ADA Fluoridation Facts 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arsenic in Drinking Water: What You Need to Know
Arsenic in drinking water: what you need to know Why should I be concerned about arsenic in my drinking water? In Arizona, groundwater can contain arsenic that comes from natural sources, such as rocks and soils, and from human activities such as mining. Short-term exposure to very high doses of arsenic can cause poisoning. Long-term exposure to small doses has been linked to skin changes, cardiovascular effects, and cancer. Whether you are affected depends on how much arsenic you are exposed to and for how long, as well as your sensitivity to arsenic. What level of arsenic in my drinking water is considered safe? The United States Environmental Protection Agency has set the arsenic standard for drinking water at 10 parts per billion (ppb) to protect consumers served by public water systems from the effects of long-term, chronic exposure to arsenic. 10 ppb is roughly equal to 5 teaspoons of ink in an Olympic-sized swimming pool. Read below to learn more about testing and treating your water to reach 10 ppb arsenic or less. How can I learn what level of arsenic is in Arsenic is colorless and tasteless, my drinking water? so you cannot know it is there If you receive water from a municipal or privately-owned unless you test for it. water company, they are required to test your water for arsenic. You should receive an annual water quality report from your water supplier by July 1st of each year. If you drink bottled water, bottled water companies are not required to report results of any water quality testing. -
The Effective Use of Fluorides in Public Health
The effective use of fluorides in public health Sheila Jones,1 Brian A. Burt,2 Poul Erik Petersen,3 & Michael A. Lennon4 Abstract Dental caries remain a public health problem for many developing countries and for underprivileged populations in developed countries. This paper outlines the historical development of public health approaches to the use of fluoride and comments on their effectiveness. Early research and development was concerned with waterborne fluorides, both naturally occurring and added, and their effects on the prevalence and incidence of dental caries and dental fluorosis. In the latter half of the 20th century, the focus of research was on fluoride toothpastes and mouth rinses. More recently, systematic reviews summarizing these extensive databases have indicated that water fluoridation and fluoride toothpastes both substantially reduce the prevalence and incidence of dental caries. We present four case studies that illustrate the use of fluoride in modern public health practice, focusing on: recent water fluoridation schemes in California, USA; salt fluoridation in Jamaica; milk fluoridation in Chile; and the development of “affordable” fluoride toothpastes in Indonesia. Common themes are the concern to reduce demands for compliance with fluoride regimes that rely upon action by individuals and their families, and the issue of cost. We recommend that a community should use no more than one systemic fluoride (i.e. water or salt or milk fluoridation) combined with the use of fluoride toothpastes, and that the prevalence of dental fluorosis should be monitored in order to detect increases in or higher-than-acceptable levels. Keywords Fluorides/therapeutic use; Fluorides, Topical/therapeutic use; Dental caries/prevention and control; Fluoridation; Water supply; Milk; Sodium chloride, Dietary; Toothpaste/therapeutic use; Case reports; Meta-analysis; Review literature; United States; Jamaica; Chile; Indonesia (source: MeSH, NLM). -
Download PDF About Minerals Sorted by Mineral Name
MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky. -
Guideline # 18 ORAL HEALTH
Guideline # 18 ORAL HEALTH RATIONALE Dental caries, commonly referred to as “tooth decay” or “cavities,” is the most prevalent chronic health problem of children in California, and the largest single unmet health need afflicting children in the United States. A 2006 statewide oral health needs assessment of California kindergarten and third grade children conducted by the Dental Health Foundation (now called the Center for Oral Health) found that 54 percent of kindergartners and 71 percent of third graders had experienced dental caries, and that 28 percent and 29 percent, respectively, had untreated caries. Dental caries can affect children’s growth, lead to malocclusion, exacerbate certain systemic diseases, and result in significant pain and potentially life-threatening infections. Caries can impact a child’s speech development, learning ability (attention deficit due to pain), school attendance, social development, and self-esteem as well.1 Multiple studies have consistently shown that children with low socioeconomic status (SES) are at increased risk for dental caries.2,3,4 Child Health Disability and Prevention (CHDP) Program children are classified as low socioeconomic status and are likely at high risk for caries. With regular professional dental care and daily homecare, most oral disease is preventable. Almost one-half of the low-income population does not obtain regular dental care at least annually.5 California children covered by Medicaid (Medi-Cal), ages 1-20, rank 41 out of all 50 states and the District of Columbia in receiving any preventive dental service in FY2011.6 Dental examinations, oral prophylaxis, professional topical fluoride applications, and restorative treatment can help maintain oral health. -
CHEMICALS of PUBLIC HEALTH CONCERN and Their Management in the African Region
H H C Hg H N C OH O O HO OH OH CHEMICALS OF PUBLIC HEALTH CONCERN and their management in the African Region REGIONAL ASSESSMENT REPORT 4 JULY 2014 AFRO LIBRARY CATALOGUING-IN-PUBLICATION DATA Chemicals of public health concern in the African Region and their management: Regional Assessment Report 1. Chemically-Induced Disorders – prevention & control 2. Environmental Exposure 3. Polluants environnemental – adverse effects – toxicity 4. Hazardous Substances 5. Risk Management 6. Health Impact Assessment I. World Health Organization. Regional Office for Africa II.Title ISBN: 978-929023281-0 (NLM Classification:QZ 59) © WHO REGIONAL OFFICE FOR AFRICA, 2014 Publications of the World Health Organization enjoy The mention of specific companies or of certain copyright protection in accordance with the provisions manufacturers’ products does not imply that they of Protocol 2 of the Universal Copyright Convention. are endorsed or recommended by the World Health All rights reserved. Copies of this publication may be Organization in preference to others of a similar nature obtained from the Library, WHO Regional Office for that are not mentioned. Errors and omissions excepted, Africa, P.O. Box 6, Brazzaville, Republic of Congo (Tel: the names of proprietary products are distinguished by +47 241 39100; +242 06 5081114; Fax: +47 241 initial capital letters. 39501; E-mail: [email protected]). Requests for permission to reproduce or translate this publication All reasonable precautions have been taken by the – whether for sale or for non-commercial distribution – World Health Organization to verify the information should be sent to the same address. contained in this publication. -
Topical Fluoride Treatment – Dental Clinical Policy
UnitedHealthcare® Dental Clinical Policy Topical Fluoride Treatment Policy Number: DCP018.06 Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Related Dental Policy Coverage Rationale ....................................................................... 1 • Medically Necessary Orthodontic Treatment Definitions ...................................................................................... 2 Applicable Codes .......................................................................... 2 Related Medical Policy Description of Services ................................................................. 2 • Preventive Care Services Clinical Evidence ........................................................................... 3 U.S. Food and Drug Administration ............................................. 7 References ..................................................................................... 7 Policy History/Revision Information ............................................. 9 Instructions for Use ....................................................................... 9 Coverage Rationale Topical Application of Fluoride – Excluding Varnish Topical fluoride treatments in the form of gel, foam, and rinses are applied in the dental office as a caries preventive agent. Topical Application of Fluoride Varnish Fluoride varnish is indicated for the following: As the preferred caries prevention agent for children under age 6 For members receiving head and neck radiation therapy Sensitivity that does not resolve -
United States Patent Office Patented Jan
2,732,410 United States Patent Office Patented Jan. 24, 1956 2 The process can be carried out in various ways. Thus, 2,732,410 the vaporized halogen fluoride can be passed, if desired PROCESS FOR PREPARNG TETRAFLUORO with an inert carrier gas such as nitrogen, argon or helium, ETHYLENE BY REACTING CARBON AND through a column of carbon heated at a temperature of A BINARY HALOGEN FLUORDE at least 1500 C. in a suitable reactor, e. g., a graphite Mark W. Farlow, Holly Oak, and Earl L. Muetterties, tube placed inside a resistance furnace or an induction Hockessin, Dei, assignors to E. I. du Post de Neois's furnace. The gaseous reaction products are then imme and Company, Wilmington, Del, a corporation of Dela diately treated, as described below, to remove any un Ware reacted halogen fluoride and any free chlorine or bromine, 0 in order to minimize or eliminate the possibility of their No Drawing. Application January 12, 1955, reacting with the tetrafluoroethylene present in the re Serial No. 481,482 action product. A preferred mode of operation consists in 4 Claims. (C. 260-653) reacting the halogen fluoride with the carbon electrodes of a carbon arc, where the temperature is estimated to be in This invention relates to a new process of preparing 15 the range of 2500 to 3500-4000 C., and again immediate compounds containing only carbon and fluorine, or car ly removing from the effluent gas any halogen fluoride and bon, fluorine and another halogen, such compounds be free reactive halogen which may be present. -
Should We Use Milk Fluoridation? a Review1 RODRIGOMARI~~O~
Should We Use Milk Fluoridation? A Review1 RODRIGOMARI~~O~ This article presents the argument that becauseof several demonsfrafed advantages, milk fluoridation provides a valid alternative to water fluoridafion when the latter is not possible. Extensive literature describing study of fl uoride compounds adminisfered with calcium-rich food, as well as clinical trials and laborafo y experimen fs with fluoridated milk, have dem- onstrated its effectiveness in caries prevention. The main criticisms of milk fluoridation are decreased bioavailabilify of the fluoride, the cost and adminisfrafive burden involved, and (in some cases) lack of sound clinical conclusions regarding ifs preventive efficacy. These S criticisms are reviewed in fhe light of evidence now available. he World Health Organization has Indeed, oral health surveys have shown T recommended specific goals for oral that in most countries of the Americas health by the year 2000 (I). Among other about 95% of the population has a history things, these goals assert that the de- of dental caries (2). If countries continue cayed, missing, and filled teeth index to rely on programs based on dental caries (DMFT)3 at 12 years of age should be 3 treatment rather than prevention, we or less. In 1990, only 5 of 38 countries cannot expect major improvements in this and territories in Latin America and the picture, especially since there are many English-speaking Caribbean (the Baha- places where a significant part of the mas, Cuba, Dominica, Guyana, and Saint population lacks access to reguIar oral Lucia) had such a DMFT index, while 8 health care. Clearly, a different approach countries had DMFT indices exceeding to the problem must be found. -
Literature Review on the Effects of Water Fluoridation on the Human Health
Portland State University PDXScholar University Honors Theses University Honors College 5-24-2019 Literature Review on the Effects of Water Fluoridation on the Human Health Diana Abdeljawad Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Abdeljawad, Diana, "Literature Review on the Effects of Water Fluoridation on the Human Health" (2019). University Honors Theses. Paper 708. https://doi.org/10.15760/honors.725 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Literature Review on the Effects of Water Fluoridation on the Human Health by Diana Abdeljawad An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Science/Chemistry Thesis Adviser Bradley Buckley, PhD Portland State University 2019 LITERATURE REVIEW ON THE EFFECTS OF WATER FLUORIDATION ON THE HUMAN HEALTH 2 Table of Contents Abstract ................................................................................................................... 3 Background information.......................................................................................... 4-6 Fluoride....................................................................................................... -
Arsenic in Your Well Water What to Do If Your Well Has Too Much Arsenic
Arsenic in Your Well Water What to do if your well has too much arsenic. Switch to bottled water. Finding out your well water has too much arsenic in it may cause you to worry. There are things you can do to protect your family from arsenic. The first thing to do is switch to bottled water for drinking and for making drinks such as coffee, tea, juice, and infant formula. You can use this tipsheet to help you decide what to do next. Call the Maine CDC at 866-292-3474, tollfree in Maine, or 207-287-4311 to speak to an expert about arsenic in your well water. Is there too much arsenic in your water? Arsenic and Health Your test results will have a number then the In most cases, you can protect yourself if you stop letters "ug/L" or "mg/L." These letters are units of drinking water with too much arsenic in it. People measurement, like pounds and ounces. who drink water with too much arsenic for many years are more likely to get cancer. Arsenic can cause skin, Your water has too much arsenic if your test result bladder, and lung cancer. is above 10 ug/L or 0.01 mg/L. It may cause low birthweight and affect brain If your result is higher than these numbers, follow the development in babies if pregnant women drink water advice below. with too much arsenic in it. Arsenic can also affect If your result is between 10 and 50 ug/L or 0.01 and brain development in young children. -
THE CLEVELAN ORCHESTRA California Masterwor S
����������������������� �������������� ��������������������������������������������� ������������������������ �������������������������������������� �������� ������������������������������� ��������������������������� ��������������������������������������������������� �������������������� ������������������������������������������������������� �������������������������� ��������������������������������������������� ������������������������ ������������������������������������������������� ���������������������������� ����������������������������� ����� ������������������������������������������������ ���������������� ���������������������������������������� ��������������������������� ���������������������������������������� ��������� ������������������������������������� ���������� ��������������� ������������� ������ ������������� ��������� ������������� ������������������ ��������������� ����������� �������������������������������� ����������������� ����� �������� �������������� ��������� ���������������������� Welcome to the Cleveland Museum of Art The Cleveland Orchestra’s performances in the museum California Masterworks – Program 1 in May 2011 were a milestone event and, according to the Gartner Auditorium, The Cleveland Museum of Art Plain Dealer, among the year’s “high notes” in classical Wednesday evening, May 1, 2013, at 7:30 p.m. music. We are delighted to once again welcome The James Feddeck, conductor Cleveland Orchestra to the Cleveland Museum of Art as this groundbreaking collaboration between two of HENRY COWELL Sinfonietta -
Sulfur Hexafluoride Hazard Summary Identification
Common Name: SULFUR HEXAFLUORIDE CAS Number: 2551-62-4 RTK Substance number: 1760 DOT Number: UN 1080 Date: April 2002 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY * Sulfur Hexafluoride can affect you when breathed in. * If you think you are experiencing any work-related health * Sulfur Hexafluoride can irritate the skin causing a rash or problems, see a doctor trained to recognize occupational burning feeling on contact. Direct skin contact can cause diseases. Take this Fact Sheet with you. frostbite. * Exposure to hazardous substances should be routinely * Sulfur Hexafluoride may cause severe eye burns leading evaluated. This may include collecting personal and area to permanent damage. air samples. You can obtain copies of sampling results * Breathing Sulfur Hexafluoride can irritate the nose and from your employer. You have a legal right to this throat. information under OSHA 1910.1020. * Breathing Sulfur Hexafluoride may irritate the lungs causing coughing and/or shortness of breath. Higher WORKPLACE EXPOSURE LIMITS exposures can cause a build-up of fluid in the lungs OSHA: The legal airborne permissible exposure limit (pulmonary edema), a medical emergency, with severe (PEL) is 1,000 ppm averaged over an 8-hour shortness of breath. workshift. * High exposure can cause headache, confusion, dizziness, suffocation, fainting, seizures and coma. NIOSH: The recommended airborne exposure limit is * Sulfur Hexafluoride may damage the liver and kidneys. 1,000 ppm averaged over a 10-hour workshift. * Repeated high exposure can cause deposits of Fluorides in the bones and teeth, a condition called “Fluorosis.” This ACGIH: The recommended airborne exposure limit is may cause pain, disability and mottling of the teeth.