Enamel Remineralization: Controlling the Caries Disease Or Treating Early Caries Lesions?§
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kosnarite Kzr2(PO4)3 C 2001-2005 Mineral Data Publishing, Version 1
Kosnarite KZr2(PO4)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal, pseudocubic. Point Group: 32/m. As rhombohedral pseudocubic crystals, to 0.9 mm, with {1012} and tiny {0001}. Physical Properties: Cleavage: Perfect on {1012}. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 D(meas.) = 3.194(2) D(calc.) = 3.206 Optical Properties: Transparent to translucent. Color: Pale blue to blue-green, bluish gray, nearly colorless. Streak: White. Luster: Vitreous. Optical Class: Uniaxial (+). ω = 1.656(2) = 1.682(2) Cell Data: Space Group: R3c. a = 8.687(2) c = 23.877(7) Z = 6 X-ray Powder Pattern: Mt. Mica, Maine, USA. 4.329 (100), 3.806 (90), 2.928 (90), 6.41 (50), 4.679 (50), 2.502 (50), 1.903 (45) Chemistry: (1) (2) (3) P2O5 43.3 42.2 42.04 ZrO2 44.5 47.9 48.66 HfO2 0.5 0.9 FeO 0.2 < 0.1 MnO 1.0 < 0.1 Na2O 1.4 < 0.1 K2O 8.7 9.25 9.30 Rb2O 0.25 0.2 F 0.20 0.2 −O=F2 0.08 0.08 Total 99.97 100.57 100.00 (1) Mt. Mica, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.93Na0.08Rb0.01)Σ=1.02(Zr1.81Na0.15Mn0.07Fe0.01Hf0.01)Σ=2.05 [P1.02(O3.98F0.02)Σ=4.00]3. (2) Black Mountain, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.99Rb0.01)Σ=1.00(Zr1.96Hf0.02)Σ=1.98 [P1.00(O3.98F0.02)Σ=4.00]3. -
Geology of the Hugo Pegmatite Keystone, South Dakota
Geology of the Hugo Pegmatite Keystone, South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-B Geology of the Hugo Pegmatite Keystone, South Dakota By J. J. NORTON, L. R. PAGE, and D. A. BROBST PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-P A detailed structural and petrologic study of a pegmatite containing seven zones and two replacement bodies UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract.. _ ________________________________________ 49 Mineral distribution and paragenesis of the entire Introduction. ______________________________________ 49 pegmatite_ _ ______________________-___---------_ 96 General geology. ___________________________________ 52 Comparison of the zonal sequence with that in other Metamorphic rocks_ ____________________________ 52 pegmatites. ______________________________________ 97 Roy and Monte Carlo pegmatites.- _ __---__-______ 53 Replacement features-______________________________ 100 Structure __________________________________________ 53 Review of the evidence for replacement in pegma Pegmatite units ____________________________________ 53 tites __ _____________________________________ 100 Zone 1 : Albite-quartz-musco vite pegmatite ________ 56 Replacement in the Hugo pegmatite.____-_____-_- 102 -
A Review of Water Fluoridation” October 1, 2010 November 7, 2014
Alberta Health, Office of the Chief Medical Officer of Health Notice to the reader on “A Review of Water Fluoridation” October 1, 2010 November 7, 2014 November 7, 2014 Notice to the reader Re: A Review of Water Fluoridation, October 1, 2010 report This report is a compilation of existing resources, materials and research that highlight key aspects of the water fluoridation debate. It was developed as a support to assist Medical Officers of Health in Alberta in dealing with queries on fluoridation. While not written for the public, this report is now widely available to help anyone interested to better understand the issue and to provide answers to questions about fluoridation. The reader must be aware that this report is not drafted as a scientific review article for publication although references are made to previous systematic reviews and their findings. It is also important to note that specific references for quoted material are given in the text at the time they are used. Office of the Chief Medical Officer of Health, Alberta Health © 2014 Government of Alberta PREPARED BY DR. STEVEN K. PATTERSON A Review of Water Fluoridation S UBMITTED: O CTOBER 1, 2010 A Review of Water Fluoridation Dr. Steven Patterson A Table of Contents Page Number Executive summary 3 Introduction/Background 6 Importance of oral health Scope of dental disease in Alberta/Canada 7 Dental disease in Alberta Dental disease in Canada Mechanism of fluoride’s action 12 Benefits of water fluoridation Dental fluorosis 17 Safety of water fluoridation Canadian Health Measure Survey 2007-2009 Fluorosis data from Alberta dental surveys Population vs. -
D3G DISPATCH News About Developmental Dental Defects (D3s), the D3 Group, and the Chalky Teeth Campaign
THE D3 GROUP ISSUE #13 MARCH 2020 D3G DISPATCH News about Developmental Dental Defects (D3s), The D3 Group, and the Chalky Teeth Campaign. COMMENT FROM THE CUSP: Going viral Commiserations to everyone disrupted by the pandemic crisis, and hallelujah to science and technology for providing humanity an unprecedentedly strong path to recovery. Just 3 weeks ago, a colleague praised D3G's recent progress as "going viral"– not knowing the next day we'd be in the midst of a COVID-19 scare that has consumed life down under since. With D3G now affected by the bad connotation of improvement") emerge, usually directed at authors "going viral", this first issue of 2020 relays a mixture of and/or reviewing. It seems appropriate that D3G use ups, downs and uncertainties – unfortunately the April CE it's clinico-scientific strengths to improve both ends event in Toronto has been postponed and the October of the system and that this will be a great topic for Symposium remains on track but uncertainly so. On the our upcoming symposium. bright side we share some wonderful examples of "D3 Take care, and do the world a favour by communicating love", provide further reasons to "think beyond MIH" the importance of science! and to communicate translationally, and dip a cautious toe into the murky waters of research publication quality. Unsurprisingly the latter is frequently discussed amongst D3-Mike | Mike Hubbard D3ers and diverse grumbles (aka "opportunities for D3G Founder-Director NEWS: Feel the D3 love :-) Given growing tensions with COVID-19, we're thrilled the first 3 months of 2020 delivered a wonderful triad of "feel the D3 love" moments that'll surely help us through this challenge and beyond. -
Soares, R. Et Al
Original Article DOI: 10.7860/JCDR/2017/23594.9758 Assessment of Enamel Remineralisation After Treatment with Four Different Dentistry Section Remineralising Agents: A Scanning Electron Microscopy (SEM) Study RENITA SOARES1, IDA DE NORONHA DE ATAIDE2, MARINA FERNANDES3, RAJAN LAMBOR4 ABSTRACT these groups were remineralised using the four remineralising Introduction: Decades of research has helped to increase our agents. The treated groups were subjected to pH cycling over a knowledge of dental caries and reduce its prevalence. However, period of 30 days. This was followed by assessment of surface according to World Oral Health report, dental caries still remains microhardness and SEM for qualitative evaluation of surface a major dental disease. Fluoride therapy has been utilised in changes. The results were analysed by One-Way Analysis Of a big way to halt caries progression, but has been met with Variance (ANOVA). Multiple comparisons between groups were limitations. This has paved the way for the development of performed by paired t-test and post-hoc Tukey test. newer preventive agents that can function as an adjunct to Results: The results of the study revealed that remineralisation of fluoride or independent of it. enamel was the highest in samples of Group E (Self assembling Aim: The purpose of the present study was to evaluate the ability peptide P11-4) followed by Group B (CPP-ACPF), Group C (BAG) of Casein Phosphopeptide-Amorphous Calcium Phosphate and Group D (fluoride enhanced HA gel). There was a significant Fluoride (CPP ACPF), Bioactive Glass (BAG), fluoride enhanced difference (p<0.05) in the remineralising ability between the self assembling peptide P -4 group and BAG and fluoride Hydroxyapatite (HA) gel and self-assembling peptide P11-4 to 11 remineralise artificial carious lesions in enamel in vitro using enhanced HA gel group. -
Fluoride Treatment in Osteoporosis Pauline Pitt and Hedley Berry King's College Hospital, Denmark Hill, London SE5 9RS, UK
Postgrad Med J: first published as 10.1136/pgmj.67.786.323 on 1 April 1991. Downloaded from Postgrad Med J (1991) 67, 323 - 326 i) The Fellowship of Postgraduate Medicine, 1991 Leading Article Fluoride treatment in osteoporosis Pauline Pitt and Hedley Berry King's College Hospital, Denmark Hill, London SE5 9RS, UK Introduction The use offluoride for the treatment ofestablished Fluoride in clinical practice vertebral osteoporosis in adults with the sympto- matic crush fracture syndrome is approved for use Fluoride is known to stimulate osteoblasts in in 8 European countries.' This treatment was culture." Its use has been associated with increase suggested by the low prevalence of osteoporosis in in alkaline phosphatase activity and it stimulates some areas where the drinking water contained both collagen synthesis and calcium deposition." moderately high concentrations of fluoride` and High concentrations may exert a toxic effect on by the enormously increased bone density charac- osteoblast function.'2 teristic of fluorosis.5 At least 4 studies have been carried out to assess There now exists a wealth of evidence and some the long-term effect offluoride treatment on spinal controversy regarding the use of fluoride, and this bone mass. Some ofthe results are conflicting. Two article addresses the main issues involved. prospective controlled trials have been carried out and recently reviewed in detail.' One in France used a daily dose of 50 mg for 2 years and the other copyright. Pharmacokinetics in the USA used a high-dose regimen of 60 -
Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review
materials Review Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review Kamil Pajor, Lukasz Pajchel and Joanna Kolmas * Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] Received: 29 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials. Keywords: hydroxyapatite; fluorapatite; dentistry; calcium phosphates 1. Introduction In recent decades, one has been able to observe huge progress in the field of dentistry. This results not only from the development of dental techniques and methods of therapy but also from significant developments in biomaterial engineering. The science of biomaterials is constantly increasing due to innovative modifications of already known materials or completely new biomaterials for applications in dentistry. Biodegradable polymers, bioactive ceramics, bioglass or metals covered with a layer of material facilitating osseointegration and, above all, composite materials are the main directions in the development of dental biomaterials [1–4]. -
Evaluation of a Fluorapatite-Spinel Ceramic As a Bone Implant Denginur Aksaci Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Evaluation of a fluorapatite-spinel ceramic as a bone implant Denginur Aksaci Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Materials Science and Engineering Commons Recommended Citation Aksaci, Denginur, "Evaluation of a fluorapatite-spinel ceramic as a bone implant " (1981). Retrospective Theses and Dissertations. 6961. https://lib.dr.iastate.edu/rtd/6961 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ubtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. -
Phosphorus-From Discovery to Commodity
Indian Journal of Chemical Technology Vol. 12, January 2005, pp. 108-122 Phosphorus-From discovery to commodity Jaime Wisniak* Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105 Phosphorus is nearly the most widely and evenly distributed element on the surface of the earth, and probably the most subdivided. From a laboratory curiosity in the seventeeth century, it became recognized as a fundamental element of life and a large chemical commodity, improving agriculture and industry like very few other discoveries by men have done. Discovery of phosphorus nor the phenomenon was really new. Organic Mankind has been aware of luminiscent phosphorescent materials were known to Aristotle, phenomena for thousands of years; they are and a lithophosphorus was the subject of a book mentioned in different mythology and in the Bible. published in 1640, based on a discovery made by a Glowworms and fireflies, and the luminescent shoemaker, Vicenzo Casciarol, on Mons Padernus, organisms in sea water or on decaying fish and wood near Bologna in 16303. Casciarol claimed that the were long familiar sights and attracted the curiosity of stone was so heavy that he thought it contained a men. The Greeks called the planet Venus by the name heavy metal and that after it had been calcined in Phosphorus (morning star, from the Greek φϖζ = charcoal fire and cooled, it glowed in the darkness light + φερω = to bear), because it was visible before with a reddish light. The stone was called sunrise and after sundown. Venus took the name litheosphorus and also Bologna stone or lapis phosphorus in the morning and Hesperus in the bononiensis. -
Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle
MA06CH12-Karl ARI 5 November 2013 15:33 Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle David M. Karl Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822; email: [email protected] Annu. Rev. Mar. Sci. 2014. 6:279–337 Keywords The Annual Review of Marine Science is online at biogeochemistry, subtropical gyre, nutrients, primary production marine.annualreviews.org This article’s doi: Abstract 10.1146/annurev-marine-010213-135046 Phosphorus (P) is a required element for life. Its various chemical forms by University of Hawaii at Manoa Library on 01/06/14. For personal use only. Copyright c 2014 by Annual Reviews. are found throughout the lithosphere and hydrosphere, where they are Annu. Rev. Marine. Sci. 2014.6:279-337. Downloaded from www.annualreviews.org All rights reserved acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle. 279 MA06CH12-Karl ARI 5 November 2013 15:33 1. -
Roscherite-Group Minerals from Brazil
■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite. -
Fluoride Varnish and Silver Diamine Fluoride a Resource Guide
Fluoride Varnish and Silver Diamine Fluoride A Resource Guide Prepared by Ruth Barzel, M.A. Katrina Holt, M.P.H., M.S., R.D., FAND Cite as Barzel R, Holt K, eds. 2020. Fluoride Varnish Permission is given to photocopy this publication and Silver Diamine Fluoride: A Resource Guide. or to forward it, in its entirety, to others. Requests Washington, DC: National Maternal and Child Oral for permission to use all or part of the information Health Resource Center. contained in this publication in other ways should be sent to the address below. Fluoride Varnish and Silver Diamine Fluoride: A Resource Guide © 2020 by National Maternal and National Maternal and Child Oral Health Child Oral Health Resource Center, Georgetown Resource Center University Georgetown University Box 571272 This publication was supported by the Health Washington, DC 20057-1272 Resources and Services Administration (HRSA) of (202) 784-9771 the U.S. Department of Health and Human Services E-mail: [email protected] (HHS) as part of an award totaling $1,000,000 with Web site: www.mchoralhealth.org no funding from nongovernmental sources. This information or content and conclusions are those of the author and should not be construed as the official policy of HRSA, HHS, or the U.S. govern- ment, nor should any endorsements be inferred. Contents Introduction ............................... 3 Acknowledgments .......................... 4 Materials .................................. 5 Data and Surveillance ..................... 6 Professional Education and Training ........6 Public Education ......................13 Organizations ............................. 15 Introduction The National Maternal and Child Oral Health SDF is safe for children and adults. The Resource Center (OHRC) developed this pub- cost of SDF treatment is lower than the cost of lication, Fluoride Varnish and Silver Diamine conventional dental caries treatment.