Propuesta De Estructura Para La

Total Page:16

File Type:pdf, Size:1020Kb

Propuesta De Estructura Para La TESIS DOCTORAL 2020 UTILIZACIÓN DE POLÍMEROS ISOTÓPICAMENTE MODIFICADOS PARA MISIONES CIENTÍFICAS ESPACIALES IN-SITU JULIO MORA NOGUÉS PROGRAMA DE DOCTORADO EN CIENCIAS DIRECTOR: Dr. RICARDO ATIENZA PASCUAL CODIRECTOR: Dr. AMADOR GARCÍA-SANCHO TUTOR: Dr. JESÚS ÁLVAREZ RODRÍGUEZ Programa de Doctorado en Ciencias Madrid, Marzo de 2020 UTILIZACIÓN DE POLÍMEROS ISOTÓPICAMENTE MODIFICADOS PARA MISIONES CIENTÍFICAS ESPACIALES IN-SITU JULIO MORA NOGUÉS Memoria para optar al grado de Doctor en Ciencias Dirigida por: Dr. RICARDO ATIENZA PASCUAL Dr. AMADOR GARCÍA-SANCHO Científico Titular de la Defensa Director de Tecnología Instituto Nacional de Técnica Instituto Tecnológico del Plástico Aeroespacial (INTA) (AIMPLAS) ii AGRADECIMIENTOS En primer lugar, quiero agradecer a mis Directores de Tesis, Ricardo y Amador, todos sus consejos, su guía, la libertad de acción que me han brindado y, sobre todo, su apoyo personal incondicional durante estos cuatro años, ¡muchas gracias! A mi tutor, el Dr. Jesús Álvarez Rodríguez, por su asesoramiento y sus buenos consejos para preservar la confidencialidad en los primeros compases del estudio, y al Coordinador del Programa de Doctorado de Ciencias, el Profesor José Luis Martínez Guitarte, por toda su colaboración. Muy especialmente a Guillermo López-Reyes que ha sido fundamental en que esta prueba de concepto tomase cuerpo, ha sido una guía y apoyo constante. A todos los compañeros que han participado en este trabajo: Margarita, José Antonio, Andoni, Rafa, Aurelio, Pepe, Pauline y sobre todo a mi compañero Alejandro. A mis Jefes por favorecer esta línea de investigación. En la parte personal no he podido sentirme más respaldado, animado y apoyado. Gracias a todos mis amigos de dentro y fuera de INTA por interesarse siempre y brindarme grandes consejos. Y como no, a mi familia, a los que siempre están a mi lado, y a los que sin estar ya, siempre llevo dentro, sois indispensables. A mi madre, pilar indiscutible en mi vida, apoyo incondicional y ejemplo personal y referente a seguir. Para acabar, gracias infinitas a Vero, Lucía y Carlos. Gracias por toda vuestra ayuda y paciencia en todos los momentos que esta tesis nos ha quitado, este trabajo es tan mío como vuestro. Sois mi mayor inspiración y todo lo que hago es para y por vosotros. iii iv ÍNDICE ABREVIATURAS UTILIZADAS ......................................................................................................... vii GLOSARIO DE FIGURAS, IMÁGENES, ESQUEMAS, TABLAS Y GRÁFICOS ....................................... xi RESUMEN ..................................................................................................................................... xvii PARTE I: ANTECEDENTES Y MARCO ................................................................................................ 1 1. CAPÍTULO 1: BÚSQUEDA DE VIDA EN EL ESPACIO Y PROTECCIÓN PLANETARIA .................. 1 1.1. Exploración espacial ........................................................................................................ 1 1.2. Misiones a Marte: ExoMars ............................................................................................ 6 1.3. Protección planetaria: contaminación bacteriana, molecular y de partículas ............ 18 2. CAPÍTULO 2: VALIDACIÓN DE MATERIALES POLIMÉRICOS PARA USO ESPACIAL ............... 39 3. CAPÍTULO 3: RADIOQUÍMICA Y MARCAJE ISOTÓPICO ......................................................... 55 3.1. Isótopos: características y abundancia natural ............................................................ 55 3.2. Marcaje isotópico y aplicaciones. Efecto isotópico ...................................................... 59 3.3. Análisis de isótopos ....................................................................................................... 62 4. CAPÍTULO 4: OBJETIVOS DE LA TESIS .................................................................................... 70 PARTE II: METODOLOGÍA .............................................................................................................. 75 5. CAPÍTULO 5: SÍNTESIS DE POLÍMEROS .................................................................................. 75 5.1. PET: Métodos de síntesis ............................................................................................... 75 5.2. Caracterización polimérica: TGA y DSC ......................................................................... 78 6. CAPÍTULO 6: CARACTERIZACIÓN ANALÍTICA MEDIANTE LAS MISMAS TÉCNICAS QUE SE EMPLEARAN EN LA MISIÓN EXOMARS ......................................................................................... 84 6.1. Espectroscopía Vibracional ........................................................................................... 84 6.1.1. Espectroscopía Raman........................................................................................... 84 6.1.2. Espectroscopía FTIR (Fourier-Transform InfraRed) .............................................. 86 6.2. Cromatografía de gases con espectrometría de masas (GC/MS) ................................ 88 7. CAPÍTULO 7: ENSAYOS DE VALIDACIÓN ESPACIAL ............................................................... 93 7.1. Desgasificación según ECSS-Q-ST-70-02C, Thermal vacuum Outgassing test for the screening of space materials ..................................................................................................... 94 7.2. Desgasificación dinámica según ECSS-Q-TM-70-52A Kinetic Outgassing of materials for space ..................................................................................................................................... 99 PARTE III: DISCUSIÓN DE RESULTADOS ...................................................................................... 101 8. CAPÍTULO 8: RESULTADOS. DISCUSIÓN .............................................................................. 101 v 8.1. RESULTADOS DE OBJETIVO 1: SÍNTESIS DE UN MATERIAL FUNCIONAL INTEGRA O PARCIALMENTE MARCADO ISOTÓPICAMENTE ...................................................................... 102 8.1.1. Proceso de síntesis y purificación ....................................................................... 102 8.1.2. Ensayos de caracterización de polímeros sintetizados mediante TGA y DSC ... 106 8.1.3. Resumen de resultados y adecuación al objetivo 1 ........................................... 109 8.2. RESULTADOS DE OBJETIVO 2: ESTUDIO DE LAS DIFERENCIAS ISOTÓPICAS INTRODUCIDAS MEDIANTE TÉCNICAS ESPECTROSCÓPICAS Y ESPECTROMÉTRICAS ............ 111 8.2.1. Estudio de precursores monoméricos mediante Raman, FTIR y GC/MS ........... 111 8.2.2. Caracterización por espectroscopía vibracional: Raman y FTIR de los polímeros sintetizados .......................................................................................................................... 131 8.2.3. Caracterización por espectrometría de masas de los polímeros sintetizados .. 149 8.2.4. Estudio de contaminación forzada mediante desgasificación en polímeros sin desgasificación térmica ....................................................................................................... 157 8.2.5. Resumen de resultados y adecuación al objetivo 2 ........................................... 162 8.3. RESULTADOS DE OBJETIVO 3: ENSAYOS DE VALIDACIÓN ESPACIAL PARA LOS POLÍMEROS PROPUESTOS ....................................................................................................... 166 8.3.1. Ensayo de desgasificación de los polímeros sintetizados .................................. 166 8.3.2. Resumen de resultados y adecuación al objetivo 3 ........................................... 172 9. CAPÍTULO 9: CONCLUSIONES .............................................................................................. 175 TRABAJOS FUTUROS .................................................................................................................... 179 BIBLIOGRAFÍA .............................................................................................................................. 181 vi ABREVIATURAS UTILIZADAS AE Activation Energy AIV Assembly, Integration and Verification ALD Analytical Laboratory Drawer ASTM American Society for Testing and Materials ATOX Atomic Oxygen ATR Attenuated total reflection CAP Cold Atmospheric Plasma CARS Coherent anti-Stokes Raman spectroscopy CCD Charge Coupled Device CETEX Committee on the Exploration of Extraterrestrial Space CI Chemical Ionization CNES Centre National d'Études Spatiales COSPAR Committee on space research COSY Correlation spectroscopy CVCM Collected Volatile Condensable Material DHMR Dry Heat Microbiological Reduction DMT Dimetiltereftalato DOP Dioctyl Phthalate - Dioctilftalato DSC Differential scanning calorimetry ECSS European Cooperation for Space Standardization EI Electronic Impact EIC Efecto Isotópico Cinético EIE Efecto isotópico de Equilibrio END Ensayos no destructivos EMC Electromagnetic compatibility ESA European Space Agency ESI Electrospray ionization ExoMars Exobiology on Mars EXSY Exchange spectroscopy FAB Fast atom bombardment FD Field desorption FTIR Fourier-Transform Infrared Spectroscopy GC/FID Gas chromatography/Flame ionization detector GC/MS Gas chromatography/mass spectrometry HabCat Catalog of Nearby Habitable Systems HMBC Heteronuclear multiple Bond Correlation HMQC Heteronuclear multiple quantum coherence HR Humedad relativa HSQC Heteronuclear single quantum coherence vii ICP-MS Inductively coupled plasma mass spectrometry IPA Isopropilyc alcohol – Alcohol isopropílico
Recommended publications
  • Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
    Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning.
    [Show full text]
  • Outer Space in Russia's Security Strategy
    Outer Space in Russia’s Security Strategy Nicole J. Jackson Simons Papers in Security and Development No. 64/2018 | August 2018 Simons Papers in Security and Development No. 64/2018 2 The Simons Papers in Security and Development are edited and published at the School for International Studies, Simon Fraser University. The papers serve to disseminate research work in progress by the School’s faculty and associated and visiting scholars. Our aim is to encourage the exchange of ideas and academic debate. Inclusion of a paper in the series should not limit subsequent publication in any other venue. All papers can be downloaded free of charge from our website, www.sfu.ca/internationalstudies. The series is supported by the Simons Foundation. Series editor: Jeffrey T. Checkel Managing editor: Martha Snodgrass Jackson, Nicole J., Outer Space in Russia’s Security Strategy, Simons Papers in Security and Development, No. 64/2018, School for International Studies, Simon Fraser University, Vancouver, August 2018. ISSN 1922-5725 Copyright remains with the author. Reproduction for other purposes than personal research, whether in hard copy or electronically, requires the consent of the author(s). If cited or quoted, reference should be made to the full name of the author(s), the title, the working paper number and year, and the publisher. Copyright for this issue: Nicole J. Jackson, nicole_jackson(at)sfu.ca. School for International Studies Simon Fraser University Suite 7200 - 515 West Hastings Street Vancouver, BC Canada V6B 5K3 Outer Space in Russia’s Security Strategy 3 Outer Space in Russia’s Security Strategy Simons Papers in Security and Development No.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • 6 FOTON RETRIEVABLE CAPSULES This Section Is Aimed at Providing New and Experienced Users with Basic Utilisation Information Regarding Foton Retrievable Capsules
    6 FOTON RETRIEVABLE CAPSULES This section is aimed at providing new and experienced users with basic utilisation information regarding Foton retrievable capsules. It begins with an introduction to the Foton capsule. 6.1 Introduction to Foton Capsules 6.1.1 What Are Foton Capsules? Foton capsules (Figure 6-1 and Figure 6-2) are unmanned, retrievable capsules, derived from the design of the 1960’s Soviet Vostok manned spacecraft and the Zenit military reconnaissance satellite. These capsules are very similar to the Bion and Resurs-F satellites introduced by the Soviets in the 1970’s, for biological research and Earth natural resources investigation, respectively. The first Foton capsule was launched in 1985 as Cosmos 1645 and only with the fourth launch in 1988 was the spacecraft officially designated Foton (Foton-4). These capsules are launched into near-circular, low-earth orbits by a Soyuz-U rocket, providing researchers with gravity levels less than 10 -5 g, for missions lasting approximately 2 weeks. The earlier Foton missions were conceived primarily for materials science research, but later missions also began to include experiments in the fields of fluid physics, biology and radiation dosimetry. ESA’s participation in the Foton programme began in 1991 with a protein crystallisation experiment on-board Foton-7, followed by a further 35 experiments up to and including the Foton- 12 mission in 1999. In 2002, ESA provided a large number of experiments for the Foton-M1 mission (the first flight of an upgraded version of the Foton spacecraft). This mission ended in disaster when the Soyuz launcher rocket exploded shortly after lift-off due to a malfunction in one of its engines.
    [Show full text]
  • The Space Exposure Platforms BIOPAN and EXPOSE to Study
    The space exposure platforms BIOPAN and EXPOSE to study living organisms in space Wolfgang Schulte (1), Pietro Baglioni (2), René Demets (2), Ralf von Heise-Rotenburg (1), Petra Rettberg (3) (1) Kayser-Threde GmbH, Wolfratshauser Str. 48, 81379 Munich, Germany, [email protected], Phone: +49-89-72495-225, Fax: +49-89-72495-215; [email protected], Phone: +49-89-72495-341, Fax: +49-89-72495-215 (2) European Space Agency ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, [email protected], Phone + 31-71-565-3856, Fax +31-71-565-3141; [email protected], Phone +31-71-565-5081, Fax +31-71-565-3141 (3) German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany, [email protected], Phone +49-2203-601-4637, Fax +49-2203-61970 BIOPAN and EXPOSE are two European space exposure platforms, developed for the European Space Agency by Kayser-Threde GmbH, Munich/Germany to offer flight opportunities to the science community of exo/astrobiology research in low earth orbit. Both platforms are conceived for the research on the behaviour of living organisms in the environment of space and on simulated conditions of other planets (Mars). The conditions for a possible transfer of life between planets can be studied. Both facilities can also be used for materials and components validation and as test bed for advanced technologies envisaged for future exploration missions (radio-protection, miniaturized devices, electronic components). Since 1992 BIOPAN has flown five times aboard the Russian FOTON re-entry cap- sule.
    [Show full text]
  • Adams Adkinson Aeschlimann Aisslinger Akkermann
    BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • Part 2 Almaz, Salyut, And
    Part 2 Almaz/Salyut/Mir largely concerned with assembly in 12, 1964, Chelomei called upon his Part 2 Earth orbit of a vehicle for circumlu- staff to develop a military station for Almaz, Salyut, nar flight, but also described a small two to three cosmonauts, with a station made up of independently design life of 1 to 2 years. They and Mir launched modules. Three cosmo- designed an integrated system: a nauts were to reach the station single-launch space station dubbed aboard a manned transport spacecraft Almaz (“diamond”) and a Transport called Siber (or Sever) (“north”), Logistics Spacecraft (Russian 2.1 Overview shown in figure 2-2. They would acronym TKS) for reaching it (see live in a habitation module and section 3.3). Chelomei’s three-stage Figure 2-1 is a space station family observe Earth from a “science- Proton booster would launch them tree depicting the evolutionary package” module. Korolev’s Vostok both. Almaz was to be equipped relationships described in this rocket (a converted ICBM) was with a crew capsule, radar remote- section. tapped to launch both Siber and the sensing apparatus for imaging the station modules. In 1965, Korolev Earth’s surface, cameras, two reentry 2.1.1 Early Concepts (1903, proposed a 90-ton space station to be capsules for returning data to Earth, 1962) launched by the N-1 rocket. It was and an antiaircraft cannon to defend to have had a docking module with against American attack.5 An ports for four Soyuz spacecraft.2, 3 interdepartmental commission The space station concept is very old approved the system in 1967.
    [Show full text]
  • Materials, Technological Status, and Fundamentals of PEM Fuel Cells – a Review Yun Wang 1,⇑, Daniela Fernanda Ruiz Diaz 1, Ken S
    Materials Today d Volume 32 d January/February 2020 RESEARCH RESEARCH: Review Materials, technological status, and fundamentals of PEM fuel cells – A review Yun Wang 1,⇑, Daniela Fernanda Ruiz Diaz 1, Ken S. Chen 2, Zhe Wang 3, Xavier Cordobes Adroher 4 1 Renewable Energy Resources Laboratory (RERL) & National Fuel Cell Research Center, Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA 92697-3975, USA 2 Sandia National Laboratories, 7011 East Avenue, MS 9154, Livermore, CA 94550, USA 3 State Key lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy, Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, China, 100084, People’s Republic of China 4 General Motors Japan Ltd., Higashi-Shinagawa Shinagawa-ku, Tokyo 140-8687, Japan PEM (Polymer Electrolyte Membrane) fuel cells have the potential to reduce our energy use, pollutant emissions, and dependence on fossil fuels. In the past decade, significant advances have been achieved for commercializing the technology. For example, several PEM fuel cell buses are currently rated at the technical readiness stage of full-scale validation in realistic driving environments and have met or closely met the ultimate 25,000-h target set by the U.S. Department of Energy. So far, Toyota has sold more than 4000 Mirai PEM fuel cell vehicles (FCVs). Over 30 hydrogen gas stations are being operated throughout the U.S. and over 60 in Germany. In this review, we cover the material, design, fundamental, and manufacturing aspects of PEM fuel cells with a focus on the portable, automobile, airplane, and space applications that require careful consideration in system design and materials.
    [Show full text]
  • Abstract Booklet
    ESA SCI Science Workshop #13 1–3 December 2020 Virtual Meeting Abstracts Organising Committee: Guillaume Bélanger, Georgina Graham, Oliver Hall, Michael Küppers, Erik Kuulkers, Olivier Witasse. SSW#13 PROGRAMME (all times are in CET) 1 DEC 2020 PART 1 Moderator: Oliver Hall 14:30-14:40 - Welcome - Markus Kissler-Patig [10] 14:40-15:00 - Introduction of new RFs & YGTs (Pre-recorded) [20] 15:00-15:30 - Invited talk: Solar Orbiter - Daniel Mueller [20+10] 15:30-15:45 - A CME whodunit in preparation for Solar Orbiter - Alexander James et al. [10+5] 15:45-16:00 - Poster viewing/discussion in Gathertown [15] 16:00-16:30 - break PART 2 Moderator: Georgina Graham 16:30-17:00 - Intro new H/DIV SCI-SC and presentation of SCI-ence budget - Gaitee Hussain [20+10] 17:00-17:15 - Searching for signs of life with the ExoMars Rover: why the mission is how it is - Jorge Vago & Elliot Sefton-Nash [10+5] 17:15-17:30 - Posters summary/advertisement talk - Solar System - Matt Taylor & Anik de Groof [15] 17:30-17:45 - Posters summary/advertisement talk - Astronomy/Fundamental Physics - Peter Kretschmar & Oliver Jennrich [15] 17:45-18:00 - Accreting black holes seen through XMM-Newton - Andrew Lobban et al. [10+5] 2 DEC 2020 PART 1 Moderator: Tereza Jerabkova 14:30-15:00 - Invited talk: BepiColombo: comprehensive exploration of Mercury - Johannes Benkhoff [20+10] 15:00-15:15 - ESA communications and PR, interactive session - Kai Noeske [15] 15:15-15:30 - Segmentation of coronal features to understand the Solar EIV and UV irradiance variability - Joe Zender [10+5] 15:30-15:45 - Spectrophotometry to study icy surfaces - Anezina Solomonidou et al.
    [Show full text]
  • The Historyof Spaceflight
    CHAPTER15 THEHISTORY AND HISTORIOGRAPHYOF NATIONALSECURITY SPACE’ Stephen B. Johnson e intent of this essay is to provide space historians with an overview of Th.the issues and sources of national security space so as to identify those areas that have been underserved. Frequently, ballistic missiles are left out of space history, as they only pass through space instead of remaining in space like satellites. I include ballistic missiles for several reasons, not the least of which is that they pass through space en route to their targets. Space programs originated in the national security (NS) arena, and except for a roughly 15-year period from the early 1960s through the mid-l970s, NS space expenditures in the United States (U.S.), let alone the Union of Soviet Socialist Republics (USSR), have equaled or exceeded those of civilian pro- grams. Despite this reality, the public nature of government-dominated civil- ian programs and issues of security classifications have kept NS space out of the limelight. The recent declassification of the early history of the National Reconnaissance Office (NRO) and the demise of the Soviet Union have led to a recent spate of publications that have uncovered much of the “secret history” of the early Cold War. Nonetheless, much of NS space history has received little attention from historians. One feature of military organizations that is of great value for historians is their penchant to document their histories, and space organizations are no exception. Most military organizations have historians assigned to them, with professional historians at many of the positions documenting events as they occur.
    [Show full text]
  • UK Space Facilities Review 2017 16/10/17
    Evaluation strategy valuation strategy August 2015 UK Space Facilities Review December 2017 Page 3 of 189 UK Space Facilities Review 2017 16/10/17 Table of Contents FOREWORD..................................................................................................................... 10 1 INTRODUCTION ........................................................................................................ 11 1.1 Scope ........................................................................................................................................ 11 1.2 Background ............................................................................................................................... 12 1.3 Reference Documents .............................................................................................................. 12 2 STUDY METHODOLOGY ............................................................................................ 13 2.1 Target Organisations ................................................................................................................ 14 2.2 Initial Survey Questions ............................................................................................................ 14 3 SURVEY .................................................................................................................... 16 3.1 ABSL / EnerSys, Culham ............................................................................................................ 17 3.1.1 ABSL / EnerSys Company Background 17
    [Show full text]
  • Making-Space-For-Security-En-346.Pdf
    TABLE OF CONTENTS Editor's Note Kerstin VIGNARD ............................................................................................................. 1 Special Comment Colonel Chris A. HADFIELD .............................................................................................. 3 Making Space for Security? ‘Peaceful uses’ of outer space has permitted its militarization— does it also mean its weaponization? Johannes M. WOLFF......................................................................................................... 5 Monsters and shadows: left unchecked, American fears regarding threats to space assets will drive weaponization Theresa HITCHENS ........................................................................................................... 15 The world’s space systems Laurence NARDON .......................................................................................................... 33 Is a space weapons ban feasible? Thoughts on technology and verification of arms control in space Regina HAGEN and Jürgen SCHEFFRAN............................................................................ 41 Security without weapons in space: challenges and options Rebecca JOHNSON .......................................................................................................... 53 Resources on Outer Space Security compiled by Jon PARIS, with assistance of Melissa MOTT and Rachel WILLIAMS ............ 67 UNIDIR Focus .......................................................................................................................
    [Show full text]