SCOPE NEWSLETTER Is Produced by CEEP, a Sector Group of Cefic, and Circulated Electronically Free of Charge to Unsubscribe: CEEP Av
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure Alex Y. Lin University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Chemical Engineering Commons, Environmental Engineering Commons, and the Environmental Sciences Commons Scholar Commons Citation Lin, Alex Y., "Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4359 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Precipitation of Phosphate Minerals from Effluent of Anaerobically Digested Swine Manure by Alex Yuan-li Lin A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Civil and Environmental Engineering College of Engineering University of South Florida Co-Major Professor: Sarina Ergas, Ph.D. Co-Major Professor: Jeffrey Cunningham, Ph.D. Maya Trotz, Ph.D. Date of Approval: November 9, 2012 Keywords: struvite, wastewater, confined animal feeding operation (CAFO), fertilizer, synthetic Copyright © 2012, Alex Yuan-li Lin DEDICATION I dedicate this thesis to all those that have supported me along the way whether directly or indirectly. I would like to thank members of Intervarsity on the USF campus, members of Community Life Church, and my family for their support and encouragement in many ways. -
DESCRIPTIVE HUMAN PATHOLOGICAL MINERALOGY 1179 but Still Occursregularly
Amerkan Mincraloght, Volume 59, pages I177-1182, 1974 DescriptiveHuman Pathological Mineralogy Rrcneno I. Gmsox P.O. Box I O79, Dauis,C alilornia 95 6 I 6 Absfract Crystallographic, petrographic, and X-ray powder difiraction analysis of approximately 15,000 samples showed that the most common mineral constituents of human pathological concretions are calcium oxalates (whewellite and weddellite), calcium phosphates (apatite, brushite, and whitlockite), and magnesium phosphates (struvite and newberyite). Less are monetite, hannayite, calcite, aragonite, vaterite, halite, gypsum, and hexahydrite."o-rnon of the variables determining which minerals precipitate, the effects of different pH values on deposi- tional conditions are most apparent, and are shown by occurrences and relationships among many of the minerals studied. A pH-sensitive series has been identified among magnesium phosphatesin concretions. Introduction The study was carried out over a period of three The importanceof mineralogyin the field of medi- years.Composition was confirmedby X-ray powder cine lies in the applicationof mineralogicalmethods diffraction and polarizing microscopy;sequence was to study pathologicalmineral depositsin the human arrived at from considerationsof microscopic tex- body. Urology benefitsgreatly becauseconcretions tural and crystallographicrelationships. More than of mineral matter (calculi) are common in the 14,500samples were derivedfrom the urinary sys- urinary system.The value of mineralogicalanalysis tem of kidneys,ureters, bladder, and urethra; the of urinary material was first describedby prien and remaining samples are not statistically significant Frondel (1947). Mineralogistsmay be unawareof and arediscussed only briefly. the variability and nature of such compounds be- Calcium cause reports are usually published in medical Oxalates journals. This investigationreports the mineralogy Whewellite, CaCzOE.H2O,and weddellite, CaCz- and possiblepathological significanceof these min- O4'2H2O,are very uncommonin the mineralworld. -
1 Raman Spectroscopy of Newberyite, Hannayite and Struvite. Ray L. Frost
Raman spectroscopy of newberyite, hannayite and struvite. Ray L. Frost• a, Matt L. Weier a, Wayde N. Martens, a Dermot A. Henry b, and Stuart J. Mills b,c a Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. b Geosciences, Museum Victoria, PO Box 666E, Melbourne, Victoria 3001, Australia. c CSIRO Minerals, Box 312, Clayton South, Victoria 3169, Australia. This is the authors’ version of a paper that was later published as: Frost, Ray, Weier, Matt , Martens, Wayde, Henry, Dermot & Mills, Stuart (2005) Raman spectroscopy of newberyite, hannayite and struvite. Spectrochimica Acta 62(1):pp. 181-188. Copyright 2005 Elsevier Abstract The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are -1 characterised by an intense band at around 980 cm assigned to the ν1 symmetric stretching vibration of the HPO4 units. In contrast the symmetric stretching mode is -1 observed at 942 cm for struvite. The Raman spectra are characterised by multiple ν3 antisymmetric stretching bands and ν2 and ν4 bending modes indicating strong distortion of the HPO4 and PO4 units. Hannayite and newberyite are defined by bands -1 at 3382 and 3350 cm attributed to HOPO3 vibrations and hannayite and struvite by + bands at 2990, 2973 and 2874 assigned to NH4 bands. Raman spectroscopy has proven most useful for the analysis of these ‘cave’ minerals where complex paragenetic relationships exist between the minerals. Keywords: hannayite, newberryite, struvite, phosphate, Raman spectroscopy Introduction Interest in struvite formation also comes from the formation in urinary tracts and kidneys [1-6]. -
Bladder Stones in Dogs & Cats By: Dr
Navarro Small Animal Clinic 5009 Country Club Dr. Victoria, TX 77904 361-573-2491 www.navarrosmallanimalclinic.com Bladder Stones in Dogs & Cats By: Dr. Shana Bohac Dogs, like people, can develop a variety of bladder stones. These stones are rock-like structures that are formed by minerals. Some stones form in alkaline urine, whereas others form when the urine is more acidic. Bladder stones are very common in dogs, particularly small breed dogs. The most common signs that a dog or cat has bladder stones include blood in the urine, and straining to urinate. Blood is seen due to the stones bouncing around and hitting the bladder wall. This can irritate and damage the tissue and can cause cystitis (inflammation of the bladder). Straining to urinate occurs because of the inflammation and irritation of the bladder walls or urethra or muscle spasms. The stone itself can actually obstruct the flow of urine if it blocks the urethra. Small stones can get stuck in the urethra and cause a complete obstruction. This can be life threatening if the obstruction is not relieved since the bladder can rupture as more urine is produced with nowhere to go. Bladder stones form because of changes in the urine pH. Normal dog urine is slightly acidic and contains waste products such as dissolved minerals and enzymes such as urease. Urease breaks down excess ammonia in urine. An overload of ammonia in urine can cause bladder inflammation and thickening known as cystitis. There are a variety of stones that can form in the bladder, some that form in acidic urine, while others form in alkaline urine. -
Current Insights Into the Mechanisms and Management of Infection Stones
Current insights into the mechanisms and management of infection stones Authors: Erika J. Espinosa-Ortiz, Brian H. Eisner, Dirk Lange, and Robin Gerlach The final publication is available at Springer via https://dx.doi.org/10.1038/s41585-018-0120-z. Espinosa-Ortiz, Erika J., Brian H. Eisner, Dirk Lange, and Robin Gerlach, “Current insights into the mechanisms and management of infection stones,” Nature Reviews Urology, November 2018, 16: 35-53. doi: 10.1038/s41585-018-0120-z. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Current insights into the mechanisms and management of infection stones Erika J. Espinosa-Ortiz1,2, Brian H. Eisner3, Dirk Lange4* and Robin Gerlach 1,2* Abstract | Infection stones are complex aggregates of crystals amalgamated in an organic matrix that are strictly associated with urinary tract infections. The management of patients who form infection stones is challenging owing to the complexity of the calculi and high recurrence rates. The formation of infection stones is a multifactorial process that can be driven by urine chemistry , the urine microenvironment, the presence of modulator substances in urine, associations with bacteria, and the development of biofilms. Despite decades of investigation, the mechanisms of infection stone formation are still poorly understood. A mechanistic understanding of the formation and growth of infection stones — including the role of organics in the stone matrix, microorganisms, and biofilms in stone formation and their effect on stone characteristics — and the medical implications of these insights might be crucial for the development of improved treatments. Tools and approaches used in various disciplines (for example, engineering, chemistry , mineralogy , and microbiology) can be applied to further understand the microorganism–mineral interactions that lead to infection stone formation. -
Program and Abstracts
The Atlantic Geoscience Society (AGS) La Société Géoscientifique de l’Atlantique 45th Colloquium and Annual Meeting Special Sessions: • Special Session: In Memory of Dr. Trevor MacHattie (1974 - 2018) • Paleontology and Sedimentology in Atlantic Canada: In Memory of Dr. Ron Pickerill (1947 – 2018) • Current Research in Carboniferous Geology in the Atlantic Provinces • Minerals, metals, melts, and fluids associated with granitoid rocks: new insights from fundamental studies into the genesis, melt fertility, and ore-forming processes • Earth Science Outreach in the Maritime Provinces • Geohazards: Recent and Historical General Sessions: Current Research in the Atlantic Provinces February 7-9, 2019 Fredericton Inn, Fredericton, New Brunswick PROGRAM WITH ABSTRACTS We gratefully acknowledge sponsorship from the following companies and organizations: Department of Energy and Resource Development Geological Surveys Branch Department of Energy and Mines Department of Energy and Mines Geological Surveys Division Petroleum Resources Division Welcome to the 45th Colloquium and Annual Meeting of the Atlantic Geoscience Society in Fredericton, New Brunswick. This is a familiar place for AGS, having been a host several times over the years. We hope you will find something to interest you and generate discussion with old friends and new. AGS members are clearly pushing the boundaries of geoscience in all its branches! Be sure to take in the science on the posters and the displays from sponsors, and don’t miss the after-banquet jam and open mike on Saturday night. For social media types, please consider sharing updates on Facebook and Twitter (details in the program). We hope you will be able to use the weekend to renew old acquaintances, make new ones, and further the aims of your Atlantic Geoscience Society. -
Struvite Urolithiasis in Dogs
Glendale Animal Hospital 623-934-7243 www.familyvet.com Struvite Urolithiasis in Dogs (Struvite Stones in the Urinary Tract of Dogs) Basics OVERVIEW • ”Urolithiasis” is the medical term for the presence of stones (known as “uroliths”) in the urinary tract • The most common minerals found in the stones (uroliths) are used to name the particular stone; in this type of stone, struvite makes up the composition of the stone, and thus the name “struvite urolithiasis”; struvite is magnesium ammonium phosphate • The urinary tract consists of the kidneys, the ureters (the tubes running from the kidneys to the bladder), the urinary bladder (that collects urine and stores it until the pet urinates), and the urethra (the tube from the bladder to the outside, through which urine flows out of the body) • Struvite urolithiasis is the formation of crystalline stones (uroliths) composed of magnesium ammonium phosphate, or struvite, in the urinary tract GENETICS • The high incidence of struvite stones (uroliths) in some breeds of dogs (such as the miniature schnauzer) suggests a familial (runs in certain families or lines of animals) tendency; it is hypothesized that susceptible miniature schnauzers inherit some abnormality of local host defenses of the urinary tract that increases their likelihood to develop urinary tract infection (UTI) • Sterile struvite uroliths were found in a family of English cocker spaniels SIGNALMENT/DESCRIPTION OF PET Species • Dogs Breed Predilections • Miniature schnauzer, shih tzu, bichon frise, miniature poodle, cocker spaniel, -
Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review
materials Review Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review Kamil Pajor, Lukasz Pajchel and Joanna Kolmas * Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] Received: 29 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials. Keywords: hydroxyapatite; fluorapatite; dentistry; calcium phosphates 1. Introduction In recent decades, one has been able to observe huge progress in the field of dentistry. This results not only from the development of dental techniques and methods of therapy but also from significant developments in biomaterial engineering. The science of biomaterials is constantly increasing due to innovative modifications of already known materials or completely new biomaterials for applications in dentistry. Biodegradable polymers, bioactive ceramics, bioglass or metals covered with a layer of material facilitating osseointegration and, above all, composite materials are the main directions in the development of dental biomaterials [1–4]. -
Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective
The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective Gd Pr Ce Sm La Nd Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey Cover photo: Powders of six rare earth elements oxides. Photograph by Peggy Greb, Agricultural Research Center of United States Department of Agriculture. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective By Keith R. Long, Bradley S. Van Gosen, Nora K. Foley, and Daniel Cordier Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This report has not been reviewed for stratigraphic nomenclature. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Long, K.R., Van Gosen, B.S., Foley, N.K., and Cordier, Daniel, 2010, The principal rare earth elements deposits of the United States—A summary of domestic deposits and a global perspective: U.S. -
Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W
Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou To cite this version: W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse. Waste and Biomass Valorization, Springer, 2012, 3 (1), pp.75-79. 10.1007/s12649-011-9096-0. hal-01632408 HAL Id: hal-01632408 https://hal.archives-ouvertes.fr/hal-01632408 Submitted on 16 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi • P. Sharrock • M. O. Mecherri • M. Fiallo • A. Nzihou Abstract When dissolved calcium salts are reacted in abatement and introduced calcium concentration, indicat- aqueous medium in the presence of phosphate anions, a ing the feasibility of the process. gelatinous precipitate forms. Maturation of this precipitate eventually leads to the formation of hydroxyapatites (HA). Keywords Dye removal Hydroxyapatite Adsorbent HA is a stable solid with high specific surface area, and regeneration EliminationÁ rate Á Á interesting adsorption properties. -
Preparation and Solubility of Hydroxyapatite
JOURNAL O F RESEARC H of the National Bureau of Standards - A. Ph ys ics a nd Chemistry Vol. 72A, No. 6, N ovember- December 1968 Preparation and Solubility of Hydroxyapatite E. C. Moreno,* T. M. Gregory,* and W. E. Brown* Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (August 2, 1968) Two portions of a syntheti c hydroxyapatite (HA), Ca" OH(PO'}J, full y characterized by x-ray, infrared, petrographi c, and chemi cal anal yses, were heated at 1,000 °C in air and steam atmospheres, respectively. Solubility isotherms for these two samples in the syste m Ca(OH}2 -H3PO,-H20 were determined in the pH range 5 to 7 by equilibrating the solids with dilute H3 PO. solutions. Both sam ples of HA disso lved stoichiometrically. The activity products (Ca + +)'( OH - ) (pO~f' and their standard errors-obtained by a least squares adjustment of the measurements (Ca and P concentrations and pH of the saturated solutions) subject to the conditions of electroneutralit y, constancy of the activity product, and stoichiometric dissolution - were 3.73 ± 0.5 x 10- 58 for the steam-h eated HA and 2_5, ± 0.4 x 10- 55 for the air-heated HA. Allowance was made in the calculations for the presence of the ion pairs [CaHPO. lo and [CaH2P04 1+ The hi gher solubility product for the air-heated HA is as cribed either to a change in the heat of formation brought about by partial dehydration or to a state of fine subdivision resulting from a disproportionation reacti on_ The solubility product constant s were used to cal culate the points of intersection (i.e_, sin gular points) of the two HA solubility isot herms with the isotherms of CaHPO. -
Geology of Barium, Strontium, and Fluorine Deposits in Canada
ECONOMIC GEOLOGY REPORT 34 GEOLOGY OF BARIUM, STRONTIUM, AND FLUORINE DEPOSITS IN CANADA K.R. DAWSON 1985 © Minister of Supply and Services Canada 1985 Available in Canada through authorized bookstore agents and other bookstores or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada KlA OS9 and from Geological Survey of Canada offices: 60 l Booth Street Ottawa, Canada KlA OE8 3303-33rd Street N. W., Calgary, Alberta T2L 2A7 100 West Pender Street Vancouver, British Columbia V6B 1R8 (mainly B.C. and Yukon) A deposit copy of this publication is also available for reference in public libraries across Canada Cat. No. M43-34/1985E Canada: $13.00 ISBN 0-660-11902-1 Other countries: $15.60 Price subject to change without notice Critical Readers R.I. Thorpe K.M. Dawson G.F. Leech D.C . Findlay Original manuscript submitted: 1981 - 07 Approved for publication: 1983 - 04 Preface Preface Barium, strontium and fluorine have many industrial Le baryum, le strontium et le fluor connaissent de applications. All have been produced in Canada during this nombreuses utilisations industrielles. Le Canada en a produit century but at present our needs for strontium chemicals, tout au long du siecle m2is ii doit actuellement en importer, crude fluorite and fluorine chemicals are met by imports, principalement du Mexique et des Etats-Unis, pour subvenir a mainly from Mexico and the United States. ses besoins de derives chimiques de strontium et de fluorine , ainsi que de fluor brut. Barite is primarily employed in the heavy drilling muds La barytine est surtout utilisee par l'industrie used in the petroleum exploration industry.