projections I. Historical and Common Navigation Methods There are an infinite number of paths between two points on the earth. For navigation purposes there are only a few historically common choices. 1. Sailing a latitude. Prior to a good method of finding longitude at sea, you sailed north or south until you cane to the latitude of your destination then you sailed due east or west until you reached your goal. Of course if you choose the wrong direction, you can get in big trouble. (This happened in 1707 to a British fleet that sunk when it hit rocks. This started the major British program for a longitude method useful at sea.) In this method the route follows the legs of a right triangle on the sphere. Just as in right triangles on the plane, the hypotenuse is always shorter than the sum of the other two sides. This method is very inefficient, but it was all that worked for open ocean sailing before 1770. 2. Rhumb Line A rhumb line is a line of constant bearing or azimuth. This is not the shortest distance on a long trip, but it is very easy to follow. You just have to know the correct azimuth to use to get between two sites, such as New York and London. You can get this from a straight line on a Mercator projection. This is the reason the Mercator projection was invented. On other projections straight lines are not rhumb lines. 3. Great Circle On a spherical earth, a great circle is the shortest distance between two locations.
    [Show full text]
  • The Shape of the Earth
    The Shape of the Earth Produced for the Cosmology and Cultures Project of the OBU Planetarium by Kerry Magruder August, 2005 2 Credits Written & Produced by: Kerry Magruder Nicole Oresme: Kerry Magruder Students: Rachel Magruder, Hannah Magruder, Kevin Kemp, Chris Kemp, Kara Kemp Idiot Professor: Phil Kemp Andrew Dickson White: Phil Kemp Cicero, Aquinas: J Harvey NASA writer: Sylvia Patterson Jeffrey Burton Russell: Candace Magruder Images courtesy: History of Science Collections, University of Oklahoma Libraries Digital photography and processing by: Hannah Magruder Soundtrack composed and produced by: Eric Barfield Special thanks to... Jeffrey Burton Russell, Mike Keas, JoAnn Palmeri, Hannah Magruder, Rachel Magruder, Susanna Magruder, Candace Magruder Produced with a grant from the American Council of Learned Societies 3 1. Contents 1. Contents________________________________________________3 2. Introduction_____________________________________________ 4 A. Summary____________________________________________ 4 B. Synopsis____________________________________________ 5 C. Instructor Notes_______________________________________6 3. Before the Show_________________________________________ 7 A. Video: A Private Universe______________________________ 7 B. Pre-Test_____________________________________________ 8 4. Production Script_________________________________________9 A. Production Notes______________________________________9 B. Theater Preparation___________________________________10 C. Script______________________________________________
    [Show full text]
  • 307 Lesson 21: Eratosthenes' Measurement of the Earth the Most
    307 Lesson 21: Eratosthenes’ Measurement of the Earth The most important parallel of latitude is the equator; it is the only parallel of latitude that is a great circle. However, in the previous lesson we learned about four other parallels of latitude which are of great importance because of the relative geometry of the Earth and the Sun. These are the Tropics of Cancer and Capricorn and the Arctic and Antarctic Circles. We briefly review the basic facts about these four parallels. At each moment on the day of the summer solstice, there is a single point on the surface of the Earth that is closet to the Sun. As the Earth rotates through the day of the summer solstice, this closest point to the Sun moves around the surface of the Earth and traces a parallel of latitude called the Tropic of Cancer. Another description of the Tropic of Cancer is that it is the set of all points on the Earth’s surface where the Sun is directly overhead at solar noon on the day of the summer solstice. The latitude coordinate of the Tropic of Cancer equals the measure of the angle that the Earth’s axis makes with the perpendicular to the ecliptic plane: approximately 23.5º N. On the day of the summer solstice, as the Earth rotates about its axis, the terminator (the division between daytime and nighttime) moves, and its northernmost point traces out a parallel of latitude called the Arctic Circle. Similarly, as the Earth rotates, the southernmost point of the terminator traces out a parallel of latitude called the Antarctic Circle.
    [Show full text]
  • Astronomy Through the Ages 1 Early History and Greek Astronomy
    Astronomy Through the Ages 1 Early History and Greek Astronomy ASTR 101 9/26/2018 1 Early History • Astronomy is often described as the oldest of the natural sciences. – Humans attempts to understand and make sense of the sky predates antiquity. – Religious, mythological and astrological beliefs and practices of pre-historical societies related to celestial objects and events can be seen from many artifacts that have survived to date. The Blanchard Bone, depicting a series of moon phases (France. 25,000 - 32,000 BCE) Stonehenge The Mayan observatory at Chichen Itza, seemed to have built to observe Venus and the Sun. The pyramid is aligned to solar equinox 2 Babylonian and ancient Egyptian astronomy (left) Mul Apin tablet(1100 BCE): Describing the appearance of different constellations and stars: Astronomical ceiling. 1470BCE Egyptian tomb (right) Babylonian clay tablets listing observation of Venus painting with constellations, planets, lunar th c. 7 century BCE. www.mesopotamia.co.uk/astronomer/explore/mulapin1.html cycle and stars depicted. • Astronomy and mathematics were in an advance state in the Babylonian civilization: • They kept records of position of the stars and planets and eclipses Many constellations visible from the northern hemisphere, and the zodiac are of Babylonian/Sumerian origin. • They used a number system with base 60 (sexadesimal), and a year of 360 days. • Circle 360 degrees, 60 minutes and 60 seconds descend from the Babylonian sexadesimal number system. • Egyptian astronomy mostly carried out by priest astronomers was largely concerned with time reckoning. Its main lasting contribution was the civil calendar of 365 days, with 12 months 3 • Unable to comprehend their underlying causes, early cultures resort to mysticism and religion for answers.
    [Show full text]
  • Sunlight and Seasons
    Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations.
    [Show full text]
  • GEOMETRIC ANALYSIS of an OBSERVER on a SPHERICAL EARTH and an AIRCRAFT OR SATELLITE Michael Geyer
    GEOMETRIC ANALYSIS OF AN OBSERVER ON A SPHERICAL EARTH AND AN AIRCRAFT OR SATELLITE Michael Geyer S π/2 - α - θ d h α N U Re Re θ O Federico Rostagno Michael Geyer Peter Mercator nosco.com Project Memorandum — September 2013 DOT-VNTSC-FAA-13-08 Prepared for: Federal Aviation Administration Wake Turbulence Research Program DOT/RITA Volpe Center TABLE OF CONTENTS 1. INTRODUCTION...................................................................................................... 1 1.1 Basic Problem and Solution Approach........................................................................................1 1.2 Vertical Plane Formulation ..........................................................................................................2 1.3 Spherical Surface Formulation ....................................................................................................3 1.4 Limitations and Applicability of Analysis...................................................................................4 1.5 Recommended Approach to Finding a Solution.........................................................................5 1.6 Outline of this Document ..............................................................................................................6 2. MATHEMATICS AND PHYSICS BASICS ............................................................... 8 2.1 Exact and Approximate Solutions to Common Equations ........................................................8 2.1.1 The Law of Sines for Plane Triangles.........................................................................................8
    [Show full text]
  • The Copernican Revolution
    Lecture 4: The Copernican Revolution Astronomy 141 – Winter 2012 The lecture will discuss the Copernican Revolution. Modern science was born out of an effort over many centuries to understand the motions of celestial bodies. Two competing models were proposed: Geocentric (earth-centered) and Heliocentric (Sun-centered). The final success of the heliocentric model relied on crucial philosophical insights and technological advances. The motions of celestial bodies visible to the naked eye are mostly regular and repeatable. The stars rise in the east and set in the west daily The Sun rises & sets daily, and makes an eastward circuit relative to the stars once a year. The Moon rises & sets daily, and makes an eastward circuit relative to the stars once a month. Planetary motions are much more complex, showing occasional retrograde motion. Planets rise and set daily, and move generally eastward relative to the stars at varying speeds. Mars during 2005/6 Retrograde But, they occasionally stop, move westward (or retrograde), then stop again and resume moving eastward. For 2000 years, a geocentric model for the universe was widely assumed. Stars affixed to a Celestial Sphere Moon, Sun, planets, between the Earth & stars Spherical Earth at center of the Universe Aristotle (384-322 BC) argued for a geocentric model on physical grounds. Earth was fixed and unmoving at the center because it is was too big to move, including rotation. The Sun, Moon, Planets and Stars are afixed to crystalline spheres in uniform circular motion. The combination of perfect motions produces the net retrograde and non-uniform motions observed. The ultimate Geocentric System was formulated Claudius Ptolemy around 150 AD.
    [Show full text]
  • Early Cosmology
    The spherical Earth Greeks knew the Earth was a sphere View of constellations changes from NS Observations of ships sailing over the horizon (mast disappears last) Observations of the Earth’s shadow on the Moon during lunar eclipses The myth of the Flat Earth is a modern misconception about ancient and medieval thought 1 08/14/12Earth’s shadow on the Moon during a lunar eclipse Earth radius ~ 4x Moon radius 08/14/12 2 Distance of Moon From Earth Suggest a method for determining this distance; hint: use the Sun. Twice if you like. Start with: The size of the Earth (radius R) The Sun is very far away You’ve seen lunar eclipses… (Work in your groups of 3) I’ll get you started… Distance of Moon From Earth Moon moves in a large circle of radius R Moon goes around one circle per month T Earth’s shadow is about twice its radius r Time it takes Moon to cross the shadow t (maximally, about 3.6 hours) v = v it’s the same “velocity”! 2πR/T = 2 r/t R/r ~ 1 month / (3 hr * π) Average distance of the Moon ~ 60 Earth radii Aristarchus, 270 BC… But how big is r? Eratosthenes Astronomer/mathematician in Hellenistic Egypt (c.275-195 BC) Calculated circumference of Earth Measured altitude of Sun at two different points on the Earth (Alexandria & Syene about 800 km apart): found 7° difference How did he do it? (What do you do with those numbers?) Multiplied (360°/7°)×800km (distance between the 2 sites) to obtain circumference~40,000km 08/14/12 5 This is a bit oversimplified! Note mountains not shown to scale.
    [Show full text]
  • CSISS Classics
    UC Santa Barbara CSISS Classics Title Claudius Ptolemaeus (Ptolemy): Representation, Understanding, and Mathematical Labeling of the Spherical Earth. CSISS Classics Permalink https://escholarship.org/uc/item/4q10b6qk Author Sprague, Ben Publication Date 2003 eScholarship.org Powered by the California Digital Library University of California CSISS Classics - Claudius Ptolemaeus (Ptolemy): Representation, Understanding, and Mathemati... Claudius Ptolemaeus (Ptolemy): Representation, Understanding, and Mathematical Labeling of the Spherical Earth By Ben Sprague Background Claudius Ptolemaeus, better known as Ptolemy (circa 100–178 AD) made many important contributions to geography and spatial thought. A Greek by descent, he was a native of Alexandria in Egypt, and became known as the most wise and learned man of his time. Although little is known about Ptolemy's life, he wrote on many topics, including geography, astrology, musical theory, optics, physics, and astronomy. Innovation Ptolemy's work in astronomy and geography have made him famous for the ages, despite the fact that many of his theories were in the following centuries proven wrong or changed. Ptolemy collected, analyzed, and presented geographical knowledge so that it could be preserved and perfected by future generations. These ideas include expressing locations by longitude and latitude, representing a spherical earth on a flat surface, and developing the first equal area map projection. Ptolemy's accomplishments reflect his understanding of spatial relationships among places on earth and of the Earth's spatial relationships to other celestial bodies. Ptolemy's most famous written works are the Almagest, a textbook of astronomy in which, among other things, he laid the foundations of modern trigonometry; the Tetrabiblos, a compendium of astrology and geography; and Geographica (his guide to "Geography"), which compiled and summarized much of the geographic information accumulated by the Greeks and Romans up to that time.
    [Show full text]