Walsh University the Remineralization Potential of Nano
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent Office Patented Sept
3,000,702 United States Patent Office Patented Sept. 19, 196 2 since potassium fluoride is very soluble. In this case, a 3,000,702 MANUEFACTURE OF SODIUM FLUOR DE double or complex salt is formed in the melt between George L. Cunningham, Burtonsville, Md., assignor to potassium fluoride and the calcium salt and that is slowly W. R. Grace & Co., New York, N.Y., a corporation extracted with water in spite of the great solubility of of Connecticut potassium fluoride in water. The corrosion of the molten No Drawing. Filed May 23, 1958, Ser. No. 737,196 melt is also a considerable problem although suitable 4. Claims. (CI. 23-88) ceramic materials have been discovered for constructing the fusion vessel. This invention relates to a process for the manufac Processes have been devised for the production of so ture of sodium fluoride relatively low in silica content. 10 dium fluoride based on the thermal decomposition of More particularly, this invention relates to a cyclic proc sodium silicofluoride to sodium fluoride and silicon tetra ess whereby sodium fluoride, relatively low in silica con fluoride (U.S. 1,896,697, U.S. 2,588,786, 1,730,915, tent and ammonium chloride, may be manufactured from 2,602,726, and U.S. 1,664,348). These processes are cheap and readily available raw materials. faulty in that relatively high temperatures are required to As manufactured at the present time, technical sodium 15 decompose the sodium silicofluoride and thus it is very fluoride contains 94% to 97% NaF and 1.5% to 5.0% difficult to carry the reaction to completion. -
Clinical and Microbiological Study
J Clin Exp Dent. 2015;7(5):e569-75. Combined mouthrinse in orthodontics Journal section: Oral Medicine and Pathology doi:10.4317/jced.51979 Publication Types: Research http://dx.doi.org/10.4317/jced.51979 Combined chlorhexidine-sodiumfluoride mouthrinse for orthodontic patients: Clinical and microbiological study Mahboobe Dehghani 1, Mostafa Abtahi 2, Hamed Sadeghian 3, Hooman Shafaee 1, Behrad Tanbakuchi 4 1 Assistant professor of orthodontics, Dental research center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran 2 Associate professor of orthodontics, Dental research center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran 3 Pathologist, Department of general Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 4 Assistant professor of orthodontics, Department of orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran Correspondence: Mostafa Abtahi Dental Research Center School of Dentistry Dehghani M, Abtahi M, Sadeghian H, Shafaee H, Tanbakuchi B. Com-Com- Mashhad University of Medical Sciences bined chlorhexidine-sodiumfluoride mouthrinse for orthodontic patients: Park Square, Vakilabad Blvd., Mashhad, Iran Clinical and microbiological study. J Clin Exp Dent. 2015;7(5):e569-75. [email protected] http://www.medicinaoral.com/odo/volumenes/v7i5/jcedv7i5p569.pdf Article Number: 51979 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 Received: 24/08/2014 eMail: [email protected] Accepted: 11/12/2014 Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Background: Orthodontic appliances impede good dental plaque control by brushing. Antimicrobial mouth rinses were suggested to improve this performance. We therefore aimed to investigate the effects of combined mouthrinse containing chlorhexidine (CHX) and sodium fluoride (NaF) on clinical oral hygiene parameters,and plaque bacte- rial level. -
Co-Operative Effect of Exogenous Dextranase and Sodium Fluoride On
Journal of Dental Sciences (2016) 11,41e47 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.e-jds.com ORIGINAL ARTICLE Co-operative effect of exogenous dextranase and sodium fluoride on multispecies biofilms Yuan-xin Qiu a,b,cy, Meng-ying Mao a,by, Dan Jiang d, Xiao Hong a,b, Ying-ming Yang a,b, Tao Hu a,b* a Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China b Department of Operative Dentistry and Endodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China c Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, Tianjin, China d Department of Operative Dentistry and Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China Received 22 June 2015; Final revision received 4 August 2015 Available online 21 November 2015 KEYWORDS Abstract Background/purpose: The co-operative effect of exogenous dextranase (Dex) and confocal laser sodium fluoride (NaF) on Streptococcus mutans monospecies biofilms is impressive. Here we scanning investigated the effects of the combination on a mature cariogenic multispecies biofilm and microscopy; analyzed the potential mechanism. dextranase; Materials and methods: A multispecies biofilm of S. mutans, Lactobacillus acidophilus,and multispecies Actinomyces viscosus was established in vitro. Dex and NaF were added separately or cariogenic biofilm; together. The effects of the agents on the biomass were measured. The exopolysaccharide sodium fluoride; production was determined with the scintillation counting method. The viability and viability value morphology were evaluated using colony forming unit and confocal laser scanning micro- scopy, respectively. -
Retention of Long-Term Interim Restorations with Sodium Fluoride Enriched Interim Cement Carolyn Strash Marquette University
Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Retention Of Long-Term Interim Restorations With Sodium Fluoride Enriched Interim Cement Carolyn Strash Marquette University Recommended Citation Strash, Carolyn, "Retention Of Long-Term Interim Restorations With Sodium Fluoride Enriched Interim Cement" (2013). Master's Theses (2009 -). Paper 201. http://epublications.marquette.edu/theses_open/201 RETENTION OF LONG-TERM INTERIM RESTORATIONS WITH SODIUM FLUORIDE ENRICHED INTERIM CEMENT by Carolyn Strash, D.D.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin May 2013 ABSTRACT RETENTION OF LONG-TERM INTERIM RESTORATIONS WITH SODIUM FLUORIDE ENRICHED INTERIM CEMENT Carolyn Strash, DDS Marquette University, 2013 Purpose: Interim fixed dental prostheses, or “provisional restorations”, are fabricated to restore teeth when definitive prostheses are made indirectly. Patients undergoing extensive prosthodontic treatment frequently require provisionalization for several months or years. The ideal interim cement would retain the restoration for as long as needed and still allow for ease of removal. It would also avoid recurrent caries by preventing demineralization of tooth structure. This study aims to determine if adding sodium fluoride varnish to interim cement may assist in the retention of interim restorations. Materials and methods: stainless steel dies representing a crown preparation were fabricated. Provisional crowns were milled for the dies using CAD/CAM technology. Crowns were provisionally cemented onto the dies using TempBond NE and NexTemp provisional cements as well as a mixture of TempBond NE and Duraphat fluoride varnish. Samples were stored for 24h then tested or thermocycled for 2500 or 5000 cycles before being tested. -
Drug Prescribing for Dentistry Dental Clinical Guidance
Scottish Dental Clinical Effectiveness Programme SDcep Drug Prescribing For Dentistry Dental Clinical Guidance Second Edition August 2011 Scottish Dental Clinical Effectiveness Programme SDcep The Scottish Dental Clinical Effectiveness Programme (SDCEP) is an initiative of the National Dental Advisory Committee (NDAC) and is supported by the Scottish Government and NHS Education for Scotland. The programme aims to provide user-friendly, evidence-based guidance for the dental profession in Scotland. SDCEP guidance is designed to help the dental team provide improved care for patients by bringing together, in a structured manner, the best available information that is relevant to priority areas in dentistry, and presenting this information in a form that can interpreted easily and implemented. ‘Supporting the dental team to provide quality patient care’ Scottish Dental Clinical Effectiveness Programme SDcep Drug Prescribing For Dentistry Dental Clinical Guidance Second Edition August 2011 Drug Prescribing For Dentistry © Scottish Dental Clinical Effectiveness Programme SDCEP operates within NHS Education for Scotland. You may copy or reproduce the information in this document for use within NHS Scotland and for non-commercial educational purposes. Use of this document for commercial purpose is permitted only with written permission. ISBN 978 1 905829 13 2 First published 2008 Second edition published August 2011 Scottish Dental Clinical Effectiveness Programme Dundee Dental Education Centre, Frankland Building, Small’s Wynd, Dundee DD1 -
United States Patent (19) 11 Patent Number: 4,828,822 Miihlemann Et Al
United States Patent (19) 11 Patent Number: 4,828,822 Miihlemann et al. (45) Date of Patent: May 9, 1989 (54) PROCESS FOR STABILIZING AQUEOUS S. Ebell, "Karies und Zuckeraustauschstoffe', Emah COMPOSITIONS CONTAINING T N SALTS rungsclorschung Hett, 1978, pp. 171-174. 75) Inventors: Hans R. Miihlemann, Zollikon; Hans H. R. Muhlemann, "Zuckerfreie, Zahnschonende und Schmid, Muttenz, both of Nicht-Kariogene Bonbons und Sussigkeiten'. Switzerland 88, Scand J. Dent. Res., 193-200 (1980), “Effect of Mouthrinses With Tin(II), Fluoride, Lanthanum Chlo 73) Assignee: GABA International AG, Basel, ride, Sodium Fluoride and Chlorohexidine on the Switzerland Amount of Lipoteichoic Acid Formed in Plaque'. (21) Appl. No.: 109,830 Substitution of Sucrose by Lycasin in Candy, Roslagen Study, Frostell et al., Acta Odontol. Scand., 1974, 32(4), 22 Filed: Oct. 16, 1987 235-54 (Eng), 71769m, CA 82-71769. Chemical Abstract, 80-128408h, Effect of Mouth Related U.S. Application Data Rinses with Sucrose, Glucose, Fructose, Lactose, Sor 63 Continuation-in-part of Ser. No. 363,013, Mar. 29, bitol, and Lycasin on the pH of Dental Plaque. 1982, abandoned, which is a continuation of Ser. No. Chemical Abstracts, 93-106820c, Effect of Inorganic 192,874, Oct. 1, 1980, abandoned. Ions and Surface Active Organic Compounds on the (30) Foreign Application Priority Data Adherence of Oral Streptococci. Oct. 2, 1979 GB United Kingdom ................. 7934159 Chemical Abstract, 93:43218q, Relation of Amylase to Starch and Lycasin Metabolism in Human Dental Jan. 24, 1980 GB United Kingdom ................. 8002433 Plaque in Vitro. Feb. 1, 1980 GB United Kingdom ................. 8003525 Fed. Reg. 17,245(1974). -
Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review
materials Review Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review Kamil Pajor, Lukasz Pajchel and Joanna Kolmas * Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] Received: 29 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials. Keywords: hydroxyapatite; fluorapatite; dentistry; calcium phosphates 1. Introduction In recent decades, one has been able to observe huge progress in the field of dentistry. This results not only from the development of dental techniques and methods of therapy but also from significant developments in biomaterial engineering. The science of biomaterials is constantly increasing due to innovative modifications of already known materials or completely new biomaterials for applications in dentistry. Biodegradable polymers, bioactive ceramics, bioglass or metals covered with a layer of material facilitating osseointegration and, above all, composite materials are the main directions in the development of dental biomaterials [1–4]. -
Sodium Fluoride Jtbaker.Pdf
MSDS Number: S3722 * * * * * Effective Date: 03/14/11 * * * * * Supersedes: 09/23/09 SODIUM FLUORIDE 1. Product Identification Synonyms: Floridine; sodium monofluoride; disodium difluoride; natrium fluoride; Florocid CAS No.: 7681-49-4 Molecular Weight: 41.99 Chemical Formula: NaF Product Codes: J.T. Baker: 3687, 3688, 3689 Macron: 0467, 5309, 5325, 7636 2. Composition/Information on Ingredients Ingredient CAS No Percent Hazardous --------------------------------------- ------------ ------------ --------- Sodium Fluoride 7681-49-4 100% Yes 3. Hazards Identification Emergency Overview -------------------------- DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. AFFECTS RESPIRATORY SYSTEM, HEART, SKELETON, CIRCULATORY SYSTEM, CENTRAL NERVOUS SYSTEM AND KIDNEYS. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. IRRITATION EFFECTS MAY BE DELAYED. SAF-T-DATA(tm) Ratings (Provided here for your convenience) ----------------------------------------------------------------------------------------------------------- Health Rating: 3 - Severe (Poison) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Blue (Health) ----------------------------------------------------------------------------------------------------------- Potential Health Effects ---------------------------------- If inhaled or swallowed, this compound can cause fluoride poisoning. Early symptoms include nausea, vomiting, diarrhea, and weakness. -
Sodium Fluoride-Induced Oxidative Stress and Histological Changes in Liver of Swiss Albino Mice and Amelioration by Ocimum Sanctum Linn
Online - 2455-3891 Vol 11, Issue 9, 2018 Print - 0974-2441 Research Article SODIUM FLUORIDE-INDUCED OXIDATIVE STRESS AND HISTOLOGICAL CHANGES IN LIVER OF SWISS ALBINO MICE AND AMELIORATION BY OCIMUM SANCTUM LINN. BHAGWENDRA PRAKASH, SURESH KUMAR SABAL, RAJBALA VERMA, JOHN PJ, INDERPAL SONI* Department of Zoology, Environmental Toxicology Laboratory, Centre for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan, India. Email: [email protected]; [email protected] Received: 20 April 2018, Revised and Accepted: 19 May 2018 ABSTRACT Objective: The present study was designed to evaluate hepatotoxicity induced by sodium fluoride (NaF) in Swiss albino mice and amelioration by Ocimum sanctum Linn. Methods: Mice were divided into six groups, Group I received tap water, Group II received low dose of NaF (8 mg/L), Group III high dose of NaF (80 mg/L) in drinking water, Group IV tap water along with 250 mg/kg body weight/day leaf extract of O. sanctum Linn., Group V 8 mg/L NaF in drinking water and 250 mg/kg body weight leaf extract of O. sanctum Linn., and Group VI 80 mg/L NaF in drinking water along with leaf extract of O. sanctum Linn. 250 mg/kg body weight/day for 90 days. On the 91st day, the animals were autopsied and liver tissue samples were taken to assess histopathological changes and oxidative stress by estimating glutathione peroxidase, superoxide dismutase, and catalase. Results: A highly significant decrease in the activity of antioxidant enzymes occurred with the high dose (Group III). Hepatic histopathological architecture exhibited deformities, namely, ballooning, hypertrophy, hepatocellular necrosis, infiltration of mononuclear cells, deformed central vein, sinusoidal dilation, and binucleated cells. -
Selected Medicines Used in Iontophoresis
pharmaceutics Review Selected Medicines Used in Iontophoresis Tomasz M. Karpi ´nski Department of Medical Microbiology, Pozna´nUniversity of Medical Sciences, Wieniawskiego 3, 61-712 Pozna´n,Poland; [email protected] or [email protected]; Tel.: +48-61-854-61-38 Received: 19 September 2018; Accepted: 24 October 2018; Published: 25 October 2018 Abstract: Iontophoresis is a non-invasive method of systemic and local drug delivery using an electric field. Iontophoresis enables diffusion of the selected drug via skin, mucosa, enamel, dentin, and other tissues. The amount of delivered therapeutic molecules is about 10–2000 times greater than conventional forms of delivery. Among other fields, this method is used in dentistry, ophthalmology, otorhinolaryngology, and dermatology. According to related literature, the most important drugs studied or administered by iontophoresis are: Local anesthetics, opioids, steroids, non-steroidal anti-inflammatory drugs, antibacterial drugs, antifungal drugs, antiviral drugs, anticancer drugs, fluorides, and vitamins. The present review covers current available data regarding the selected medicines used in iontophoresis. Furthermore, indications and conditions of iontophoresis application are reviewed. Keywords: iontophoresis; drug delivery; dentistry; ophthalmology; local anaesthetics; non-steroid anti-inflammatory drugs; antibiotics; anticancer drugs 1. Introduction Iontophoresis is a type of electrotherapy, during which a drug is introduced deep into the tissues as a means of systemic and local drug application [1]. It is based on the principle that in a given electric field, positively charged drug ions (cations) are repelled by a positive electrode (anode) and are directed to the cathode (Figure1). In turn, negative ions (anions, e.g., ketoprofen) being repelled by the negative electrode (cathode), follow the anode. -
Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W
Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou To cite this version: W. Lemlikchi, P. Sharrock, M. O. Mecherri, M. Fiallo, Ange Nzihou. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse. Waste and Biomass Valorization, Springer, 2012, 3 (1), pp.75-79. 10.1007/s12649-011-9096-0. hal-01632408 HAL Id: hal-01632408 https://hal.archives-ouvertes.fr/hal-01632408 Submitted on 16 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Treatment of Textile Waste Waters by Hydroxyapatite Co-Precipitation with Adsorbent Regeneration and Reuse W. Lemlikchi • P. Sharrock • M. O. Mecherri • M. Fiallo • A. Nzihou Abstract When dissolved calcium salts are reacted in abatement and introduced calcium concentration, indicat- aqueous medium in the presence of phosphate anions, a ing the feasibility of the process. gelatinous precipitate forms. Maturation of this precipitate eventually leads to the formation of hydroxyapatites (HA). Keywords Dye removal Hydroxyapatite Adsorbent HA is a stable solid with high specific surface area, and regeneration EliminationÁ rate Á Á interesting adsorption properties. -
Preparation and Solubility of Hydroxyapatite
JOURNAL O F RESEARC H of the National Bureau of Standards - A. Ph ys ics a nd Chemistry Vol. 72A, No. 6, N ovember- December 1968 Preparation and Solubility of Hydroxyapatite E. C. Moreno,* T. M. Gregory,* and W. E. Brown* Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234 (August 2, 1968) Two portions of a syntheti c hydroxyapatite (HA), Ca" OH(PO'}J, full y characterized by x-ray, infrared, petrographi c, and chemi cal anal yses, were heated at 1,000 °C in air and steam atmospheres, respectively. Solubility isotherms for these two samples in the syste m Ca(OH}2 -H3PO,-H20 were determined in the pH range 5 to 7 by equilibrating the solids with dilute H3 PO. solutions. Both sam ples of HA disso lved stoichiometrically. The activity products (Ca + +)'( OH - ) (pO~f' and their standard errors-obtained by a least squares adjustment of the measurements (Ca and P concentrations and pH of the saturated solutions) subject to the conditions of electroneutralit y, constancy of the activity product, and stoichiometric dissolution - were 3.73 ± 0.5 x 10- 58 for the steam-h eated HA and 2_5, ± 0.4 x 10- 55 for the air-heated HA. Allowance was made in the calculations for the presence of the ion pairs [CaHPO. lo and [CaH2P04 1+ The hi gher solubility product for the air-heated HA is as cribed either to a change in the heat of formation brought about by partial dehydration or to a state of fine subdivision resulting from a disproportionation reacti on_ The solubility product constant s were used to cal culate the points of intersection (i.e_, sin gular points) of the two HA solubility isot herms with the isotherms of CaHPO.