Preparation and Solubility of Hydroxyapatite

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Solubility of Hydroxyapatite JOURNAL O F RESEARC H of the National Bureau of Standards - A. Ph ys ics a nd Chemistry Vol. 72A, No. 6, N ovember- December 1968 Preparation and Solubility of Hydroxyapatite E. C. Moreno,* T. M. Gregory,* and W. E. Brown* Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (August 2, 1968) Two portions of a syntheti c hydroxyapatite (HA), Ca" OH(PO'}J, full y characterized by x-ray, infrared, petrographi c, and chemi cal anal yses, were heated at 1,000 °C in air and steam atmospheres, respectively. Solubility isotherms for these two samples in the syste m Ca(OH}2 -H3PO,-H20 were determined in the pH range 5 to 7 by equilibrating the solids with dilute H3 PO. solutions. Both sam­ ples of HA disso lved stoichiometrically. The activity products (Ca + +)'( OH - ) (pO~f' and their standard errors-obtained by a least squares adjustment of the measurements (Ca and P concentrations and pH of the saturated solutions) subject to the conditions of electroneutralit y, constancy of the activity product, and stoichiometric dissolution - were 3.73 ± 0.5 x 10- 58 for the steam-h eated HA and 2_5, ± 0.4 x 10- 55 for the air-heated HA. Allowance was made in the calculations for the presence of the ion pairs [CaHPO. lo and [CaH2P04 1+ The hi gher solubility product for the air-heated HA is as­ cribed either to a change in the heat of formation brought about by partial dehydration or to a state of fine subdivision resulting from a disproportionation reacti on_ The solubility product constant s were used to cal culate the points of intersection (i.e_, sin gular points) of the two HA solubility isot herms with the isotherms of CaHPO. ·2H20 and CaHPO.; it was found that the pH's of the sin gul ar points for the air-heated HA were a full unit hi gher than those of the steam-heated preparation_ Conditions are described for the precipitation of HA crystals suitabl e for solubility measuremen ts_ Key Words: Apatite; hydroxyapatite; calcium phosphates; solubili ty; olubility isotherms; solubility product. 1. Introduction based on the stoi chi ometry of the salt. Among the models th at have been advanced to explain the Hydroxyapatite (HA), CasOH(P0 4 h, has wide apparent anomalous behavior of HA in aqueous solu­ biological and industrial importance. Its physico­ tions, those advocating formation of complexes on the chemical properties, in particular solubility and de­ surface of the solid [5 , 8J have received considerable tailed crystallographic structure, are directly related attention. These models implicitly assume that to the mineralization processes in biological systems. equilibrium between the solid and the liquid phases The various reports in the literature on solubility of is not achieved with the crystalline portion of the HA, HA are contradictory. Clark [l J, Ion the basis of but instead with surface layers having quite different precipitation and dissolution experiments, concluded chemical composition from that of the bulk of the that HA has a definite solubility product. Thermody­ solid. Furthermore, the compositi on of such layers namic functions for HA (from whi ch a solubility prod­ has been assumed to be co nstant over a wid e range of uct constant can be calculated) have also been reported calcium, phos phorus, and hydrogen concentrations [2 , 3, 4]. Other reports [5- 8], however, claim that in th e liquid phase. systems saturated with respect to HA do not con­ At least part 01 th e proble m in the interpretation form to the principle of a solubility product constant of data on solubility of HA is related to the difficulty in preparing pure samples of this compound. So *Research Associates from the A me ri can Dent al Associati on of the Nati onal Bu rea u far, the best crystals have been obtained by hydro­ of Stand ards, Washington, D.C. 20234. This investi gat ion was support ed in part by Research Grant s DE- OJ8J9 and DE-02659 thermal methods, but the yields are smail, the equip­ to th e Ameri can Dental Associati on fr om th e National In stitute of Dental Research and is part of th e de nt al research program condu cted by the Nati onal Bureau of Stand ards, in ment is relatively expensive and the product may cooperation with th e Council on De ntal Research of th e Am erican De nt al Associati on­ contain extraneous phases such as ,B-calcium pyro­ th e National Instit ute of Dent al Researc h; th e Arr..y De ntal Corps; th e Aerospace Medicai Division, USAF School of Aerospace Medi cin e; and the Veterans Administration. phosphate and/or ,B-tricalcium phosphate. Direct I Figures in brackets ind icate th e literature references at th e end of thi s pape r. precipitation methods usually yield very fin ely divided 773 products, often without the stoichiometric composition the reaction vessel for petrographic examination of of HA. A particularly serious difficulty is contamination the solid and pH determination of the liquid. by precipitation of the more acid calcium phos­ Initially, 9 1 of N ammonium acetate solution were phates, among which octacalcium phosphate (OCP), boiled in the reaction vessel for about 12 hr to remove CaSH 2(P04}6 • 5H20 and its decomposition products CO2 ; then ammonia gas was passed in until the pH are the most difficult to eliminate. reached a value between 8.5 and 9, and the pumping T he purposes of thi s work were (a) to devise a sim­ of the phosphate and calcium solutions was started, ple method for preparation of HA that would yield maintaining vigorous boiling. The pH was maintained sufficiently large and pure crystals so that an un­ between 8.5 and 9.5 (measured at room temperature) ambigious characterization would be possible, (b) by an adequate flow of NH3 until the total volume of I to learn whether this compound behaves as a normal the solutions was pumped into the reaction vessel; chemical compound with unique thermodynamic then the flow of NH3 was discontinued but boiling properties when equilibrated with aqueous solutions, was continued for about 3 hr. The solid was allowed and (c) to establish its solubility isotherm and solu­ to settle, the supernatant liquid was withdrawn, bility product constant at 25°C. about 9 1 of boiled distilled water were introduced and the mixture was boiled for about 2 hr. This 2. Experimental Methods and washing operation was repeated as was deemed nec­ Procedures essary to remove the soluble salts (usually five times). Further washing was done by decantation, using boiled distilled water and short settling periods so In the method of preparation outlined here, the as to discard as much as possible the finest fraction possibility of OCP precipitation is minimized by the of the precipitate. Precautions to avoid contami­ use of relatively high temperature and pH. However, nation by atmospheric CO2 were taken during all pH values higher than 10 are avoided because they these operations. The suspension was then filtered seem to favor the formation of very finely divided and the solid was dried at 150 °C for 48 hr. As ex­ precipitates. Other conditions are (a) slow addition plained in section 3, a portion of this sample was of reagents to reduce continuous nucleation, (b) heated at 1,000 °C in air and another portion was heated high ionic strength and the presence of acetate ions at the same temperature in steam at one atmosphere. (a Ca complexing agent) to increase the solubility of HA, and thus to favor formation of larger crystals, (c) use of a large reaction vessel to perform the pre­ 2.2. Equilibrations cipitation without sacrificing yields, and (d) special Equilibrations were made in glass-stoppered bot­ precautions to avoid contamination with carbonate tles, each of which contained 5g of HA and 120 ml from the atmosphere or reagents (ammonia was used of a phosphoric acid solution, by slowly rotating end­ to control the pH instead of NaOH or KOH because over-end in a water bath at 25 ± 0.1 0C. After two the alkali hydroxides are difficult to obtain free of weeks, the suspension was transferred to a thermo­ carbonate contamination). stated saturator, described in an earlier publication [9], in which the pH of the clear filtered solution was 2.1. Prepara tion of HA measured. Samples of this solution were taken for calcium and phosphorous analyses. Standardization Freshly boiled distilled water and chemically of the pH-meter (with claimed relative accuracy pure salts were used to prepare 2.5 liter of 7.25 X 10- 2 of ± 0.0037 pH units) was made with certified NBS M (NH4}zHP04 solution and 2.5 liter of 13.33 X 10- 2 M buffer standards [10]. Ca(N0 ·4H20 solution; their pH's were adjusted 3h Phosphoric acid solutions used in the equilibra­ with ammonia gas to 8.5-9. These solutions were tions were prepared from doubly crystallized stored in borosilicate glass bottles vented through 2~P04 . H2 0 and freshly boiled conductance water. ascarite tubes. The molarities of the final solutions were determined The reaction vessel was a 22-1, 3-neck, borosili­ by chemical analyses. cate glass flask. A 4-ft condenser was attached to one neck; transfer of reagents and materials was done through the other two necks. The top of the condenser 2.3. Calcium and Phosphorus Determinations was connected by a glass tube to a 6-1, 3-neck flask containing 3 liters of 10 N NaOH solution; a check Calcium was determined colorimetrically by the valve permitting outward flow of gases was con­ indirect technique described by Banerjee et al.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • MINERALIZATION in the GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H
    MINERALIZATION IN THE GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H. M. EI-Shatoury and J. A. Whelan UTAH GEOLOGICAL AND MINERALOGIC~4L SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah~ Salt Lake City~ Utah Bulletin 83 Price $2.25 March 1970 CONTENTS Page ABSTRACT. • • . • . • . • . • • . • . • . • • • . • • . • . • .. 5 INTRODUCTION 5 GENERAL GEOLOGY. .. 7 ECONOMIC GEOLOGY. 7 Contact Metasomatic Deposits. 11 Veins. • . 11 Quartz-Carbonate-Adularia Veins 11 Quartz Veins . 15 Calcite Veins. 15 Replacement Deposits . 15 Replacement Deposits in the Ochre Mountain Limestone 15 Replacement Deposits in the Quartz Monzonite 17 HYDROTHERMAL ALTERATION. 17 Alteration of Quartz Monzonite. • 17 Alteration of Limestones. 22 Alteration of the Manning Canyon Formation 23 Alteration of the Quartzite. 23 Alteration of Volcanic Rocks. 23 Alteration of Dike Rocks. 23 Alteration of Quartz-Carbonate Veins . 23 OXIDATION OF ORES. 23 Oxidation of the Copper-Lead-Arsenic-Zinc Replacement Deposits 24 Oxidation of Tungsten and Molybdenum Deposits. 24 Oxidation of the Lead-Zinc Deposits 25 MINERALOGY. 25 CONTROLS OF MINERAL LOCALIZATION 25 ZONAL ARRANGEMENT OF ORE DEPOSITS. 25 GENESIS OF ORE DEPOSITS. 29 DESCRIPTION OF PROPERTIES. 29 The Alvarado Mine. 29 The Cane Spring Mine 30 The Bonnemort Mine 32 The Rube Gold Mine . 32 The Frankie Mine 32 The Yellow Hammer Mine 33 The Rube Lead Mine . 34 FUTURE OF THE DISTRICT AND RECOMMENDATIONS. .. 34 ACKNOWLEDGMENTS. .. 36 REFERENCES. • . .. 36 2 ILLUSTRATIONS Page Frontis piece Figure I. Index map showing location and accessibility to the Gold Hill mining district, Utah . 4 2. Geologic map of Rodenhouse Wash area, showing occurrence of berylliferous quartz-carbonate-adularia veins and sample locations.
    [Show full text]
  • Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review
    materials Review Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review Kamil Pajor, Lukasz Pajchel and Joanna Kolmas * Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] Received: 29 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials. Keywords: hydroxyapatite; fluorapatite; dentistry; calcium phosphates 1. Introduction In recent decades, one has been able to observe huge progress in the field of dentistry. This results not only from the development of dental techniques and methods of therapy but also from significant developments in biomaterial engineering. The science of biomaterials is constantly increasing due to innovative modifications of already known materials or completely new biomaterials for applications in dentistry. Biodegradable polymers, bioactive ceramics, bioglass or metals covered with a layer of material facilitating osseointegration and, above all, composite materials are the main directions in the development of dental biomaterials [1–4].
    [Show full text]
  • ADA Fluoridation Facts 2018
    Fluoridation Facts Dedication This 2018 edition of Fluoridation Facts is dedicated to Dr. Ernest Newbrun, respected researcher, esteemed educator, inspiring mentor and tireless advocate for community water fluoridation. About Fluoridation Facts Fluoridation Facts contains answers to frequently asked questions regarding community water fluoridation. A number of these questions are responses to myths and misconceptions advanced by a small faction opposed to water fluoridation. The answers to the questions that appear in Fluoridation Facts are based on generally accepted, peer-reviewed, scientific evidence. They are offered to assist policy makers and the general public in making informed decisions. The answers are supported by over 400 credible scientific articles, as referenced within the document. It is hoped that decision makers will make sound choices based on this body of generally accepted, peer-reviewed science. Acknowledgments This publication was developed by the National Fluoridation Advisory Committee (NFAC) of the American Dental Association (ADA) Council on Advocacy for Access and Prevention (CAAP). NFAC members participating in the development of the publication included Valerie Peckosh, DMD, chair; Robert Crawford, DDS; Jay Kumar, DDS, MPH; Steven Levy, DDS, MPH; E. Angeles Martinez Mier, DDS, MSD, PhD; Howard Pollick, BDS, MPH; Brittany Seymour, DDS, MPH and Leon Stanislav, DDS. Principal CAAP staff contributions to this edition of Fluoridation Facts were made by: Jane S. McGinley, RDH, MBA, Manager, Fluoridation and Preventive Health Activities; Sharon (Sharee) R. Clough, RDH, MS Ed Manager, Preventive Health Activities and Carlos Jones, Coordinator, Action for Dental Health. Other significant staff contributors included Paul O’Connor, Senior Legislative Liaison, Department of State Government Affairs.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W
    Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou To cite this version: W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse. Waste and Biomass Valorization, Springer, 2012, 3 (1), pp.75-79. 10.1007/s12649-011-9096-0. hal-01632408 HAL Id: hal-01632408 https://hal.archives-ouvertes.fr/hal-01632408 Submitted on 16 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi • P. Sharrock • M. O. Mecherri • M. Fiallo • A. Nzihou Abstract When dissolved calcium salts are reacted in abatement and introduced calcium concentration, indicat- aqueous medium in the presence of phosphate anions, a ing the feasibility of the process. gelatinous precipitate forms. Maturation of this precipitate eventually leads to the formation of hydroxyapatites (HA). Keywords Dye removal Hydroxyapatite Adsorbent HA is a stable solid with high specific surface area, and regeneration EliminationÁ rate Á Á interesting adsorption properties.
    [Show full text]
  • Synthesis, Characterization and Process Optimization of Bone Whitlockite
    nanomaterials Article Synthesis, Characterization and Process Optimization of Bone Whitlockite Sadaf Batool 1, Usman Liaqat 1 , Zakir Hussain 1,* and Manzar Sohail 2 1 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; [email protected] (S.B.); [email protected] (U.L.) 2 Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; [email protected] * Correspondence: [email protected]; Tel./Fax: +0092-51-9085-5200 Received: 26 July 2020; Accepted: 20 August 2020; Published: 17 September 2020 Abstract: Whitlockite, being the second most abundant bio-mineral in living bone, finds huge applications in tissue regeneration and implants and its synthesis into its pure form has remained a challenge. Although precipitation of whitlockite phase has been reported recently in many publications, effects of various parameters to control such phase as well as conditions for the bulk preparation of this extremely important bio-mineral have not been investigated so far. In this work, we report the precipitation of pure whitlockite phase using common precursors. As reported in the literature, whitlockite is stable in a narrow pH range, therefore; optimization of pH for the stabilization of whitlockite phase has been investigated. Additionally, in order to narrow down the optimum conditions for the whitlockite precipitation, effect of temperature and heating conditions has also been studied. The obtained solids were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Geology and Mineralogy This Document Consists of 90 Pages Series A
    Geology and Mineralogy This document consists of 90 pages Series A UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SELECTED ANNOTATED BIBLIOGRAPHY OF THE GEOLOGY OF URANIFEKUUS PHOSPHORITES IN THE UNITED STATES* By Diane Curtis September 1955 Trace Elements Investigations Report 532 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation. #This report concerns work done on behalf of the Division of Raw Materials of the U. S. Atomic Energy Commission, USGS - TEI-532 GEOLOGY AND MINERALOGY Distribution (Series A) No. of copies Argonne National Laboratory^ .............«..o. 1 Atomic Energy Commission,, Washington .............. 2 Battelle Memorial Institute, Columbus. ............. 1 Carbide and Carbon Chemicals Company, Y-0.2 Area. ........ 1 Division of Raw Materials, Albuquerque ............. 1 Division of Raw Materials, Butte „ . , . o . » . » « 1 Division of Raw Materials, Casper. .............•<> 1 Division of Raw Materials, Denver, ............... 1 Division of Raw Materials, Hot Springs ............. 1 Division of Raw Materials, Ishpeming .............. 1 Division of Raw Materials, Phoenix ............•*. 1 Division of Raw Materials, Plant City. ............. 1 Division of Raw Materials, St. George, ............. 1 Division of Raw Materials, Salt Lake City. ........... 1 Division of Raw Materials, Washington. ............. 3 Dow Chemical Company, Pittsburg. ................ 1 Exploration Division,
    [Show full text]
  • Walsh University the Remineralization Potential of Nano
    Walsh University The Remineralization Potential of Nano-Hydroxyapatite in Hydrogen Peroxide Whitening Mouthwash A Thesis by Morgan McDermott Mathematics and Sciences Submitted in partial fulfillment of the requirements for a Bachelor of Science Degree with University Honors April, 2016 Accepted by the Honors Program ______________________________________________ Peter Tandler, Ph.D. Thesis Advisor Date ______________________________________________ Tom Freeland, Ph.D. Thesis Reader Date ______________________________________________ Ty Hawkins, Ph.D. Honors Director Date Abstract The purpose of this experiment was to analyze the demineralizing effects of Colgate Optic White mouthwash on hydroxyapatite tooth enamel. Nano-hydroxyapatite particles were used to make 10% solutions with RO water, artificial saliva, 2% hydrogen peroxide, and Colgate Optic White mouthwash. Small samples from these solutions were centrifuged to create an artificial tooth that was examined for demineralization upon being treated RO water, artificial saliva, 2% hydrogen peroxide, or Colgate Optic White mouthwash. Demineralization of the samples was measured by UV-Vis spectroscopy and calcium concentration was measured to compare demineralization among the four different solutions. Calcium standards and validation samples were prepared to make a calibration curve at a wavelength of 652 nm. The results of this experiment showed that calcium concentration was determined to be greatest in samples treated with Colgate Optic White mouthwash and least in samples treated with artificial saliva. RO water and 2% hydrogen peroxide both showed calcium concentrations greater than artificial saliva, but less than Colgate Optic White mouthwash. Colgate Optic White mouthwash significantly demineralizes more than the other three solutions and there was not any significant difference between RO water and 2% hydrogen peroxide.
    [Show full text]
  • Evaluation of Selected Phosphate Sources for the Control of Acid
    Evaluation of selected phosphate sources for the control of acid production from pyritic coal overburden by Edward Spotts A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Rehabilitation Montana State University © Copyright by Edward Spotts (1990) Abstract: Acid Mine Drainage (AMD) is a serious and pervasive threat to surface and groundwater quality in the eastern Appalachian coal regions and at surface area coal mines in the western United States. Recent research has indicated that the use of phosphate materials can be an effective treatment for the amelioration of AMD. Phosphate is effective at immobilizing iron and inhibiting the production of acid associated with the oxidation of FeS2. A preliminary simulated weathering study was performed to evaluate the potential of several regional phosphate sources for controlling the production of acid from pyritic coal overburden. Sources deemed most effective were tested further for application rate determination utilizing a replicated soxhlet leaching technique described by Renton et al (1988a). Phosphate sources tested in this part of the study included two apatite ores (Cominco ore and Texas Gulf ore) at an application rate of 3% by weight apatite and two byproducts of the phosphate industry (Cominco waste and Stauffer sludge) at rates of 1%, 3% and 5% apatite by weight. Results of leachate analyses indicate that all sources at all rates of application resulted in significant decreases in titratable acidity versus a control. Acidity reductions ranged from a low of 7% for samples treated with Cominco waste (1%) to a high of 67% for Texas Gulf ore-treated samples.
    [Show full text]
  • Non-Fluoridated Remineralising Agents - a Review of Literature
    Jemds.com Review Article Non-Fluoridated Remineralising Agents - A Review of Literature Akriti Batra1, Vabitha Shetty2, 1, 2, Department of Paediatric & Preventive Dentistry, A.B. Shetty Memorial Institute of Dental Sciences (NITTE Deemed to Be University), Derlakatte, Mangalore, Karnataka, India. ABSTRACT Dental caries is not merely a continuous and one-way process of demineralisation of Corresponding Author: the mineral phase, but repeated episodes of demineralisations and remineralisation. Dr. Vabitha Shetty, The remineralisation process is a natural repair mechanism to restore the minerals Capitol Apartments, Flat No. 702, again, in ionic forms, to the hydroxyapatite (HAP) crystal lattice. It occurs under near- Mangalore, Karnataka, India. E-mail: [email protected] neutral physiological pH conditions whereby calcium and phosphate mineral ions are redeposited within the caries lesion from saliva and plaque fluid resulting in the DOI: 10.14260/jemds/2021/136 formation of newer HAP crystals, which are larger and more resistant to acid dissolution. An insight into the caries process’s multifactorial aetiopathogenesis has How to Cite This Article: resulted in a paradigm shift towards minimally invasive dentistry. This era of Batra A, Shetty V. Non-fluoridated personalised care using the medical model for caries management assimilates the remineralising agents - a review of signs of examining, diagnosing, intercepting, and managing dental caries at a literature. J Evolution Med Dent Sci microscopic level. Fluoride mediated salivary remineralisation system is considered 2021;10(09):638-644, DOI: 10.14260/jemds/2021/136 the cornerstone of non-invasive approach for managing non-cavitated carious lesions. However, the effect of fluoride was found to be limited to the outer surface of Submission 09-10-2020, the tooth, and it was observed that fluoride does not influence the modifiable factors Peer Review 22-12-2020, in dental caries such as the biofilm.
    [Show full text]